JP4041546B2 - Method for producing colored crystallized glass article - Google Patents

Method for producing colored crystallized glass article Download PDF

Info

Publication number
JP4041546B2
JP4041546B2 JP26630994A JP26630994A JP4041546B2 JP 4041546 B2 JP4041546 B2 JP 4041546B2 JP 26630994 A JP26630994 A JP 26630994A JP 26630994 A JP26630994 A JP 26630994A JP 4041546 B2 JP4041546 B2 JP 4041546B2
Authority
JP
Japan
Prior art keywords
glass
glass body
crystalline
inorganic pigment
pigment powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26630994A
Other languages
Japanese (ja)
Other versions
JPH08104530A (en
Inventor
宙行 山田
博樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP26630994A priority Critical patent/JP4041546B2/en
Publication of JPH08104530A publication Critical patent/JPH08104530A/en
Application granted granted Critical
Publication of JP4041546B2 publication Critical patent/JP4041546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建築物の外装材や内装材として用いられる着色結晶化ガラス物品の製造方法に関するものである。
【0002】
【従来の技術】
従来、建築物の外装材や内装材として結晶化ガラス物品が広く用いられている。この用途に用いられる結晶化ガラスには、耐候性、機械的強度等の特性が優れていることの他に、美しい外観を呈することが要求される。これらの諸条件を満足するものとして例えば本出願人の発明になる特公昭47−2276号、特公昭51−23966号、特公昭53−39884号等に開示の結晶化ガラスが知られている。これらの結晶化ガラスは、その原ガラスをガラス小体に成形し、これを集積した後、熱処理するという方法により、好適に製造される。
【0003】
一方、近年建築物の多様化に伴い、建築物の外装や内装の化粧材の多様化の要求がある。その多様化の1つとして色調の多様化がある。ところでガラスや結晶化ガラスの着色は、一般にはガラス原料中に着色酸化物を添加してガラス化する、いわゆる生地体着色である。しかしながらこの方法は大量少品種の生産には適しているが、少量多品種の場合には適さない。
【0004】
そこで少量多品種生産に適した製造方法として、本出願人は特公平5−43651号(対応公開公報:特許文献1)においてガラス小体の表面に無機顔料粉末を付着させ、これを集積して結晶化させるという方法を提案している。この方法によれば、無機顔料を適宜選択することによって多彩な着色が可能となるため少量多品種生産に対応することができる。また、特許文献2〜6にも着色が可能な結晶化ガラス物品の製造方法が開示されている。
【特許文献1】
特開平1−157432号公報
【特許文献2】
特開平5−163042号公報
【特許文献3】
特開昭63−129025号公報
【特許文献4】
特開昭63−156024号公報
【特許文献5】
特開昭63−144134号公報
【特許文献6】
特開平2−92841号公報
【0005】
【発明が解決しようとする課題】
しかしながら上記した方法では、無機顔料粉末を添加するとガラス小体の軟化流動が阻害されるため、通常の熱処理温度では平滑な平面を得ることが困難である。それゆえ適性に流動させるために熱処理温度を上げる必要があるという問題を抱えている。
【0006】
本発明の目的は、無機顔料粉末を添加しても熱処理温度を上げることなく熱処理することが可能な着色結晶化ガラス物品の製造方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者等は種々の実験を行った結果、使用するガラス小体より流動性の高いガラス小体を併用することにより、上記目的が達成できることを見いだし、本発明として提案するものである。
【0008】
即ち、本発明の着色結晶化ガラス物品の製造方法は、軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状の結晶が析出する性質を有し、結晶化度が15%以上となる結晶性ガラス小体の多数個と、該結晶性ガラス小体の多数個を仮焼成して50mmφの円柱状に成型した後、Al23基板上で1100℃で2時間で熱処理し、熱処理後のボタン径の大きさを100とした時に、同じ処理後のボタン径が110以上となるβ−ウオステナイトまたはディオプサイトを析出する結晶性ガラスからなる高流動性ガラス小体の多数個と、該ガラス小体100重量部に対して0.05〜10重量部の着色酸化物からなる無機顔料粉末とをそれぞれ準備する工程と、結晶性ガラス小体と高流動性ガラス小体と無機顔料粉末とを混合する工程と、ガラス小体の混合物を結晶性ガラス小体の軟化点以上の温度で熱処理することによって各ガラス小体を互いに融着一体化させ、結晶を析出させるとともに各ガラス小体の界面に無機顔料粉末による着色層を現出させる工程を含むことを特徴とする。
【0009】
以下に、本発明を詳細に説明する。
【0010】
まず結晶性ガラス小体の多数個と、高流動性ガラス小体の多数個と、無機顔料粉末とをそれぞれ準備する。
【0011】
結晶性ガラス小体としては、結晶化後に外装材や内装材として要求される諸特性(機械的強度、耐候性等)を満足するものであればどのような組成系のものでも使用でき、例えば主結晶としてβ−ウオラストナイト(β−CaO・SiO2 )、ディオプサイド(CaO・MgO・2SiO2 )等の結晶を析出する結晶性ガラス等が使用可能である。特に重量%で、SiO2 40〜80%、Al23 2〜15%、CaO 3〜25%、ZnO 0〜15%、BaO 0〜20%、B23 0〜10%、Na2 O+K2 O+Li2 O 2〜20%の組成を有し、主結晶としてβ−ウオラストナイトを析出する結晶化ガラスや、SiO2 45〜80%、Al23 1〜25%、CaO 1〜20.0%、MgO 0.5〜20%、CaO+MgO 1.5〜18%、BaO 0〜18%、ZnO 0〜18%、Na2 O 1〜15%、K2 O 0〜7%、Li2 O 0〜5%、B23 0〜10%、P25 0〜10%の組成を有し、主結晶としてディオプサイドを析出する結晶性ガラスが好ましい。なお十分な機械的強度を得るためには結晶化度が15%以上となるものを使用することが望ましい。
【0012】
高流動性ガラス小体としては、結晶性ガラス小体より流動性が高いものであれば使用可能であるが、特に次の条件を満たすものを使用することが望ましい。その条件とは、まず結晶性ガラス小体及び高流動性ガラス小体をそれぞれ多数個用意し、各ガラス小体を軟化点付近の温度で仮焼成し、円柱状に成型した後、Al23 基板上で通常の製造条件(例えば1100℃で2時間)で熱処理し、熱処理後のボタン径の大きさを評価する。そして結晶性ガラス小体のボタン径を100とした時に高流動性ガラス小体のボタン径が110以上となるものである。なおボタン径が110未満では、流動性を高めて焼成温度を下げるという効果に乏しいため、高流動性ガラス小体の割合を高くしなければならなくなる。
【0014】
例えば結晶性ガラスの場合、先記したような主結晶としてβ−ウオラストナイト(β−CaO・SiO2 )、ディオプサイド(CaO・MgO・2SiO2 )等の結晶を析出するガラスを使用することができ、特に重量%でSiO2 30〜70%、Al23 2〜10%、CaO 3〜15%、ZnO 0〜15%、BaO 0〜20%、B23 0〜10%、Na2 O+K2 O+Li2 O 2〜20%の組成を有し、主結晶としてβ−ウオラストナイトを析出するガラスや、SiO2 35〜70%、Al23 1〜15%、CaO 1〜15.0%、MgO0.5〜12%、CaO+MgO 1.5〜13%、BaO 0〜18%、ZnO 0〜18%、Na2 O 1〜15%、K2 O 0〜10%、Li2 O 0〜10%、B23 0〜10%、P25 0〜10%の組成を有し、主結晶としてディオプサイドを析出する性質を有するガラスを使用することが望ましい。なおこれらのガラスは結晶性ガラス小体より流動性を高くするために、結晶性ガラス小体より結晶化度が低くなるものを使用する。
【0016】
なお本発明でいうガラス小体とは、ガラス水砕物粒体、小球、小破片、棒状物等を意味している。
【0017】
無機顔料粉末としては、所望の色を有する酸化物であって、耐熱性に優れ、変色しないものであれば特に限定はない。例えば、NiO、MnO2 、CoO、Fe23 、Cr23 等の単体の着色酸化物あるいはZn−Cr−Ni−Alスピネル、Sn−Si−Ca−Cr−Znスフェイン、Zr−Si−Prジルコン、Zr−Si−V−Prジルコン、Zr−Si−Vジルコン、Al−Co−Cr−Znスピネル、Al−Zn−Fe−Crスピネル、Fe−Cr−Zn−Alスピネル、Fe−Cr−Znスピネル、Fe−Cr−Ni−Mnスピネル等の着色酸化物が適当であり、またこれらを混合して用いることも可能である。
【0018】
次に、結晶性ガラス小体と高流動性ガラス小体と無機顔料粉末とを混合して無機顔料粉末を結晶性ガラス小体や高流動性ガラス小体の表面に付着させる。
【0019】
結晶性ガラス小体と高流動性ガラス小体の割合は重量比で20:80〜99.7:0.3であることが好ましい。ここで各ガラス小体の割合をこのように限定した理由は、結晶性ガラス小体が上記した割合より少なくなると機械的強度が低下する等建築材料として要求される特性が得難くなり、一方高流動性ガラス小体が上記範囲より少なくなるとその効果がなくなるためである。また無機顔料粉末の混合量はその色の濃度によって異なるが、ガラス小体100重量部に対して0.05〜10重量部が適当である。ここで無機顔料粉末の量を0.05〜10重量部としたのは0.05重量部未満では充分な発色が得られず、10重量部を超えるとガラス小体の軟化流動が著しく阻害され、高流動性ガラス小体を添加しても平滑な平面が得難くなるためである。
【0020】
なお結晶性ガラス小体、高流動性ガラス小体及び無機顔料粉末を混合する方法としては、これらを適当量秤量し、乾式混合した後、ガラス小体100重量部に対して水又は水溶性有機バインダ−を0.1〜5重量部添加して充分に攪拌混合すればよい。なお水又は水溶性有機バインダ−の量を0.1〜5重量部としたのは一般に無機顔料の粒径とガラス小体の粒径は大きく異なるために0.1重量部未満では混合が充分に行わない。さらにガラス表面に無機顔料が付着しにくいため得られる結晶化ガラス物品の色むらが激しくなる。また無機顔料粉末が5重量部を超えると無機顔料の凝集が起こり上記同様色むらが激しく適当でない。
【0021】
次に、得られた混合物を耐火物製の型枠内に集積し、結晶性ガラス小体の軟化点より高い温度で熱処理することにより、結晶性ガラス小体や高流動性ガラス小体が軟化変形して各ガラス小体が融着一体化するとともに、結晶性ガラス小体の表面から内部に向かって針状の結晶が析出する。また各ガラス小体の界面に無機顔料粉末による着色層が現出する。
【0022】
このようにして着色結晶化ガラス物品を得ることができる。
【0023】
【作用】
本発明の着色結晶化ガラス物品の製造方法では、結晶性ガラス小体よりも流動性の高い高流動性ガラス小体を用いることで、無機顔料によるガラス小体の流動性の低下が相殺される。
【0024】
【実施例】
以下、本発明の着色結晶化ガラス物品の製造方法を実施例に基づいて説明する。
【0025】
(実施例1)
まず、重量百分率でSiO2 63.0%、Al23 6.5%、CaO 15%、ZnO 4.3%、BaO 5%、B23 0.8%、Na2 O 2.8%、K2 O 1.0%,Li2 O 1.6%の組成となるように調合したガラス原料を1400〜1500℃で12時間溶融した。次いでこのガラスを水中に投下して水砕した後、さらに耐火物製ロ−ルクラッシャ−にて水砕物を粉砕し,粉砕物を分級して直径0.5〜2mmの結晶性ガラス小体Aを得た。この結晶性ガラス小体Aは軟化点が800℃であり、軟化点以上の温度で熱処理するとβ−ウオラストナイトを主結晶とする白色の結晶化ガラスとなる性質を有するものであった。またこのガラス小体を仮焼成し、12×50mmφのボタン状に成型した後、Al23 基板上に載置して電気炉内に入れ、1100℃で2時間熱処理したところ、そのボタン径は52mmとなった。
【0026】
また、重量百分率でSiO2 60%、Al23 4.5%、CaO 8.5%、ZnO 3.8%、BaO 13%、B23 1.5%、Na2 O 4.5%、K2 O 2.8%、Li2 O 1.4%の組成になるように調合されたガラス原料を上記と同様にして溶融し水砕した後、粉砕分級して直径0.5〜2mmの高流動性ガラス小体Bを得た。この高流動性ガラス小体Bは軟化点が740℃であり、軟化点以上の温度で熱処理するとβ−ウオラストナイトを主結晶とする白色の結晶化ガラスとなる性質を有する結晶性ガラスであった。また上記と同様にしてボタンを作製し、1100℃で2時間熱処理したところ、そのボタン径は、65mmであった。
【0027】
次いで結晶性ガラス小体A65重量%と高流動性ガラス小体B35重量%とを乾式混合した。次いでこの混合物にZr−Si−Pr系の黄色ジルコン顔料粉末(平均粒径10μm)を2重量部添加し、さらに2重量部の5%PVA水溶液を添加して攪拌混合した。この混合物をムライト製の型枠内に集積して、1100℃で2時間熱処理することによって着色結晶化ガラス板を得た。
【0028】
このようにして得られた結晶化ガラス板は、平滑な平面を有し、また白色のガラス小体の界面に黄色の着色層が現出してなる美しいものであった。
【0029】
(比較例1)
実施例1で用いた結晶性ガラス小体Aに、Zr−Si−Pr系の黄色ジルコン顔料粉末をガラス小体100重量部に対して2重量部添加し、実施例1と同様にして攪拌混合し、集積した後、1100℃で2時間熱処理した。
【0030】
このようにして得られた結晶化ガラス板は、流動不足のためにガラス小体の形状が残った凹凸の表面を呈し、しかも各ガラス小体の界面に空隙が存在していた。
【0031】
(比較例2)
まず比較例1と同様にして結晶性ガラス小体Aと顔料粉末の混合物を用意した。この混合物について、種々の熱処理温度で熱処理し、実施例1と同等の表面状態となる温度を求めた。その結果、1150℃以上で熱処理しなければ、実施例1と同等の表面を得ることができないことが分かった。
【0036】
【発明の効果】
以上説明したように本発明の着色結晶化ガラス物品の製造方法によれば、結晶性ガラス小体より熱処理時の流動性が高い高流動性ガラス小体を併用することで無機顔料によるガラス小体の流動性の低下が相殺されるため、熱処理温度を上げなくても平滑な平面を有する着色結晶化ガラス物品を製造することが可能である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a colored crystallized glass article used as a building exterior or interior material.
[0002]
[Prior art]
Conventionally, crystallized glass articles have been widely used as building exterior materials and interior materials. The crystallized glass used for this purpose is required to have a beautiful appearance in addition to excellent properties such as weather resistance and mechanical strength. For satisfying these various conditions, for example, the crystallized glass disclosed in Japanese Patent Publication No. 47-2276, Japanese Patent Publication No. 51-23966, Japanese Patent Publication No. 53-39884, etc., which is the invention of the present applicant, is known. These crystallized glasses are suitably manufactured by a method in which the original glass is formed into a glass body, integrated, and then heat-treated.
[0003]
On the other hand, with the diversification of buildings in recent years, there is a demand for diversification of decorative materials for exteriors and interiors of buildings. One of the diversification is diversification of color tone. By the way, coloring of glass or crystallized glass is generally so-called dough coloring, in which a colored oxide is added to a glass raw material to vitrify. However, this method is suitable for production of a large number of small varieties, but is not suitable for a small amount of many varieties.
[0004]
Therefore, as a manufacturing method suitable for small-quantity, multi-product production, the present applicant attaches inorganic pigment powder to the surface of a glass body in Japanese Patent Publication No. 5-43651 (corresponding publication: Patent Document 1) , and accumulates this. A method of crystallization is proposed. According to this method, various colors can be obtained by appropriately selecting an inorganic pigment, so that it is possible to cope with a small amount and a variety of production. Patent Documents 2 to 6 also disclose a method for producing a crystallized glass article that can be colored.
[Patent Document 1]
JP-A-1-157432 [Patent Document 2]
JP-A-5-163042 [Patent Document 3]
JP 63-1229025 A [Patent Literature 4]
JP 63-156024 A [Patent Document 5]
JP 63-144134 A [Patent Document 6]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2-92941
[Problems to be solved by the invention]
However, in the above-described method, when an inorganic pigment powder is added, the softening flow of the glass body is inhibited, so that it is difficult to obtain a smooth flat surface at a normal heat treatment temperature. Therefore, there is a problem that it is necessary to raise the heat treatment temperature in order to flow properly.
[0006]
An object of the present invention is to provide a method for producing a colored crystallized glass article that can be heat-treated without increasing the heat treatment temperature even when inorganic pigment powder is added.
[0007]
[Means for Solving the Problems]
As a result of various experiments, the present inventors have found that the above object can be achieved by using a glass body having higher fluidity than the glass body to be used, and propose the present invention.
[0008]
That is, the method for producing a colored crystallized glass article of the present invention has a property that when heat treatment is performed at a temperature higher than the softening point, needle-like crystals are precipitated from the surface toward the inside while being softened and deformed, and the crystallinity is 15 % Of a large number of crystalline glass bodies and a large number of the crystalline glass bodies were calcined and formed into a cylindrical shape of 50 mmφ, and then on an Al 2 O 3 substrate at 1100 ° C. for 2 hours. A high-fluidity glass body made of crystalline glass that precipitates β-wosterite or diopsite that is heat-treated and the button diameter after heat treatment is set to 100 when the button diameter after heat treatment is 100 And a step of preparing an inorganic pigment powder composed of 0.05 to 10 parts by weight of a colored oxide with respect to 100 parts by weight of the glass body, a crystalline glass body and a high flowable glass body Body and inorganic pigment powder A step of mixing and heat-treating the glass body mixture at a temperature equal to or higher than the softening point of the crystalline glass body to fuse and integrate the glass bodies together to precipitate crystals, and to interface the glass bodies And a step of revealing a colored layer of inorganic pigment powder.
[0009]
The present invention is described in detail below.
[0010]
First, a large number of crystalline glass bodies, a large number of highly fluid glass bodies, and an inorganic pigment powder are prepared.
[0011]
As the crystalline glass body, any composition system can be used as long as it satisfies various properties (mechanical strength, weather resistance, etc.) required for exterior materials and interior materials after crystallization. Crystal glass that precipitates crystals such as β-wollastonite (β-CaO · SiO 2 ) and diopside (CaO · MgO · 2SiO 2 ) can be used as the main crystal. In particular, by weight, SiO 2 40-80%, Al 2 O 3 2-15%, CaO 3-25%, ZnO 0-15%, BaO 0-20%, B 2 O 3 0-10%, Na 2 Crystallized glass having a composition of O + K 2 O + Li 2 O 2-20% and precipitating β-wollastonite as a main crystal, SiO 2 45-80%, Al 2 O 3 1-25%, CaO 1 20.0%, MgO 0.5~20%, CaO + MgO 1.5~18%, BaO 0~18%, ZnO 0~18%, Na 2 O 1~15%, K 2 O 0~7%, Li A crystalline glass having a composition of 2 O 0 to 5%, B 2 O 3 0 to 10%, and P 2 O 5 0 to 10% and precipitating diopside as a main crystal is preferable. In order to obtain a sufficient mechanical strength, it is desirable to use one having a crystallinity of 15% or more.
[0012]
The high fluidity glass body can be used as long as it has higher fluidity than the crystalline glass body, but it is particularly desirable to use a material that satisfies the following conditions. First, a large number of crystalline glass bodies and high-fluidity glass bodies were prepared, each glass body was pre-fired at a temperature near the softening point, molded into a cylindrical shape, and then Al 2 O. 3. Heat treatment is performed on the substrate under normal manufacturing conditions (for example, 1100 ° C. for 2 hours), and the size of the button diameter after the heat treatment is evaluated. When the button diameter of the crystalline glass body is 100, the button diameter of the high fluidity glass body is 110 or more. If the button diameter is less than 110, the effect of increasing the fluidity and lowering the firing temperature is poor, so the ratio of the high fluidity glass bodies must be increased.
[0014]
For example, in the case of crystalline glass, glass that precipitates crystals such as β-wollastonite (β-CaO · SiO 2 ) and diopside (CaO · MgO · 2SiO 2 ) is used as the main crystal as described above. it can, in particular SiO 2 30 to 70% by weight%, Al 2 O 3 2~10% , CaO 3~15%, 0~15% ZnO, BaO 0~20%, B 2 O 3 0~10% , Na 2 O + K 2 O + Li 2 O 2-20% glass, β-wollastonite as the main crystal is precipitated, SiO 2 35-70%, Al 2 O 3 1-15%, CaO 1 ~15.0%, MgO0.5~12%, CaO + MgO 1.5~13%, BaO 0~18%, ZnO 0~18%, Na 2 O 1~15%, K 2 O 0~10%, Li 2 O 0~10%, B 2 O 3 0~10%, P 2 O 5 Has a 10% of the composition, it is desirable to use a glass having a property of precipitating diopside as the main crystal. In order to make these glasses have higher fluidity than crystalline glass bodies, those having a lower crystallinity than crystalline glass bodies are used.
[0016]
In addition, the glass body as used in the field of this invention means a glass granulated material , a granule, a small sphere, a small broken piece, a rod-shaped object, etc.
[0017]
The inorganic pigment powder is not particularly limited as long as it is an oxide having a desired color, is excellent in heat resistance, and does not change color. For example, simple colored oxides such as NiO, MnO 2 , CoO, Fe 2 O 3 , Cr 2 O 3, Zn—Cr—Ni—Al spinel, Sn—Si—Ca—Cr—Zn sphene, Zr—Si— Pr zircon, Zr-Si-V-Pr zircon, Zr-Si-V zircon, Al-Co-Cr-Zn spinel, Al-Zn-Fe-Cr spinel, Fe-Cr-Zn-Al spinel, Fe-Cr- Colored oxides such as Zn spinel and Fe-Cr-Ni-Mn spinel are suitable, and these may be used in combination.
[0018]
Next, the crystalline glass body, the high fluidity glass body, and the inorganic pigment powder are mixed to adhere the inorganic pigment powder to the surface of the crystalline glass body or the high fluidity glass body.
[0019]
The ratio of the crystalline glass body to the highly fluid glass body is preferably 20:80 to 99.7: 0.3 by weight. Here, the reason for limiting the ratio of each glass body in this way is that it is difficult to obtain characteristics required as a building material, such as mechanical strength is lowered when the crystalline glass body is less than the above-described ratio. This is because the effect is lost when the flowable glass body is less than the above range. Moreover, although the mixing amount of inorganic pigment powder changes with the density | concentrations of the color, 0.05-10 weight part is suitable with respect to 100 weight part of glass bodies. Here, the amount of the inorganic pigment powder is set to 0.05 to 10 parts by weight. If the amount is less than 0.05 parts by weight, sufficient color development cannot be obtained, and if it exceeds 10 parts by weight, the softening flow of the glass body is significantly inhibited. This is because it is difficult to obtain a smooth flat surface even when a high fluidity glass body is added.
[0020]
In addition, as a method of mixing the crystalline glass body, the high fluidity glass body and the inorganic pigment powder, weigh them in an appropriate amount, dry-mix them, and then add water or water-soluble organic to 100 parts by weight of the glass body. What is necessary is just to add 0.1-5 weight part of binders and to fully stir and mix. The amount of water or water-soluble organic binder is 0.1 to 5 parts by weight. Generally, the particle size of the inorganic pigment and the particle size of the glass body are greatly different. Don't do it. Furthermore, since the inorganic pigment hardly adheres to the glass surface, the resulting crystallized glass article has uneven color unevenness. On the other hand, if the amount of the inorganic pigment powder exceeds 5 parts by weight, the inorganic pigment aggregates and the color unevenness is severe and not suitable.
[0021]
Next, the obtained mixture is accumulated in a refractory mold and heat-treated at a temperature higher than the softening point of the crystalline glass body, thereby softening the crystalline glass body and the high fluidity glass body. Each glass body is deformed and fused and integrated, and acicular crystals are deposited from the surface of the crystalline glass body toward the inside. A colored layer of inorganic pigment powder appears at the interface of each glass body.
[0022]
In this way, a colored crystallized glass article can be obtained.
[0023]
[Action]
In the method for producing a colored crystallized glass article according to the present invention, the use of a high-fluidity glass body having a higher fluidity than the crystalline glass body cancels out the decrease in the fluidity of the glass body due to the inorganic pigment. .
[0024]
【Example】
Hereinafter, the manufacturing method of the colored crystallized glass article of the present invention will be described based on examples.
[0025]
Example 1
First, in terms of weight percentage, SiO 2 63.0%, Al 2 O 3 6.5%, CaO 15%, ZnO 4.3%, BaO 5%, B 2 O 3 0.8%, Na 2 O 2.8 %, K 2 O 1.0%, Li 2 O 1.6%, and a glass raw material prepared so as to have a composition of 1.6% was melted at 1400-1500 ° C. for 12 hours. Next, the glass was dropped into water and crushed, and then the crushed material was further crushed with a refractory roll crusher. The crushed material was classified to obtain a crystalline glass body A having a diameter of 0.5 to 2 mm. Got. This crystalline glass body A has a softening point of 800 ° C., and has a property of becoming white crystallized glass having β-wollastonite as a main crystal when heat-treated at a temperature equal to or higher than the softening point. This glass body was pre-fired, molded into a button shape of 12 × 50 mmφ, placed on an Al 2 O 3 substrate, placed in an electric furnace, and heat treated at 1100 ° C. for 2 hours. Was 52 mm.
[0026]
Further, SiO 2 60% by weight percentage, Al 2 O 3 4.5%, CaO 8.5%, 3.8% ZnO, BaO 13%, B 2 O 3 1.5%, Na 2 O 4.5 %, K 2 O 2.8%, Li 2 O 1.4% composition glass raw material was melted and granulated in the same manner as above, then pulverized and classified to 0.5 to 0.5 mm in diameter. A 2 mm high flowable glass body B was obtained. This high fluidity glass body B has a softening point of 740 ° C. and is a crystalline glass having the property of becoming white crystallized glass having β-wollastonite as the main crystal when heat-treated at a temperature equal to or higher than the softening point. It was. When a button was prepared in the same manner as described above and heat-treated at 1100 ° C. for 2 hours, the button diameter was 65 mm.
[0027]
Next, 65% by weight of crystalline glass body A and 35% by weight of high flowable glass body B were dry mixed. Next, 2 parts by weight of a Zr—Si—Pr-based yellow zircon pigment powder (average particle size 10 μm) was added to this mixture, and further 2 parts by weight of 5% PVA aqueous solution was added and stirred. This mixture was accumulated in a mullite mold and heat-treated at 1100 ° C. for 2 hours to obtain a colored crystallized glass plate.
[0028]
The crystallized glass plate thus obtained was a beautiful one having a smooth flat surface and a yellow colored layer appearing at the interface of the white glass body.
[0029]
(Comparative Example 1)
2 parts by weight of Zr—Si—Pr-based yellow zircon pigment powder is added to 100 parts by weight of the glass body to the crystalline glass body A used in Example 1, and the mixture is stirred and mixed in the same manner as in Example 1. After the accumulation, heat treatment was performed at 1100 ° C. for 2 hours.
[0030]
The crystallized glass plate thus obtained had an uneven surface where the shape of the glass body remained due to insufficient flow, and voids existed at the interface of each glass body.
[0031]
(Comparative Example 2)
First, in the same manner as in Comparative Example 1, a mixture of crystalline glass body A and pigment powder was prepared. This mixture was heat-treated at various heat treatment temperatures, and the temperature at which the surface state equivalent to Example 1 was obtained was determined. As a result, it was found that a surface equivalent to Example 1 could not be obtained unless heat treatment was performed at 1150 ° C. or higher.
[0036]
【The invention's effect】
As described above, according to the method for producing a colored crystallized glass article of the present invention, a glass body made of an inorganic pigment is used in combination with a high-fluidity glass body having higher fluidity during heat treatment than the crystalline glass body. Therefore, it is possible to produce a colored crystallized glass article having a smooth flat surface without increasing the heat treatment temperature.

Claims (1)

軟化点より高い温度で熱処理すると軟化変形しながら表面から内部に向かって針状の結晶が析出する性質を有し、結晶化度が15%以上となる結晶性ガラス小体の多数個と、該結晶性ガラス小体の多数個を仮焼成して12×50mmφの円柱状に成型した後、Al23基板上で1100℃で2時間で熱処理し、熱処理後のボタン径の大きさを100とした時に、同じ処理後のボタン径が110以上となるβ−ウオステナイトまたはディオプサイトを析出する結晶性ガラスからなる高流動性ガラス小体の多数個と、該ガラス小体100重量部に対して0.05〜10重量部の着色酸化物からなる無機顔料粉末とをそれぞれ準備する工程と、結晶性ガラス小体と高流動性ガラス小体と無機顔料粉末とを混合する工程と、ガラス小体の混合物を結晶性ガラス小体の軟化点以上の温度で熱処理することによって各ガラス小体を互いに融着一体化させ、結晶を析出させるとともに各ガラス小体の界面に無機顔料粉末による着色層を現出させる工程を含むことを特徴とする着色結晶化ガラス物品の製造方法。When heat treatment is performed at a temperature higher than the softening point, there is a property that needle-like crystals are precipitated from the surface toward the inside while softening and deforming, and a large number of crystalline glass bodies having a crystallinity of 15% or more, A large number of crystalline glass bodies were pre-fired and formed into a 12 × 50 mmφ cylindrical shape, and then heat-treated at 1100 ° C. for 2 hours on an Al 2 O 3 substrate, and the button diameter after heat treatment was set to 100. A large number of high-fluidity glass bodies made of crystalline glass on which β-wostenite or diopsite with a button diameter of 110 or more after the same treatment is deposited , and 100 parts by weight of the glass body A step of preparing 0.05 to 10 parts by weight of an inorganic pigment powder made of a colored oxide, a step of mixing a crystalline glass body, a high-fluidity glass body and an inorganic pigment powder, and glass. Crystal mixture A process in which the glass bodies are fused and integrated with each other by heat treatment at a temperature equal to or higher than the softening point of the glass bodies to precipitate crystals, and a colored layer of inorganic pigment powder appears at the interface of each glass body. A method for producing a colored crystallized glass article, comprising:
JP26630994A 1994-10-04 1994-10-04 Method for producing colored crystallized glass article Expired - Fee Related JP4041546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26630994A JP4041546B2 (en) 1994-10-04 1994-10-04 Method for producing colored crystallized glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26630994A JP4041546B2 (en) 1994-10-04 1994-10-04 Method for producing colored crystallized glass article

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004356245A Division JP2005170786A (en) 2004-12-09 2004-12-09 Colored, crystallized glass article

Publications (2)

Publication Number Publication Date
JPH08104530A JPH08104530A (en) 1996-04-23
JP4041546B2 true JP4041546B2 (en) 2008-01-30

Family

ID=17429142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26630994A Expired - Fee Related JP4041546B2 (en) 1994-10-04 1994-10-04 Method for producing colored crystallized glass article

Country Status (1)

Country Link
JP (1) JP4041546B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259247A (en) * 1995-03-24 1996-10-08 Hikari Giken:Kk Decorating method effectively utilizing crystallized glass, etc., and forming striped pattern
CN101233086B (en) * 2005-07-29 2011-05-18 日本电气硝子株式会社 Patterned crystallized-glass article and process for producing the same
JP4911427B2 (en) * 2005-07-29 2012-04-04 日本電気硝子株式会社 Patterned crystallized glass article and method for producing the same

Also Published As

Publication number Publication date
JPH08104530A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
KR970004968B1 (en) Marble-like glass ceramic
JP4041546B2 (en) Method for producing colored crystallized glass article
JP3094375B2 (en) Natural marble-like crystallized glass and glass body for producing natural marble-like crystallized glass
JP2005170786A (en) Colored, crystallized glass article
US5275978A (en) Colored crystallized glass article and method for producing the same
JPH08225343A (en) Crystallized glass article for construction material and production of the article
JP3173529B2 (en) Black natural marble-like crystallized glass
JPH09110470A (en) Crystallized glass article and its production
JPS6224365B2 (en)
JP3173533B2 (en) Architectural glass article and method of manufacturing the same
JPH10139456A (en) Patterned crystallized glass building material and its production
JPH1160270A (en) Antimicrobial crystallized glass article and its production
TWI779880B (en) -cao-based crystallized glass and manufacturing method thereof
CN113354284B (en) Ceramic glaze material with seven-color halo effect, ceramic rock plate and preparation method and application thereof
JPH10130029A (en) Patterned crystallized glass building material and its production
JPH10130028A (en) Production of patterned crystallized-glass building material
JPH03164446A (en) Production of crystallized glass
JPH08175832A (en) Brown colored and crystallized glass article and its production
JPH08165129A (en) Method for producing colored crystallized glass product having pattern
JPH07118034A (en) Patterned crystallized glass article and its production
KR940003462B1 (en) Process for producing glass-ceramics
JP2002226224A (en) Decorative glass and its manufacturing method
JPH08175830A (en) Production of patterned, colored and crystallized glass article
JP3114961B2 (en) Crystallized glass article and method for producing the same
JPH08175831A (en) Production of patterned, colored and crystallized glass article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050120

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees