JPH0193440A - Production of crystallized glass having color pattern - Google Patents

Production of crystallized glass having color pattern

Info

Publication number
JPH0193440A
JPH0193440A JP24902087A JP24902087A JPH0193440A JP H0193440 A JPH0193440 A JP H0193440A JP 24902087 A JP24902087 A JP 24902087A JP 24902087 A JP24902087 A JP 24902087A JP H0193440 A JPH0193440 A JP H0193440A
Authority
JP
Japan
Prior art keywords
softening point
glass
glass powder
powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24902087A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24902087A priority Critical patent/JPH0193440A/en
Publication of JPH0193440A publication Critical patent/JPH0193440A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent

Abstract

PURPOSE:To readily produce a crystallized glass having mosaic pattern, by blending and accumulating two or more kind of glass particulate bodies having different colors and molding the particulate bodies under pressure and then sintering and crystallizing the moldings. CONSTITUTION:0.05-5wt.% coloring agent is added to a glass powder consisting of 90-20wt.% glass powder having low softening point containing 67-80wt.% SiO2, 5-10wt.% CaO, 10-20wt.% Na2O+K2O and 2-8wt.% MgO and 10-80wt.% glass powder having high softening point containing 67-80wt.% SiO2, <=25wt.% Al2O3 and 5-15wt.% Na2O+K2O to afford two or more kind of particulate bodies 1, 1a and 1b having different colors. Then the particulate bodies 1, 1a and 1b are blended and accumulated and molded under pressure to provide the moldings having mosaic pattern 2 and 2a, which is then heat- treated, sintered and crystallized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築用の内外装材として好適な色模様付結晶化
ガラスの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing colored patterned crystallized glass suitable as an interior/exterior material for buildings.

(従来の技術) 色模様付結晶化ガラスを得る方法としては、「特公昭5
5−29018号」公報に開示されているところの、軟
化点以上の温度で針状結晶を析出するガラスの小体(1
〜7m)を集積し、これを熱処理して集積小体を焼結す
ると共に結晶化を図る方法(以下集積法と称す)におい
て、集積小体中に着色ガラス小体を混在させる方法や、
本願出願人が「特願昭61−2693号」で提案したと
ころの、ウオラストナイト品を析出することができるガ
ラス微粉末に、着色ガラスの粗粒を混在させて成形し、
熱処理して焼結及び結晶化する方法がある。同方法は焼
結する粉末粒子の融着界面に結晶が析出しやすいことを
利用した方法(このような方法を以下焼結法と呼ぶ)で
あり、特に結晶析出の容易な成分組成のガラスでな(と
も適用可能である。
(Prior art) As a method for obtaining crystallized glass with colored patterns,
No. 5-29018, a glass body (1
~ 7m) and heat-treating it to sinter and crystallize the aggregated bodies (hereinafter referred to as the accumulation method), a method in which colored glass bodies are mixed in the accumulated bodies,
The applicant proposed in "Japanese Patent Application No. 61-2693" that a fine glass powder capable of precipitating a wollastonite product is mixed with coarse colored glass particles and molded.
There is a method of heat treatment for sintering and crystallization. This method takes advantage of the fact that crystals tend to precipitate at the fused interface of powder particles to be sintered (this method is hereinafter referred to as the sintering method). (also applicable.

(発明が解決しようとする問題点) 上記集積法、焼結法のいずれにしても色模様の形成は混
在の着色ガラス小体や粗粒によるものであり、模様は斑
模様である。模様としてよく使用されるモザイク模様な
どの形成はできず、また斑模様の斑点そのもの一大形化
も、混在させる着色ガラスの小体や粗粒が過大であると
、焼結時において気泡を含みやすくなることから自から
制限を受け、たとえば焼結法では1oメツシュより大き
い着色ガラス粉末は好ましくないのである。
(Problems to be Solved by the Invention) Regardless of the above-mentioned accumulation method or sintering method, the formation of a colored pattern is due to mixed colored glass bodies and coarse particles, and the pattern is a mottled pattern. It is not possible to form mosaic patterns, which are often used as patterns, and the mottled spots themselves become large.If there are too many colored glass particles or coarse particles mixed in, air bubbles may be generated during sintering. For example, colored glass powder with a size larger than 10 mesh is not preferred in the sintering method.

本発明はか−る事情に鑑みなされたもので、モザイク模
様を容易に形成することができる結晶化ガラスの製造方
法の提供を目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing crystallized glass that can easily form a mosaic pattern.

(問題点を解決するための手段) 上記目的達成のために本発明では、 200メツシュ以下の粒子が90!ii%以上を占める
粒度構成を有するガラス粉末により、2種以上の色の異
なる粒状体を成形し、次いで該粒状体を混合集積し、加
圧成形して成形体とした後、該成形体を熱処理して焼結
及び結晶化を図る手段を採用したのである。
(Means for Solving the Problems) In order to achieve the above object, the present invention has the following features: The number of particles of 200 mesh or less is 90! Two or more types of granules with different colors are molded using glass powder having a particle size composition that accounts for ii% or more, and then the granules are mixed and aggregated and pressure-molded to form a molded body, and then the molded body is They adopted a method of heat treatment to achieve sintering and crystallization.

(作  用) 本発明で使用のガラス粉末は、200メツシュ以下の微
粉末が90重量%以上を占める粒度構成のものであり、
か−る微粉末による成形体では粉末同士の接触面積は総
合的に極めて大きく、焼結において粉末間の融着緻密化
が比較的低温で容易に行われる。
(Function) The glass powder used in the present invention has a particle size composition in which fine powder of 200 mesh or less accounts for 90% by weight or more,
In a molded body made of such fine powder, the contact area between the powders is extremely large overall, and fusion and densification between the powders can be easily performed at a relatively low temperature during sintering.

これに反し粗粒の場合は隣接粒子間に間隙を生“して接
触面積も小さく、焼結における融着緻密化は軟化点を迩
かに上回る高温でなければ進行しない上に前記間隙は焼
結後空洞として残りやすいのである。しかじでか−る高
温焼結では結晶化が相当進行する場合があり、このよう
なときは同進行に伴う粘性増大によって焼結が妨げられ
るのである。
On the other hand, in the case of coarse grains, gaps are created between adjacent particles and the contact area is small, and fusion densification during sintering does not proceed unless the temperature is significantly higher than the softening point, and the gaps are closed by sintering. They tend to remain as cavities after sintering.Crystallization may progress considerably during high-temperature sintering, and in such cases, sintering is hindered by the increase in viscosity that accompanies this progress.

つまり本発明で200メツシュ以下の微粉末の使用は、
軟化点をや一上回る程度の低温焼結を確実にして、焼結
期に結晶化が起こらぬようにし融着緻密化を十分進行さ
せることができるのである。
In other words, in the present invention, the use of fine powder of 200 mesh or less,
By ensuring low-temperature sintering that is slightly above the softening point, crystallization does not occur during the sintering period, and fusion and densification can proceed sufficiently.

また、結晶は粉末の融着界面に析出しやすいことから、
前記微粒子の使用は融着界面を大ならしめるものであり
、多数の結晶が析出する。つまり結晶化が容易となり、
結晶化の容易な成分組成のガラスは勿論、そうでないガ
ラスであっても原料粉末としての適用を可能とするので
ある。
In addition, since crystals tend to precipitate at the fused interface of powder,
The use of the fine particles increases the size of the fused interface, and a large number of crystals precipitate. In other words, crystallization becomes easier,
Not only glasses with compositions that are easy to crystallize, but also glasses that are not easily crystallized can be used as raw material powders.

そしてモザイク模様は、上記ガラス粉末によって成形さ
れた2種以上の色の異なる粒状体(着色については後述
する)が、集積結合されて形成されるのである。
The mosaic pattern is formed by integrating and bonding two or more different colored granules (coloring will be described later) molded from the glass powder.

以下図面を参照して模様形成を説明すると、第1図〜第
3図は前記モザイク模様形成の説明図であり、3種の色
の異なる粒状体を用いた場合を例としたもので、色を異
にする粒状体1. la、 lbを第1図のように混合
集積し、次いで加圧成形すると、第2図のように各粒状
体1.1a、 lbは変形すると共に境界を密接し一体
化する。つまり成形体は粒状体の寄せ集めにより成形さ
れるのであり、従って色の異なる粒状体1. la、 
lbはモザイク模様2を形成するのである。
Below, pattern formation will be explained with reference to the drawings. Figures 1 to 3 are explanatory diagrams of the mosaic pattern formation described above, taking as an example the case where granules of three different colors are used. Granules with different characteristics 1. When 1.1a and 1.1b are mixed and accumulated as shown in FIG. 1, and then pressure-molded, the granules 1.1a and 1.1b are deformed and their boundaries are brought into close contact and integrated as shown in FIG. In other words, a molded body is formed by assembling granules, and therefore granules of different colors 1. la,
lb forms a mosaic pattern 2.

そしてこのような成形体を焼結、結晶化すると前記モザ
イク模様2をはり保持しっ\ガラス粒子は融着緻密化し
、かつ結晶を析出して第3図に示すようなモザイク模様
2aを有する結晶化ガラスが得られるのである。
When such a molded body is sintered and crystallized, the mosaic pattern 2 is maintained, the glass particles are fused and densified, and crystals are precipitated to form crystals having a mosaic pattern 2a as shown in FIG. Thus, chemically modified glass can be obtained.

(実施例) まず本発明で使用のガラス粉末について述べる。(Example) First, the glass powder used in the present invention will be described.

粉末とするガラスについては既に述べたように結晶の析
出容易なガラスは勿論、そうでないガラスも適用できる
のであり、その適用範囲は広くたとえば通常ガラスのソ
ーダ石灰ガラスも使用できる。
As for the glass to be made into powder, as mentioned above, not only glasses that easily precipitate crystals, but also glasses that do not can be used, and the range of applications is wide, and for example, soda lime glass, which is a normal glass, can also be used.

ガラス粉末の微細化については、適宜に破砕されたガラ
ス小体をたとえばボールミルなどにより微細化できるの
であり、その粒度を200メツシュ以下の微粒子が90
重貴簡以上を占める粒度構成の粉末と限定したことにつ
いては、低温焼結の確実化と、焼結後の結晶化において
多量の結晶を容易に析出させるためであることは既に述
べたとおりである。
Regarding the refining of glass powder, appropriately crushed glass corpuscles can be refined using, for example, a ball mill, and the particle size can be reduced to 90 m2 or less.
As already mentioned, the reason for limiting the powder to particles with a particle size composition of 100% or higher is to ensure low-temperature sintering and to easily precipitate a large amount of crystals during crystallization after sintering. be.

しかじてか\る粉末で色を異にする粉末を得るには、上
記粉末に混合するガラス着色剤の種類や混合量に差を設
けることによってでき、また既にガラス中に着色剤を含
む着色ガラスで色の異なるものをそれぞれ粉末として用
いてもよい。
However, in order to obtain powders with different colors, it is possible to make a difference in the type and amount of the glass coloring agent mixed with the powder. Glasses of different colors may be used as powders.

着色剤としては、MnO,Cod、  Fe20m等の
酸化物粉末が通常使用され、その添加量はガラス粉末に
添加混合される場合も、ガラス原料中に添加し着色ガラ
スとする場合も、その着色効果から0.05重量%以上
、また収縮率への影響で熱処理時における割れ発生のお
それ等から5重量%以下が好ましい。
As colorants, oxide powders such as MnO, Cod, and Fe20m are usually used, and the amount of addition depends on the coloring effect, whether added to the glass powder or mixed into the glass raw material to make colored glass. It is preferably 0.05% by weight or more, and 5% by weight or less since it may affect the shrinkage rate and cause cracking during heat treatment.

なお上記の色の異なりとは色彩の異なること(無色と有
色の組合せも含む)は勿論、同色であっても濃淡、明暗
に差のある場合も含むものである。
Note that the above-mentioned difference in color includes not only a difference in color (including a combination of colorless and colored), but also a difference in shading and brightness even if the color is the same.

次に、以上のように粒度調整及び色調整された粉末によ
る粒状体の成形について述べると、該粉末に水若しくは
粘結剤、たとえばポリビニルアルコール(PVA)を加
え、よく混和して粒状体とするのであり、その大きさは
モザイク模様としての形状を確保する上でφ1璽重以上
が望ましく、一方φ30龍を越えるようになると集積の
粒状体間の間隙が大きくなり、この大きな間隙は加圧成
形時及び焼結後も空洞として残りやすいことがらφ30
mm以下が望ましいのである。
Next, we will discuss the formation of granules using the powder whose particle size and color have been adjusted as described above.Water or a binder such as polyvinyl alcohol (PVA) is added to the powder and mixed well to form granules. In order to ensure the shape of the mosaic pattern, it is desirable that the size is φ1 or more, but if the size exceeds φ30, the gaps between the accumulated granules will become large, and these large gaps will be removed by pressure forming. Because it tends to remain as a cavity even after time and sintering, φ30
It is desirable that the thickness be less than mm.

かくて得た粒状体は加圧成形型に集積し、加圧成形して
後熱処理する。
The thus obtained granules are collected in a pressure mold, pressure molded, and then heat-treated.

加圧成形は室温で行う冷間加圧成形やガラス粉末の軟化
点近傍に加熱して行う熱間加圧成形に依ることができ、
熱間加圧成形の加熱温度は通常軟化点をや一下回る温度
である。
Pressure forming can be performed by cold pressing performed at room temperature or by hot pressing performed by heating near the softening point of the glass powder.
The heating temperature for hot pressing is usually a temperature slightly below the softening point.

熱処理は焼結を目的とした一次熱処理、同処理後更に温
度を上げて結晶化を目的とした二次熱処理を施す2段処
理に依ることもできるが、焼結を結晶化温度への昇温途
中で完了させて後結晶化を図る1段処理によることも可
能である。
Heat treatment can be a two-stage process in which a primary heat treatment is performed for the purpose of sintering, and then a secondary heat treatment is performed for the purpose of crystallization by further increasing the temperature. It is also possible to use a one-stage process in which the process is completed midway to achieve post-crystallization.

ところで、粉末として用いるガラスの軟化点と結晶化温
度との差が過大のときは、加圧成形体の焼結後の結晶化
温度への昇温において、形状を保持することが困難とな
り、また軟化点と結晶化温度との差が過少の場合は、焼
結温度は実質的に結晶化温度域と重なり、結晶成長によ
る粘性増大のために焼結障害を生起する。
By the way, if the difference between the softening point and the crystallization temperature of the glass used as powder is too large, it will be difficult to maintain the shape when the pressure-formed body is heated to the crystallization temperature after sintering. If the difference between the softening point and the crystallization temperature is too small, the sintering temperature will substantially overlap the crystallization temperature range, causing sintering failure due to increased viscosity due to crystal growth.

しかしてこれらの問題に対して本発明者らは、単一のガ
ラス粉末に依らず、軟化点と結晶化温度の差が大きく、
かつ軟化点の低い低軟化点ガラスの粉末と、高軟化点ガ
ラスの粉末の混合粉末を用いることによって、低温時に
前記低軟化点粉末の軟化融着による粉末の一体緻密化を
図り、温度上昇に伴う同粒子の粘性減少による形状保持
力の低下を、前記共存の未軟化ないしや\軟化の高軟化
点ガラス粉末によって補うと共に融着緻密化の十分な進
行の後に結晶化が進行できるようにして好結果を得てい
るのであり、その好適な低高軟化点ガラス粉末の混合粉
末として、 必須成分として重量百分率で、 Stow : 67〜80%、  CaO:5〜10%
Na20 +に20  : 10〜20%、MgO= 
2〜8%を含有してなる低軟化点ガラスの粉末と、必須
成分として重量百分率で、 SiO□=67〜80%、Aムか225%以下、Na2
0 +に、o  : 5〜15%を含有してなる高軟化
点ガラスの粉末とを混合して、前記低軟化点ガラス粉末
が90〜20重量%、残部高軟化点ガラス粉末から成る
粉末を挙げることができ、以下に低高軟化点ガラスの成
分限定理由及び混合率について説明する。
However, in order to solve these problems, the present inventors discovered that the glass powder has a large difference in softening point and crystallization temperature, and does not rely on a single glass powder.
By using a mixed powder of a low softening point glass powder with a low softening point and a high softening point glass powder, the low softening point powder is softened and fused at low temperatures to achieve integrated densification of the powder. The decrease in shape retention due to the accompanying decrease in the viscosity of the particles is compensated for by the coexisting unsoftened or softened high softening point glass powder, and crystallization is allowed to proceed after sufficient progress of fusion and densification. Good results have been obtained, and the suitable mixed powder of low and high softening point glass powder contains the following essential components in weight percentage: Stow: 67-80%, CaO: 5-10%
Na20+20: 10-20%, MgO=
Low softening point glass powder containing 2 to 8%, and as essential components in weight percentage, SiO□ = 67 to 80%, Am or less than 225%, Na2
0+ and a powder of high softening point glass containing 5 to 15% of o: to obtain a powder consisting of 90 to 20% by weight of the low softening point glass powder and the balance of the high softening point glass powder. The reason for limiting the components of the low-high softening point glass and the mixing ratio will be explained below.

なお、上記混合粉末の焼結、結晶化処理で析出する結晶
は主としてStO□晶である。
Incidentally, the crystals precipitated during the sintering and crystallization treatment of the mixed powder are mainly StO□ crystals.

低軟化点ガラス 5iOz : 67〜80% 67%未満では5in2結晶は析出せず、一方80%を
越えると軟化点が高くなる。
Low softening point glass 5iOz: 67-80% If it is less than 67%, 5in2 crystals will not precipitate, while if it exceeds 80%, the softening point will become high.

CaO:5〜10% 5%未満では軟化点が高(なり、一方10%を越えると
SiO□結晶が析出しにく−なる。
CaO: 5 to 10% If it is less than 5%, the softening point will be high, while if it exceeds 10%, SiO□ crystals will be difficult to precipitate.

Na20 +に20  : 10〜20%10%未満で
は軟化点が高くなり、一方20%を越えると5in2結
晶が析出しにく−なる。
Na20+20: 10-20% If it is less than 10%, the softening point will be high, while if it exceeds 20%, 5in2 crystals will be difficult to precipitate.

?1gO: 2〜8% 2%未満ではSiO□結晶の成長が速くなり過ぎ、また
Nazo  ・ 3CaO・ 6SiO□ 結晶などを
析出するよ4になる。一方8%を越えると5i02結晶
が析出しにくくなる。
? 1gO: 2-8% If it is less than 2%, the growth of SiO□ crystals becomes too fast, and Nazo.3CaO.6SiO□ crystals etc. are precipitated. On the other hand, if it exceeds 8%, 5i02 crystals will be difficult to precipitate.

高軟化点ガラス 5iOz : 67〜80% 67%未満ではSiO□結晶は析出せず、一方80%を
越えると軟化点が高くなる。
High softening point glass 5iOz: 67-80% If it is less than 67%, SiO□ crystals will not precipitate, while if it exceeds 80%, the softening point will become high.

へρ、01:25%以下 25%を越えるとSigh結晶が析出しに(\なる。to ρ, 01:25% or less If it exceeds 25%, Sigh crystals will precipitate.

Na20 +に2o  :  5〜15%5%未満では
軟化点が高くなり過ぎ、一方15%を越えると軟化点が
低くなるのである。
Na20+ and 2o: 5-15% If it is less than 5%, the softening point will be too high, while if it exceeds 15%, the softening point will be low.

なお上記両ガラスの軟化点の差は50〜700℃とする
ことが望ましい。つまり50℃未満では成形体の結晶化
温度への昇温において両粉末共軟化しその形状保持が困
難となるおそれが大きく、また700℃を越えると高軟
化点成分の低軟化点粉末側への移行が遅くなり、実際上
成形体の収縮促進は期待できないのである。
Note that the difference in softening point between the two glasses is preferably 50 to 700°C. In other words, if the temperature is lower than 50°C, there is a strong possibility that both powders will soften as the temperature rises to the crystallization temperature of the compact, making it difficult to maintain their shape, and if the temperature exceeds 700°C, the high softening point component will shift to the low softening point powder side. As a result, the transition becomes slow, and in practice, it is impossible to expect the shrinkage of the molded article to be promoted.

次に上記低高軟化点ガラス粉末の混合率について述べる
Next, the mixing ratio of the above-mentioned low/high softening point glass powder will be described.

前記両粉末の粒度については云うまでもなく単一粉末の
場合と同様、200メソシユ以下の微粒子が90重量%
を占める粒度構成の粉末として用いるのであり、その混
合率を低軟化点ガラス粉末90〜20重量%、残部高軟
化点ガラス粉末としたのは、低軟化点ガラス粉末が90
重量%を越えると熱処理時、成形体の形状保持が不十分
となるためであり、一方20重量%に満たない場合は、
既述の高軟化点成分の低軟化点粉末側への成分移行によ
る緻密化促進作用が少なく、従って緻密化が遅くなり、
促進を図るためにはより高温を要し、そして更には緻密
化不十分の場合を生じることがある。すなわち高軟化点
ガラス粉末の軟化点と結晶化温度が接近している場合に
、結晶化に伴う粘性増大から生じる緻密化障害を十分防
止できず緻密化が不十分となるのである。
Needless to say, the particle size of both powders is the same as in the case of a single powder, with 90% by weight of fine particles of 200 mesosinus or less.
The reason why the mixing ratio is 90 to 20% by weight of low softening point glass powder and the balance being high softening point glass powder is because the low softening point glass powder is 90% to 20% by weight.
This is because if it exceeds 20% by weight, the shape retention of the molded product will be insufficient during heat treatment, while if it is less than 20% by weight,
The densification promoting effect due to the component migration of the high softening point components to the low softening point powder side as described above is small, and therefore densification is delayed.
In order to promote the process, a higher temperature is required, and furthermore, insufficient densification may occur. That is, when the softening point and crystallization temperature of the high softening point glass powder are close to each other, densification failure caused by increased viscosity due to crystallization cannot be sufficiently prevented, resulting in insufficient densification.

次に本発明の具体的実施例を示す。Next, specific examples of the present invention will be shown.

下記第1表に実施例に供した低軟化点ガラス粉末A及び
高軟化点ガラス粉末Bの組成を示した。
Table 1 below shows the compositions of the low softening point glass powder A and the high softening point glass powder B used in the examples.

粒度は  A・・・200メツシュ以下が97%B・・
・200メツシュ以下が99% 第  1  表 上記原料粉末のAを60重量%、残部Bの割合で混合し
、この混合粉末Cから次のような■〜■の3種の色の異
なる粉末を得た。
The particle size is A...97% B...200 mesh or less.
・200 mesh or less is 99% Table 1 The above raw material powder A is mixed at a ratio of 60% by weight and the balance is B, and from this mixed powder C, the following three different colored powders from ■ to ■ are obtained. Ta.

■・・・・・・上記混合粉末Cのま−。■・・・・・・Mixed powder C above.

■・・・・・・上記混合粉末Cに着色剤としてFe20
1粉末を1.0重量%含有するように混合した着色混合
粉末。
■・・・・・・Fe20 as a coloring agent in the above mixed powder C
A colored mixed powder containing 1.0% by weight of 1 powder.

■・・・・・・上記混合粉末Cに着色剤としてNiO粉
末を0.3重量%含有するように混合した着色混合粉末
(2) A colored mixed powder obtained by mixing the above mixed powder C with 0.3% by weight of NiO powder as a coloring agent.

以上の3種粉末のそれぞれに粘結剤としてポリビニルア
ルコールを加えよく混練して後、3種粉末ともφ2〜φ
4鰭の粒状体に成形し、これらの粒状体を混合し成形型
に集積の後室温で加圧して150 x150 X25m
mの平板状成形体を得た。加圧力は250 kg、f/
crAであった。
Add polyvinyl alcohol as a binder to each of the above three types of powder and mix well.
Form into 4-fin granules, mix these granules, aggregate in a mold, and pressurize at room temperature to form 150 x 150 x 25 m.
A plate-shaped molded body of m was obtained. Pressure force is 250 kg, f/
It was crA.

かくして得た成形体に900・’CX151trO熱処
理を施し、焼結及び結晶化を行って結晶化ガラスを得、
同ガラスの平面を研磨した。研磨面には白色、赤色、黄
緑色のモザイク模様が形成されており、析出結晶は主と
してSiO□晶であった。
The thus obtained molded body was subjected to 900·'CX151trO heat treatment, sintered and crystallized to obtain crystallized glass,
The flat surface of the same glass was polished. A white, red, and yellow-green mosaic pattern was formed on the polished surface, and the precipitated crystals were mainly SiO□ crystals.

(発明の効果) 以上に説明したとおり、本発明では色を異にするガラス
微粉末による粒状体を成形し、これを集積加圧して得た
成形体を焼結、結晶化するのであるから、粒状体の大小
、色の組合せ等によって多様なモザイク模様が容易に形
成できるのである。
(Effects of the Invention) As explained above, in the present invention, a granular body made of fine glass powder of different colors is formed, and the formed body obtained by accumulating and pressing the granules is sintered and crystallized. Various mosaic patterns can be easily formed by changing the size of the particles, color combinations, etc.

それに従来の集積法や焼結法等における色模様の形成が
、基地用ガラスの小体や微粉にそれぞれ介在させた着色
ガラスの小体や粗粒によるもので、焼結への影響から前
記模様形成体の大きさは非常に制限されるのに比し、本
発明では単位模様が微粉末による粒状体によるのであり
、従って焼結、結晶化に特別な影響はな〈従来より海か
に大きい単位模様が形成できるのである。
In addition, the formation of color patterns in conventional accumulation methods and sintering methods is due to the colored glass particles and coarse particles interposed in the base glass particles and fine powder, respectively, and the effect on sintering is that the color patterns are formed by The size of the formed body is extremely limited, but in the present invention, the unit pattern is a granular body made of fine powder, so there is no particular influence on sintering or crystallization (the size is much larger than in the past). A unit pattern can be formed.

以上に加えて200メツシュ以下というような微粉末の
使用は、低温焼結を可能にしかつ結晶化も容易にして大
型の結晶化ガラス建材の製造にも適するものであり、こ
れら多くの利点を有する本発明の工業的価値は著大であ
る。
In addition to the above, the use of fine powder of 200 mesh or less allows low-temperature sintering and easy crystallization, making it suitable for manufacturing large-scale crystallized glass building materials, and has many advantages. The industrial value of the present invention is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係るモザイク模様形成の説明
図で、 第1図は色を異にする粒状体の混合集積状態を示す図、
第2図は加圧された集積粒状体の状態を示す図、第3図
は結晶化ガラスにおけるモザイク模様例である。 1、 la、 Ib・・・粒状体、2,2a・・・モザ
イク模様。 特 許 出 願 人  久保田鉄工株式会社jI7図 第3図
1 to 3 are explanatory diagrams of mosaic pattern formation according to the present invention, and FIG. 1 is a diagram showing a state of mixed accumulation of granules of different colors;
FIG. 2 is a diagram showing the state of a pressurized aggregated granular body, and FIG. 3 is an example of a mosaic pattern in crystallized glass. 1, la, Ib...granular material, 2, 2a... mosaic pattern. Patent applicant: Kubota Iron Works Co., Ltd. Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)200メッシュ以下の粒子が90重量%以上を占
める粒度構成を有するガラス粉末により、2種以上の色
の異なる粒状体を成形し、次いで該粒状体を混合集積し
、加圧成形して成形体とした後、該成形体を熱処理して
焼結及び結晶化を図ることを特徴とする色模様付結晶化
ガラスの製造方法。
(1) Molding two or more types of granules with different colors using glass powder having a particle size composition of 90% by weight or more of particles of 200 mesh or less, then mixing and aggregating the granules, and press-molding. A method for producing crystallized glass with colored patterns, which comprises forming a molded body and then heat-treating the molded body to achieve sintering and crystallization.
(2)上記ガラス粉末が、必須成分として重量百分率で
、 SiO_2:67〜80%、CaO:5〜10%、Na
_2O+K_2O:10〜20%、MgO:2〜8%、
を含有してなる低軟化点ガラスの粉末と、 必須成分として重量百分率で、 SiO_2:67〜80%、Al_2O_3:25%以
下、Na_2O+K_2O:5〜15% 、 を含有してなる高軟化点ガラス粉末とを混合して、前記
低軟化点ガラス粉末が90〜20重量%、残部高軟化点
ガラス粉末から成るガラス粉末であることを特徴とする
特許請求の範囲第1項に記載の色模様付結晶化ガラスの
製造方法。
(2) The above glass powder contains SiO_2: 67-80%, CaO: 5-10%, Na as essential components in weight percentage.
_2O+K_2O: 10-20%, MgO: 2-8%,
and a high softening point glass powder containing as essential components SiO_2: 67-80%, Al_2O_3: 25% or less, Na_2O+K_2O: 5-15%. The colored patterned crystal according to claim 1, wherein the glass powder is made of 90 to 20% by weight of the low softening point glass powder and the balance is the high softening point glass powder. Method for producing chemical glass.
JP24902087A 1987-09-30 1987-09-30 Production of crystallized glass having color pattern Pending JPH0193440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24902087A JPH0193440A (en) 1987-09-30 1987-09-30 Production of crystallized glass having color pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24902087A JPH0193440A (en) 1987-09-30 1987-09-30 Production of crystallized glass having color pattern

Publications (1)

Publication Number Publication Date
JPH0193440A true JPH0193440A (en) 1989-04-12

Family

ID=17186813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24902087A Pending JPH0193440A (en) 1987-09-30 1987-09-30 Production of crystallized glass having color pattern

Country Status (1)

Country Link
JP (1) JPH0193440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107827355A (en) * 2017-10-24 2018-03-23 佛山市唯格装饰建材有限公司 A kind of preparation technology of mosaic glass base substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107827355A (en) * 2017-10-24 2018-03-23 佛山市唯格装饰建材有限公司 A kind of preparation technology of mosaic glass base substrate

Similar Documents

Publication Publication Date Title
US3450546A (en) Transparent glass-ceramic articles and method for producing
US20140174126A1 (en) Glaze composition, method for manufacturing the glaze composition and methods of glazing
US9321695B2 (en) Method for manufacturing glass-ceramic composite
JPH0292840A (en) Production of patterned and crystallized glass
JPH0193440A (en) Production of crystallized glass having color pattern
JPS6224365B2 (en)
JP4041546B2 (en) Method for producing colored crystallized glass article
JPS6317238A (en) Production of crystallized glass
JPS6374936A (en) Crystallized glass and production thereof
JPS62162631A (en) Production of crystallized glass having colored pattern
JPH0444622B2 (en)
JP2012144391A (en) Crystallized glass article with pattern
JPH0575702B2 (en)
JPH01252551A (en) Production of crystallized glass containing dot pattern
JPH0193441A (en) Production of crystallized glass building material
JPS63144142A (en) Crystallized glass and production thereof
JPH01138155A (en) Production of crystallized glass product
JPH01234344A (en) Low-expansion heat-resistant crystallized glass bond and its bonding method
JPH02120254A (en) Crystallized glass material and production thereof
JPH02129044A (en) Crystallized glass material having light transmission part and production thereof
JPS6317239A (en) Production of crystallized glass with color pattern
JPS62143842A (en) Crystallized glass and production thereof
JPS63129025A (en) Production of glass ceramic article
JPH01119544A (en) Production of crystallized glass building material
JPH04317437A (en) Production of crystallized glass