JPS62162631A - Production of crystallized glass having colored pattern - Google Patents

Production of crystallized glass having colored pattern

Info

Publication number
JPS62162631A
JPS62162631A JP269386A JP269386A JPS62162631A JP S62162631 A JPS62162631 A JP S62162631A JP 269386 A JP269386 A JP 269386A JP 269386 A JP269386 A JP 269386A JP S62162631 A JPS62162631 A JP S62162631A
Authority
JP
Japan
Prior art keywords
glass
mesh
powder
particles
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP269386A
Other languages
Japanese (ja)
Other versions
JPH0575701B2 (en
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Hiroshi Ryumon
龍門 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP269386A priority Critical patent/JPS62162631A/en
Publication of JPS62162631A publication Critical patent/JPS62162631A/en
Publication of JPH0575701B2 publication Critical patent/JPH0575701B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a crystallized glass having spotted color pattern without necessitating specific component, by compression-molding a mixture of colorless glass powder and colored glass powder having different particle size and heating the molded mixture to effect the softening, fusion, integration and densification of each glass powder and, at the same time, crystallizing the mixture. CONSTITUTION:(1) A vitreous raw material containing 45-75% SiO2, <=20% Al2O3, 5-40% CaO and 2-20% Na2O+K2O as essential components (the sum of the above components is >=85%) is crushed to obtain powder containing particles of >=200 mesh accounting for >=90%. (2) A colored vitreous raw material composed of each component of the above composition and <=10wt% colorant is crushed to obtain powder of 10-200 mesh or powder containing particles of 10-200 mesh and >=200 mesh. (3) Both powdery compositions (1) and (2) are mixed together. The amount of the particles of <=200 mesh in the mixture is >=50%. (4) The mixture is compression molded to obtain a pressed powder having desired shape and a density of >=55% of the true density. (5) The molded article is heat-treated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は色模様を有する結晶化ガラスの製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing crystallized glass having a color pattern.

(従来の技術) 従来の結晶化ガラスは一般に核形成剤を含むガラス原料
を溶融し、各種の成形機等により成形して後、結晶化熱
処理を施し結晶を析出させており、結晶の析出により白
色を呈している。着色の結晶化ガラスとするには、上記
製造原料にガラス着色剤を加えることによって可能であ
る。
(Prior art) Conventional crystallized glass is generally produced by melting a glass raw material containing a nucleating agent, molding it using various molding machines, etc., and then subjecting it to crystallization heat treatment to precipitate crystals. It has a white color. Colored crystallized glass can be produced by adding a glass coloring agent to the above raw materials.

他に結晶化ガラスを得る方法としては、溶融したガラス
を水冷等により破砕してガラス小体を得、該ガラス小体
を型枠に集積して熱処理することにより、各ガラス小体
を融着一体化する一方、結晶化する方法(以下集積法と
称す)が「特開昭48−78217 Jに開示されてお
り、同方法による結晶化ガラスは不均一な結晶の成長に
よる模様の現われた白色である。
Another method for obtaining crystallized glass is to obtain glass corpuscles by crushing molten glass by cooling with water, etc., and by gathering the glass corpuscles in a mold and heat-treating them, each glass corpuscle is fused. A method of integrating and crystallizing (hereinafter referred to as the integration method) is disclosed in ``Japanese Patent Application Laid-Open No. 78217-1978, and the crystallized glass produced by this method has a white color with a pattern due to uneven crystal growth. It is.

なお、この集積法においても原料となるガラスに、ガラ
ス着色剤を加えた着色ガラスを用いることによって着色
の結晶化ガラスとすることも可能である。
In addition, also in this accumulation method, it is also possible to obtain colored crystallized glass by using colored glass in which a glass colorant is added to the raw glass.

(発明が解決しようとする問題点) 一般にガラスは強度的に問題のある材質で、その向上は
常に希求されているところであり、また装飾材、建築材
等における多様化は色付きガラスにおいても均一な着色
でなく変化のあるガラス、例えば斑模様を呈するような
ガラスの出現が期待されるところであり、こう云った観
点からすれば、前記核形成剤及びガラス着色剤を含むガ
ラス原料を熔融し成形して後結晶化熱処理により結晶を
析出させる方法は、均一な着色であると共に原料に比べ
て核形成剤が高価な場合のあることが問題であり、次の
集積法の場合は既述のように不均一な結晶の成長による
模様化は行われるもの\、集積のガラス小体を加熱して
行った場合、結晶の析出する温度で各ガラス小体が互い
に融着一体化できるような充分低い粘性をもつものでな
ければ適さない。というように原料ガラスに制限があり
、従って核形成剤や核形成剤としても作用するような着
色剤、たとえばFeS +MnS+  FeO+Fe2
01などを含むガラス小体は使用することができないの
である。
(Problems to be solved by the invention) Generally, glass is a material with a problem in terms of strength, and improvements in its strength are always sought after.Also, the diversification of decorative materials, construction materials, etc. has caused uniformity in colored glass as well. The emergence of glass that is not colored but has a change, for example, a glass that exhibits a mottled pattern, is expected, and from this point of view, melting and forming the glass raw material containing the nucleating agent and the glass coloring agent is expected. The problem with the method of precipitating crystals by post-crystallization heat treatment is that the coloring is uniform and the nucleating agent is sometimes expensive compared to the raw materials. Patterns are created by the growth of non-uniform crystals, but when the glass bodies are heated, the viscosity is low enough that the glass bodies can be fused together and integrated at the temperature at which the crystals precipitate. It is not suitable unless you have the following. There are limitations to the raw material glass, so colorants that also act as nucleating agents or nucleating agents, such as FeS + MnS + FeO + Fe2
Glass bodies containing 01 and the like cannot be used.

つまり加熱されたガラス小体において、軟化温度で析出
している結晶核の成長速度が速く、融着する前に結晶が
成長するような組成や上記のように核形成剤を含むよう
な場合は、結晶の成長によって粘度を増大し、各ガラス
小体は融着一体化できず、更に温度を上げて一体化を図
ろうとすれば、逆に結晶が破壊し若しくは転移して結晶
化ガラスにならないのである。
In other words, in a heated glass body, the growth rate of the crystal nuclei precipitated at the softening temperature is fast, and if the composition is such that the crystals grow before fusion, or if it contains a nucleating agent as described above, The viscosity increases due to the growth of crystals, and the glass bodies cannot be fused and integrated, and if an attempt is made to further increase the temperature to achieve integration, the crystals will instead break or transfer and will not become crystallized glass. It is.

なおこの集積法では、核形成剤として作用しない着色剤
で着色する場合も色が鮮明に出ないという問題点や、更
に製品内部に比較的大きな気泡(径0.5mm以上)を
含むという問題点も有しているのである。
Furthermore, this accumulation method has the problem that the color does not come out clearly even when colored with a coloring agent that does not act as a nucleating agent, and that the product contains relatively large bubbles (diameter of 0.5 mm or more). It also has

(問題点を解決するための手¥&) 本発明は以上のような従来技術の有する問題点を特別な
成分を必要とすることなく解決して、斑状の色模様付き
の結晶化ガラスの提供を可能としたものであり、そのた
めの手段として、必須成分として重量百分率で、5i0
2 : 45〜75%、^Q*01: 20%以下、C
aO:5〜40%、Na2O+に20 :2〜20%を
、5ift+^R*01+CaO+Na20 +に20
 >85%であるように含有して成るガラス状原料を粉
砕して、200 mesh以下の粒子が90%以上を占
めるようにした粉体と、前記組成範囲の各成分及び重量
百分率で10%以下の着色剤を含有して成る有色のガラ
ス状態の原料を粉砕して、10〜200meshと若し
くは10〜200 meshとそれ以下の粒子を含むよ
うにした粉体との混合に当り、両者の混合物中において
200 mesh以下の粒子が50%以上を占める範囲
で両者を所望割合に混合し、次いで該混合物を所望形状
の圧縮成形枠を用いて真密度の55%以上の圧粉体に圧
縮成形して後、熱処理することにより該圧粉体の各ガラ
ス粉末を相互に軟化融着させて一体化及び緻密化する一
方結晶化を図り、主としてウオラストナイト結晶を析出
させるようにしたのである。
(Measures to Solve the Problems &) The present invention solves the problems of the prior art as described above without requiring any special ingredients, and provides crystallized glass with a mottled color pattern. As a means for that purpose, as an essential component, 5i0
2: 45-75%, ^Q*01: 20% or less, C
aO: 5 to 40%, 20 to Na2O+: 2 to 20%, 20 to 5ift+^R*01+CaO+Na20+
>85% of the glassy raw material is crushed so that particles of 200 mesh or less account for 90% or more, and each component in the above composition range and the weight percentage is 10% or less. When mixing a powder containing particles of 10 to 200 mesh or 10 to 200 mesh and smaller by pulverizing a colored glassy raw material containing a coloring agent, in the mixture of the two. The two are mixed in a desired ratio within a range in which particles of 200 mesh or less account for 50% or more, and then the mixture is compression-molded into a green compact with a true density of 55% or more using a compression molding frame of a desired shape. Thereafter, by heat treatment, the glass powders of the green compact were softened and fused to each other, integrated and densified, and crystallized to precipitate mainly wollastonite crystals.

(作  用) 本発明の最も特徴としている技術的手段は、ガラス状原
料を微粉末とし、これを緻密な圧縮成形体として後加熱
し、各ガラス粉末を軟化融着させて一体化及び緻密化す
る一方結晶化を図るところにあるが、ガラス状原料の微
粉化と、それを緻密圧縮体としたことは、ガラス粉末間
の軟化融着が比較的低温で容易に行われるように作用し
ているのである。
(Function) The most characteristic technical means of the present invention is to turn the glassy raw material into a fine powder, make it into a dense compression molded body, post-heat it, and soften and fuse each glass powder to integrate and densify it. On the other hand, it is aimed at crystallization, but the pulverization of the glassy raw material and the creation of a dense compacted body work so that softening and fusion between the glass powders can easily occur at a relatively low temperature. There is.

すなわちガラス粒が粗粒で単に集積された状態のものを
加熱してゆく場合、軟化点に到達しても各粒子は直ちに
融着一体化しない。まず各粒子の鋭角部分等から軟化し
はじめ、粒子体の略全体が軟化するためには軟化点以上
の高温に加熱しなければならず、このように高温に加熱
しはじめて融着一体化が起こるのである。
In other words, when coarse glass particles are simply accumulated and heated, even when the softening point is reached, the particles do not immediately fuse and become integrated. First, the sharp corners of each particle begin to soften, and in order to soften almost the entire particle, it must be heated to a high temperature above the softening point, and it is only when heated to such a high temperature that fusion and integration occur. It is.

しかるに微粉末の緻密圧縮体の場合は、各粒子が質量に
比して広い面積で互いに緻密に接触しており、極めて容
易に融着一体化し緻密化が進むのである。
However, in the case of a dense compacted body of fine powder, each particle is in close contact with each other over a large area relative to its mass, and it is extremely easy to fuse and integrate the particles, resulting in progress in densification.

このようにガラス粒子の一体緻密化を比較的低温で行え
るようになったことは、一体数密化の後に結晶の成長化
が図れるということであり、従来の集積法の問題点を見
事に解決しているのであって、核形成剤や核形成剤の作
用をする着色剤を含む場合も圧粉体粒子の一体緻密化の
後に結晶化が図れ、しかもその結晶化に際しては含有の
核形成剤が有効に働くのである。
The fact that it is now possible to integrally densify glass particles at a relatively low temperature means that crystal growth can be achieved after integral number densification, and this successfully solves the problems of conventional integration methods. Even if a nucleating agent or a coloring agent that acts as a nucleating agent is included, crystallization can be achieved after the green compact particles are densified, and furthermore, during the crystallization, the contained nucleating agent works effectively.

第1図はガラスの微粉圧縮体を加熱したときの温度と核
形成速度及び結晶成長速度との関係を概念的に示したグ
ラフであり、縦軸に核形成速度及び結晶成長速度をとり
、横軸に温度をとっている。
Figure 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when heating a compressed glass fine powder, with the nucleation rate and crystal growth rate plotted on the vertical axis, and the horizontal axis. The temperature is measured on the shaft.

破線が「核形成速度一温度」曲線、実線が「結晶の成長
速度一温度」曲線である。なお、s、p、は軟化点、M
、P、は融点である。
The broken line is the "nucleation rate vs. temperature" curve, and the solid line is the "crystal growth rate vs. temperature" curve. In addition, s, p are softening points, M
, P is the melting point.

ガラスの微粉圧縮体の加熱においては既述のように軟化
点をあまり越えない比較的低温の範囲で各ガラス粒子の
融着一体化及び緻密化が行われるのであり、この時期に
核が発生しその数を増してゆくことをグラフは示してお
り、その後の昇温において結晶の成長が盛んになってい
る。
As mentioned above, when heating a compacted glass powder, each glass particle is fused and integrated and densified at a relatively low temperature that does not exceed its softening point, and it is during this period that nuclei are generated. The graph shows that the number increases, and as the temperature increases thereafter, crystal growth becomes more active.

次に微粉末の緻密圧縮体としたことによる今一つの作用
を挙げると、結晶化し難いような組成のガラス、すなわ
ち結晶の成長速度の遅い組成のガラスであっても比較的
容易に結晶化が進むようになることである。
Next, to mention another effect of forming a compact compact of fine powder, even glass with a composition that is difficult to crystallize, that is, glass with a composition that has a slow crystal growth rate, can be crystallized relatively easily. It is to become like that.

すなわち結晶化速度は (結晶化速度)−(結晶核数)×(結晶成長速度)のよ
うに表され、結晶核はガラス粒子間の融着界面に発生し
やす(、微粉末の圧粉体においては 。
In other words, the crystallization rate is expressed as (crystallization rate) - (number of crystal nuclei) x (crystal growth rate), and crystal nuclei are likely to occur at the fused interface between glass particles (, In .

融着界面が多くかつ広く、従って発生の核も多く、たと
え結晶の成長速度が大きくなくとも結果的には結晶化速
度を大ならしめるのである。
The number of fused interfaces is large and wide, and therefore there are many generated nuclei, and even if the crystal growth rate is not high, the crystallization rate is increased as a result.

本発明における今一つの大きな特徴とする手段は、無色
ガラス粉末と有色ガラス粉末を混合するのであり、その
際の有色ガラス粉末の粒子を無色ガラス粉末の粒子より
粗粒としている点である。
Another major feature of the present invention is that colorless glass powder and colored glass powder are mixed, and the colored glass powder particles are made coarser than the colorless glass powder particles.

つまり粗粒であることが作用して斑模様が形成されるの
である。
In other words, the coarse grains act to form a mottled pattern.

若し無色、有色の原料共同様な微粒子たとえば200 
mesh以下の微粒子として混合してこれを結晶化ガラ
スとして製造した場合、製品は均一な色を呈して斑模様
とならない。これでは有色、無色の原料を別々に製造し
、各粉末を混合するという工程が無意味となるのである
Similar fine particles for colorless and colored raw materials, for example 200
When mixed as fine particles smaller than mesh and manufactured as crystallized glass, the product exhibits a uniform color and does not have a mottled pattern. This makes the process of separately manufacturing colored and colorless raw materials and mixing the powders of each powder meaningless.

(実施例) 先ず必須成分の限定理由から述べる。なお必須成分は、
無色、有色のガラス状原料において共通である。
(Example) First, the reason for limiting the essential components will be described. The essential ingredients are
Common in colorless and colored glassy raw materials.

5ift : 45〜75%(重量百分率以下同じ)4
5%以下では熱処理中の圧縮成形体の形状保持が難しく
、75%以上ではガラスの粘性が高くなり、圧縮成形体
の緻密化が遅くなる。
5ift: 45-75% (same below weight percentage) 4
If it is less than 5%, it will be difficult to maintain the shape of the compression molded product during heat treatment, and if it is more than 75%, the viscosity of the glass will increase and the densification of the compression molded product will be slow.

AQ*Ch : 20%以下 20%以上ではガラスの粘性が高くなり、圧縮成形体の
緻密化が遅くなる。
AQ*Ch: 20% or less and 20% or more, the viscosity of the glass becomes high and the densification of the compression molded product becomes slow.

CaO: 5 〜40% 5%以下ではうォラストナイト、アノルサイトなどの結
晶が析出し難くなる。また40%以上では耐水、耐酸性
などの物性値に影響を及ぼすようになる。
CaO: 5 to 40% If it is less than 5%, crystals such as wollastonite and anorsite will be difficult to precipitate. Moreover, if it exceeds 40%, physical properties such as water resistance and acid resistance will be affected.

Na20 +に20  +  2〜20%2%以下では
ガラスの粘性が高くなり、圧縮成形体の緻密化が遅くな
る。また20%以上では熱処理中の圧縮成形体の形状保
持が難しい。
2% to 20% of Na20+ If the content is less than 2%, the viscosity of the glass becomes high and the densification of the compression molded product becomes slow. Moreover, if it is 20% or more, it is difficult to maintain the shape of the compression molded product during heat treatment.

なお上記必須成分は、その合計が85%以上となるよう
に含有させるのであり、その理由はガラスとしての物性
を通正に保つためである。
The above-mentioned essential components are contained in such a way that the total amount is 85% or more, and the reason for this is to maintain the physical properties of the glass.

次に有色ガラス状原料における必須成分の着色剤(Ca
O、FeO+Fe201、Cr201、NiO% Cu
O%Mn0zなど)を10%以下とした理由については
、着色という観点からすると10%以上は不必要である
ばかりでなく、10%以上の含有によって無色のガラス
状原料との物性値の差が大きくなるためである。
Next, a coloring agent (Ca
O, FeO+Fe201, Cr201, NiO% Cu
The reason for setting the content (O%Mn0z, etc.) to 10% or less is that not only is it unnecessary from the perspective of coloring, but also that the content of 10% or more increases the difference in physical properties from the colorless glassy raw material. This is because it becomes bigger.

次に必須外成分について述べると、無色及び有色のガラ
ス原料共に、 MgO、ZnO、、BaO、PbO,8201等の各2
%までの添加は支障なく、またsb2 o、は清澄剤と
して作用するので熔解時に1%以下を添加してもよい。
Next, regarding non-essential components, both colorless and colored glass raw materials include MgO, ZnO, BaO, PbO, 8201, etc.
Since sb2o acts as a clarifying agent, it may be added in an amount of 1% or less during melting.

また核形成剤を含有させることも可能である。It is also possible to contain a nucleating agent.

次に製造方法について詳述する。Next, the manufacturing method will be explained in detail.

無色及び有色のガラス状原料の製造は、前記成分の原料
をそれぞれ所定の組成になるように調合融解し、これを
水砕などの方法で急冷破砕してガラス状の小体を得てこ
れを原料とする。
Colorless and colored glassy raw materials are produced by mixing and melting the raw materials for each of the above components to a predetermined composition, and then quenching and crushing this by a method such as water pulverization to obtain glassy bodies. Use as raw material.

勿論限定範囲の成分組成を有して既にガラス状になって
いるものを原料として用いて差支えなく、これを適宜の
手段で破砕し小体とする。
Of course, a material having a limited range of component compositions and already in the form of glass may be used as the raw material, and this may be crushed into small bodies by appropriate means.

このようにして得られたガラス小体を、たとえばボール
ミルなどにより更に粉砕するのであり、このとき無色の
ガラス状原料(以下無色原料と称す)は200 mes
h以下の微粒子が90%以上含まれるようにし、有色の
ガラス状原料(以下有色原料と称す)では10〜200
 meshの粉末か、若しくは10〜200 mesh
の粉末を必ず含み更に200 mesh以下の微粉末も
含むような粉体とするのである。
The glass bodies obtained in this way are further pulverized using, for example, a ball mill, and at this time, the colorless glassy raw material (hereinafter referred to as colorless raw material) is
The content of fine particles of h or less should be 90% or more, and for colored glassy raw materials (hereinafter referred to as colored raw materials), the content should be 10 to 200%.
Mesh powder or 10-200 mesh
The powder must contain 200 mesh or less fine powder.

かくして得られた無色及び有色原料の粉体を混合するの
であるが、混合粉体において200 mesh以下の微
粉が50%以上を占める範囲で両者を所望割合に混合す
るのである。
The thus obtained colorless and colored raw material powders are mixed in a desired ratio so that fine powder of 200 mesh or less accounts for 50% or more of the mixed powder.

このように200 mesh以下が50%以上であるよ
うに限定したのは、50%以下の場合すなわち粗粒が多
く混在する場合は、緻密圧縮に影響し、粒子の融着一体
化温度を高温化するようになると共に、特に粗粒として
いる有色原料粉末の粒度や量が大きくなると製品内部に
気泡を含むようになるからで、有色原料の粉末粒度を1
0mesh以下としたのも、10mesh以上の粗粒と
すると上述のように製品内部に気泡を含みやすくなり、
強度を低下する怖れがあるためである。但し強度や気泡
の存在を問題としないような場合は前記粗粒の若干の混
在は許容されることもある。
In this way, the reason why 200 mesh or less is limited to 50% or more is that if it is 50% or less, that is, if there are many coarse particles mixed in, it will affect dense compaction and increase the temperature at which the particles are fused and integrated. At the same time, if the particle size and amount of the colored raw material powder, which is made into coarse particles, becomes large, air bubbles will be included inside the product.
The reason for setting the mesh size to 0 mesh or less is that if the coarse particles are 10 mesh or larger, air bubbles are likely to be contained inside the product as described above.
This is because there is a risk of reducing the strength. However, in cases where strength and the presence of bubbles are not a problem, some amount of the coarse particles may be allowed.

次に混合した粉末は所望形状の圧縮成形枠を用いて真密
度の55%以上の緻密な圧粉体に圧縮成形するのであり
、55%以上の限定は熱処理時の形状保持と粒子の融着
緻密化が低温で行われることを確実とするためであり、
上記粒度のガラス粉末を真密度の55%以上の密度に圧
縮成形するためには20kgf /aa以上の圧力が適
当である。
Next, the mixed powder is compression-molded into a dense powder body with a true density of 55% or more using a compression molding frame of the desired shape. to ensure that densification occurs at low temperatures;
In order to compression mold the glass powder having the above particle size to a density of 55% or more of the true density, a pressure of 20 kgf/aa or more is appropriate.

なお粉末の圧縮成形に際しては予め粉末にポリビニルア
ルコール(P、V、A、)などの粘結剤の少量を添加す
ることは成形を容易にする上で有効である。
In compression molding the powder, it is effective to add a small amount of a binder such as polyvinyl alcohol (P, V, A, etc.) to the powder in advance to facilitate molding.

このようにして得られた圧粉体はガラス粒子の融着一体
化及び緻密化のために軟化点以上(実際は軟化点+10
0°C以上が好ましい。)で結晶の成長速度が速くなる
温度以下の温度で熱処理を行う。
The green compact obtained in this way has a softening point or higher (actually softening point + 10
The temperature is preferably 0°C or higher. ), heat treatment is performed at a temperature below the temperature at which the crystal growth rate increases.

この処理によって各ガラス粉末は融着一体化及び゛緻密
化し、それと同時に粒子間の融着界面では核形成が進行
しているのである。
Through this treatment, each glass powder is fused and integrated and densified, and at the same time, nucleation is progressing at the fused interface between the particles.

一体緻密化を了へた成形体は更に温度を上げて結晶の成
長を助長し結晶化を図るのであるが、既に述べたように
混合の有色原料粉末は無色原料粉末に比し、その組成に
おいて10%以下の着色剤を添加したに過ぎない組成で
あるから、両原料粉末の軟化点その他の特性は大差なく
、上述の熱処理において粉末の一体緻密化及び結晶化は
支障なく進行するのである。
Once the compact has been densified, the temperature is further increased to encourage crystal growth and crystallization, but as mentioned above, the mixed colored raw material powder has a different composition compared to the colorless raw material powder. Since the composition contains only 10% or less of a coloring agent, there is no significant difference in the softening point and other properties of the two raw material powders, and the integral densification and crystallization of the powder proceed without any problems during the heat treatment described above.

第2図は上記の圧粉体の熱処理曲線で、aa間がガラス
粒子の一体緻密化区間、bb間が結晶化区間であり、S
、 P、が軟化点、M、P、が融点である。
Figure 2 shows the heat treatment curve of the above green compact, where the area between aa is the integral densification area of the glass particles, the area between bb is the crystallization area, and the area between aa and bb is the crystallization area.
, P, is the softening point, and M, P, is the melting point.

以上の工程によって得られた結晶化ガラスは、地は結晶
析出による白色であり、これに着色部分が斑状に分布し
ているのであり、斑状も粉末の混合程度により、着色部
分が均一に分布した微細斑点模様、或いは不均一に分布
した塊状斑模様などを呈するようにすることが可能であ
り、また有色及び無色原料粉末の混合比の変化による斑
模様の濃淡調整も可能である。また色の異なる有色原料
を複数種用いることによって多色の斑模様とすることも
可能である。
The crystallized glass obtained by the above process has a white base due to crystal precipitation, and the colored parts are distributed in a patchy manner.The colored parts are evenly distributed depending on the degree of mixing of powder. It is possible to make it exhibit a fine speckled pattern or a unevenly distributed lumpy speckled pattern, and it is also possible to adjust the density of the speckled pattern by changing the mixing ratio of colored and colorless raw material powders. It is also possible to create a multicolored mottled pattern by using multiple types of colored raw materials with different colors.

次に本発明の具体的実施例を示す。Next, specific examples of the present invention will be shown.

実施例に供した無色及び有色原料は次表のような組成を
有するものであり、それぞれの成分を配合した配合原料
を1500℃で融解し、次いでこれを水中に投入してそ
れぞれ無色及び有色のガラス状小体を得た。
The colorless and colored raw materials used in the examples had the compositions shown in the table below. The raw materials containing the respective components were melted at 1500°C, and then poured into water to form colorless and colored raw materials, respectively. Glassy bodies were obtained.

無色及び有色原料の成分組成(w、tχ)(但し、Fe
O+Fe20sは着色剤)前記ガラス小体はボールミル
を用いて粉砕し、次のような粉末とした。
Component composition (w, tχ) of colorless and colored raw materials (however, Fe
(O+Fe20s is a coloring agent) The glass particles were ground using a ball mill to obtain the following powder.

無色原料は 200 mesh以下の粉末有色原料は 
(40〜200 meshの粉末)  :  (200
mesh以下の粉末)=11の割合いで含む粉末上記側
粉末を1:lの割合いで混合し、これに粘結剤としてP
、V、A、の3%溶液を5w、t%加え、圧縮成形枠を
用いて100 X 100 X 25 (mm)の圧縮
成形体を得た。なお成形時のプレス圧は30kgf /
−と300 kgf /cflIの2種で行ったが、熱
処理品の物性に差異は見られなかった。
Colorless raw materials are powdered colored raw materials of 200 mesh or less.
(40-200 mesh powder): (200
(powder below mesh) = Powder containing at a ratio of 11 The above side powder is mixed at a ratio of 1:l, and P is added as a binder to this.
, V, and A were added in an amount of 5 w and t %, and a compression molded body of 100 x 100 x 25 (mm) was obtained using a compression molding frame. The press pressure during molding is 30kgf/
- and 300 kgf/cflI, but no difference was observed in the physical properties of the heat-treated products.

上記の圧縮成形体の熱処理は150℃/hrの昇温速度
で690℃まで上げ、同温度を30分間保ってガラス粉
末の融着一体化及び緻密化を図って後、800℃に昇温
して同温度を30分間保ち結晶化を図ったところ製品に
ウオラストナイト (CaO・5if2)の結晶が析出
していることを認めた。
The above compression molded body was heat-treated by raising the temperature to 690°C at a heating rate of 150°C/hr, maintaining the same temperature for 30 minutes to fuse and integrate the glass powder, and then increasing the temperature to 800°C. When the product was kept at the same temperature for 30 minutes to achieve crystallization, it was observed that wollastonite (CaO 5if2) crystals had precipitated on the product.

第3図は上記熱処理の熱処理曲線であり、同処理によっ
て得られた結晶化ガラスの物性値は、密度2.5g/c
j、吸水率0.02%、曲げ強さ710 kgf /d
であった。なお第4図、第5図は上記実施例で得られた
結晶化ガラスの写真であり、第4図は原料ガラス粉末を
均一に混合した場合で、着色部が細かく均一に分布した
微細斑点模様を呈しており、第5図は不均一に混合した
場合で着色部は塊状斑模様を呈している。
Figure 3 shows the heat treatment curve of the above heat treatment, and the physical property values of the crystallized glass obtained by the same treatment have a density of 2.5 g/c.
j, water absorption rate 0.02%, bending strength 710 kgf/d
Met. Note that Figures 4 and 5 are photographs of the crystallized glass obtained in the above example, and Figure 4 shows the case where the raw glass powder was mixed uniformly, with a fine speckled pattern in which the colored parts were finely and uniformly distributed. Figure 5 shows a case where the mixture is unevenly mixed, and the colored area has a lumpy and mottled pattern.

(発明の効果) 以上のように本発明の方法は、ガラス状原料の微粉末を
圧縮成形体とし熱処理することによって、集積法におけ
るような結晶の成長に伴う粘性増大による障害もなく、
広い範囲の組成のガラス(本発明で特定した組成範囲は
広く、従来ガラスもこの範囲に入るものが多い)におい
て容易に結晶化ができるのであり、着色も着色ガラス粉
末と無色ガラス粉末を混じて圧粉体として熱処理すると
いう手段によるのであるから斑状模様を出現させること
ができるのであり、同模様の変化も有色ガラス粒子の色
、粒度、量、混合程度等により、更には結晶化の程度等
によっても種々に変化せしめることができる。また形状
においても圧粉体として成形するために容易に所望形状
とすることが可能であり、表面に凹凸をつけるなども容
易である。
(Effects of the Invention) As described above, the method of the present invention heat-treats a fine powder of a glassy raw material as a compression molded body, thereby eliminating the problem of increased viscosity due to crystal growth unlike in the accumulation method.
Glasses with a wide range of compositions (the composition range specified in the present invention is wide, and many conventional glasses fall within this range) can be easily crystallized, and coloring can be achieved by mixing colored glass powder and colorless glass powder. Because it is heat-treated as a compact, it is possible to create a mottled pattern, and changes in the same pattern also depend on the color, particle size, amount, degree of mixing, etc. of the colored glass particles, as well as the degree of crystallization, etc. It can also be changed in various ways. In addition, since it is molded as a powder compact, it can be easily formed into a desired shape, and it is also easy to form irregularities on the surface.

更には大きな気泡を製品内部に含むことなく製造できる
ことも材質として大きな利点であり、結晶化ガラスの強
度をより確実にしているのである。
Furthermore, the fact that it can be manufactured without containing large bubbles inside the product is a great advantage as a material, making the strength of crystallized glass even more reliable.

このように種々の利点を有して、優れた装飾材、建築材
としての色模様付結晶化ガラスの提供を可能とした本発
明の工業的価値は著大である。
The industrial value of the present invention, which has various advantages as described above and makes it possible to provide colored patterned crystallized glass as an excellent decorative material and building material, is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラスの微粉圧縮体を加熱したときの温度と核
形成速度及び結晶成長速度との関係を概念的に示したグ
ラフで、破線グラフが「核形成速度一温度」曲線、実線
グラフが[結晶成長速度一温度」曲線である。 第2図は本発明における熱処理様式を示す熱処理曲線、
第3図は本発明実施例の熱処理曲線を示す。 第4、第5図は本発明実施例の結晶化ガラスの写真であ
り、第4図は原料ガラス粉末を均一に混合した場合に得
られた結晶化ガラス、第5図は不均一に混合した場合に
得られた結晶化ガラスである。 特 許 出 願 人  久保田鉄工株式会社第1図 第2図 第 3図 第4               第5 ノ図 手続補正書(”ji*) 昭和61年5月30日 昭和61年 特 許 願 第2693号2、発明の名称 色模様付結晶化ガラスの製造方法 3、補正をする者 事件との関係 特許出願人 (105)久保田鉄工株式会社 4、代理人8577 大阪府東大阪市御厨1013番地 置 06 (782) 6917・6918番昭和61
年3月25日 6、補正の対象 ・明細書の発明の詳細な説明の欄 う 7、補正の内容 (1)  明細書筒16頁17行目に「写真」とあるは
、「模様構成図」と訂正する。 (2)  同書第18頁14行目に「写真」とあるは、
「模様構成を示す図」と訂正す、る。 (3)  願書に添付した第4図及び第5図を別紙の通
り補正する。 第4図 第5図
Figure 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when heating a compacted glass powder.The broken line graph is the ``nucleation rate-temperature'' curve, and the solid line graph is [Crystal growth rate vs. temperature] curve. FIG. 2 is a heat treatment curve showing the heat treatment mode in the present invention,
FIG. 3 shows a heat treatment curve of an example of the present invention. Figures 4 and 5 are photographs of crystallized glass of examples of the present invention. Figure 4 is the crystallized glass obtained when the raw material glass powders were mixed uniformly, and Figure 5 is the crystallized glass obtained when the raw material glass powders were mixed uniformly. This is the crystallized glass obtained in this case. Patent Applicant: Kubota Iron Works Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Amendment to Figure 5 ("ji*") May 30, 1985 Patent Application No. 2693 2, Name of the invention: Method for producing crystallized glass with colored patterns 3, Relationship with the case of the person making the amendment Patent applicant (105) Kubota Tekko Co., Ltd. 4, Agent 8577 1013 Mikuriya, Higashiosaka City, Osaka Prefecture 06 (782) No. 6917/6918 Showa 61
March 25, 2016 6, Subject of amendment/detailed explanation of the invention in the specification column No. 7, Contents of amendment (1) "Photograph" on page 16, line 17 of the specification tube replaces "pattern composition diagram" ” he corrected. (2) The word “photo” on page 18, line 14 of the same book means,
Corrected to ``Diagram showing pattern composition.'' (3) Figures 4 and 5 attached to the application should be amended as shown in the attached sheet. Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)必須成分として重量百分率で、SiO_2:45
〜75%、Al_2O_3:20%以下、CaO:5〜
40%、Na_2O+K_2O:2〜20%を、SiO
_2+Al_2O_3+CaO+Na_2O+K_2O
>85%であるように含有して成るガラス状原料を粉砕
して、200mesh以下の粒子が90%以上を占める
ようにした粉体と、前記組成範囲の各成分及び重量百分
率で10%以下の着色剤を含有して成る有色のガラス状
態の原料を粉砕して、10〜200meshと若しくは
10〜200meshとそれ以下の粒子を含むようにし
た粉体との混合に当り、両者の混合物中において200
mesh以下の粒子が50%以上を占める範囲で両者を
所望割合に混合し、次いで該混合物を所望形状の圧縮成
形枠を用いて真密度の55%以上の圧粉体に圧縮成形し
て後、熱処理することにより該圧粉体の各ガラス粉末を
相互に軟化融着させて一体化及び緻密化する一方結晶化
を図り、主としてウォラストナイト結晶を析出させるよ
うにしたことを特徴とする色模様付結晶化ガラスの製造
方法。
(1) SiO_2:45 as an essential component in weight percentage
~75%, Al_2O_3: 20% or less, CaO: 5~
40%, Na_2O+K_2O: 2-20%, SiO
_2+Al_2O_3+CaO+Na_2O+K_2O
>85% of the glass-like raw material is pulverized so that particles of 200 mesh or less account for 90% or more, and each component in the above composition range and the weight percentage of 10% or less When mixing a powder containing particles of 10 to 200 mesh or smaller than 10 to 200 mesh by pulverizing a colored glassy raw material containing a colorant, 200
Mix the two in a desired ratio within a range in which particles of mesh size or smaller account for 50% or more, and then compression mold the mixture into a green compact with a true density of 55% or more using a compression molding frame of a desired shape. A color pattern characterized in that the glass powders of the green compact are softened and fused to each other by heat treatment to become integrated and densified, while also crystallizing them to precipitate mainly wollastonite crystals. A method for producing crystallized glass.
JP269386A 1986-01-08 1986-01-08 Production of crystallized glass having colored pattern Granted JPS62162631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP269386A JPS62162631A (en) 1986-01-08 1986-01-08 Production of crystallized glass having colored pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP269386A JPS62162631A (en) 1986-01-08 1986-01-08 Production of crystallized glass having colored pattern

Publications (2)

Publication Number Publication Date
JPS62162631A true JPS62162631A (en) 1987-07-18
JPH0575701B2 JPH0575701B2 (en) 1993-10-21

Family

ID=11536356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP269386A Granted JPS62162631A (en) 1986-01-08 1986-01-08 Production of crystallized glass having colored pattern

Country Status (1)

Country Link
JP (1) JPS62162631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244043A (en) * 1988-05-31 1990-02-14 Ngk Spark Plug Co Ltd Colored crystallized glass body and its production
JPH05163042A (en) * 1991-12-12 1993-06-29 Nippon Electric Glass Co Ltd Pattern-containing crystallized glass
CN110156331A (en) * 2019-04-28 2019-08-23 安徽建筑大学 It is a kind of using gangue as colored ecological glass-ceramic of major ingredient and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244043A (en) * 1988-05-31 1990-02-14 Ngk Spark Plug Co Ltd Colored crystallized glass body and its production
JPH05163042A (en) * 1991-12-12 1993-06-29 Nippon Electric Glass Co Ltd Pattern-containing crystallized glass
CN110156331A (en) * 2019-04-28 2019-08-23 安徽建筑大学 It is a kind of using gangue as colored ecological glass-ceramic of major ingredient and preparation method thereof

Also Published As

Publication number Publication date
JPH0575701B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
AT396924B (en) METHOD FOR PRODUCING GLASS BODIES
DE2302312B2 (en) Process for the production of a glass-ceramic article by heat-treating devitrifiable glass particles in a mold
JPS62162631A (en) Production of crystallized glass having colored pattern
JPS6224365B2 (en)
JPH0575702B2 (en)
JPS6317238A (en) Production of crystallized glass
JPS63156024A (en) Production of glass ceramic article
JPS6374936A (en) Crystallized glass and production thereof
JPS62235230A (en) Production of crystallized glass with colored pattern
JPS63144142A (en) Crystallized glass and production thereof
JPH0751448B2 (en) Crystallized glass building material and manufacturing method thereof
JPS6317239A (en) Production of crystallized glass with color pattern
JPS62143842A (en) Crystallized glass and production thereof
JPH01252551A (en) Production of crystallized glass containing dot pattern
JPH0623059B2 (en) Method for manufacturing glass ceramic products
JPH0436098B2 (en)
JPS6340737A (en) Production of high-strength crystallized glass
JPS62235229A (en) Production of crystallized glass
JPH0193441A (en) Production of crystallized glass building material
JPH02120254A (en) Crystallized glass material and production thereof
JP3114961B2 (en) Crystallized glass article and method for producing the same
JPH0193440A (en) Production of crystallized glass having color pattern
JPH01201044A (en) Production of crystallized glass building material with mottled pattern
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPH0565452B2 (en)