JPH02120254A - Crystallized glass material and production thereof - Google Patents

Crystallized glass material and production thereof

Info

Publication number
JPH02120254A
JPH02120254A JP27400088A JP27400088A JPH02120254A JP H02120254 A JPH02120254 A JP H02120254A JP 27400088 A JP27400088 A JP 27400088A JP 27400088 A JP27400088 A JP 27400088A JP H02120254 A JPH02120254 A JP H02120254A
Authority
JP
Japan
Prior art keywords
softening point
glass powder
powder
point glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27400088A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP27400088A priority Critical patent/JPH02120254A/en
Publication of JPH02120254A publication Critical patent/JPH02120254A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To suppress the inclusion of bubbles by fusing and integrating glass powder having a low softening point and a specific composition and glass powder having high softening point after the softening and welding of the former glass powder and crystallizing the integrated material. CONSTITUTION:Glass powder (powder PL) having low softening point and composed mainly of 65-80wt.% of SiO2, 5-15wt.% of CaO, <=10wt.% of Al2O3, 10-20wt.% of Na2O+K2O and <=10wt.% of MgO and glass powder (powder PH) having high softening point and composed mainly of 50-65wt.% of SiO2, 15-35wt.% of CaO, <=10wt.% of Al2O3 and 10-20wt.% of Na2O+K2O are prepared beforehand. A powdery mixture of the powder PL and the powder PH is compression-molded at a temperature above the softening point of powder PL and below the crystallization initiation temperature of the powder PL to obtain a formed article of glass powder composed of the powder PL attached or fused to the circumference of the powder PH. The formed article is heated and crystallized at a temperature above the softening point of the powder PH. The air existing between the glass particles in the softening and welding of the powder PL is discharged from the article along the surface of unsoftened powder PH.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建材や壁材等として使用される結晶化ガラス
材及びその製造方法間する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystallized glass material used as a building material, wall material, etc., and a method for manufacturing the same.

(従来の技術) 従来、結晶化ガラス材の好適な製造方法として、特開昭
48−78217号公報に開示されているように、特定
組成のガラス粉粒体を耐火性成形型に集積し、成形型ご
とガラス軟化点より高温に加熱し、ガラス粉粒体を軟化
させて融着すると共に結晶化する方法(以下、集積法と
いう。)がある。
(Prior Art) Conventionally, as disclosed in Japanese Unexamined Patent Application Publication No. 48-78217, a suitable method for manufacturing crystallized glass materials involves accumulating glass powder particles of a specific composition in a fire-resistant mold, There is a method (hereinafter referred to as the accumulation method) in which the entire mold is heated to a temperature higher than the glass softening point to soften and fuse the glass powder and crystallize it.

この方法によると、基地形成用のガラス粉粒体に適宜の
着色成分を含んだ模様形成用のガラス粉粒体を添加して
、これを集積し、熱処理することにより、任意の色模様
を有する結晶化ガラス材が容易に得られるという利点が
ある。
According to this method, a pattern-forming glass powder containing an appropriate coloring component is added to a base-forming glass powder, which is accumulated and heat-treated to form an arbitrary color pattern. It has the advantage that crystallized glass material can be easily obtained.

(発明が解決しようとする課題) しかしながら、集積法によると、熱処理に際し、ガラス
粉粒体がほぼ同時に軟化融着するため、粉粒体の間に存
在した空気は軟化融着体中に閉じ込められ、気泡となっ
て残留する。この気泡は、粉粒体の粒子が小さいほど発
生量が多く、また相互に凝集して大きな気孔となる。
(Problem to be solved by the invention) However, according to the accumulation method, the glass powder particles are softened and fused almost simultaneously during heat treatment, so the air existing between the powder particles is trapped in the softened and fused body. , and remain as bubbles. The smaller the particles of the powder or granular material, the more these bubbles are generated, and they aggregate together to form large pores.

軟化融着体中の気泡や気孔は、熱処理中に膨張するため
、結晶化ガラス材に膨れや割れを発生させる要因となる
。また、結晶化ガラス材は、通常その表面を平滑に研磨
して板材として使用することが多いため、ガラス材中に
気泡や気孔が多数存在すると、研磨後の表面に気泡や気
孔に起因した凹みが多数露呈し、製品欠陥となる。また
、気泡や気孔は、部材に作用する応力を負担することが
できず、強度の低下の要因となる。
Bubbles and pores in the softened and fused body expand during heat treatment, which causes blisters and cracks in the crystallized glass material. In addition, since crystallized glass materials are often used as plate materials after polishing their surfaces smooth, if there are many air bubbles or pores in the glass material, dents due to the air bubbles or pores may appear on the surface after polishing. A large number of defects are exposed, resulting in product defects. In addition, air bubbles and pores cannot bear the stress acting on the member, which causes a decrease in strength.

また、集積法は、ガラス粉粒体の集積体を軟化すると共
に結晶化するものであるから、熱処理時に集積体の軟化
による形部れを防止しなければならず、このため成形型
ごと熱処理に供しなければならない。すなわち、ガラス
粉粒体の集積から熱処理完了まで成形型単位で取り扱わ
なければならず、取り扱いが煩雑であり、生産性に劣る
。また、高価な耐熱性成形型を多数準備しなければなら
ず設備コストが高くなる。
In addition, since the accumulation method softens and crystallizes the aggregate of glass powder particles, it is necessary to prevent shape deformation due to softening of the aggregate during heat treatment. must be provided. That is, the process from the accumulation of the glass powder to the completion of the heat treatment must be handled on a mold-by-molding mold basis, resulting in complicated handling and poor productivity. Furthermore, a large number of expensive heat-resistant molds must be prepared, which increases equipment costs.

本発明はかかる問題点に鑑みなされたもので、気泡の含
有を可及的に抑制することができる結晶化ガラス材およ
び成形型ごとの取り扱いが不要な同ガラス材の製造方法
の提供を目的とする。
The present invention was made in view of such problems, and aims to provide a crystallized glass material that can suppress the inclusion of air bubbles as much as possible, and a method for manufacturing the same glass material that does not require handling each mold. do.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の結晶化ガラ
ス材は、低軟化点ガラス粉末と高軟化点ガラス粉末とが
低軟化点ガラス粉末の軟化融着後に融着一体化し、高軟
化点ガラス粉末の軟化点以上の温度で結晶化してなる結
晶化ガラス材であって、 前記低軟化点ガラス粉末は主成分が重量%でSiO□:
65〜80%、’ CaO: 5〜15%Alt03 
 :10%以下、Na2O+K2O: 10〜20%M
gO:10%以下 であり、前記高軟化点ガラス粉末は主成分が重量%で 5iOz 450〜65%、CaO: 15〜35%A
t、o3:10%以下、NazO+ KzO: 2〜1
0%であることを発明の構成とするものである。
(Means for Solving the Problems) In the crystallized glass material of the present invention, which has been made to achieve the above object, a low softening point glass powder and a high softening point glass powder are bonded together after softening and fusing of the low softening point glass powder. A crystallized glass material formed by fusing and integrating and crystallizing at a temperature higher than the softening point of a high softening point glass powder, the low softening point glass powder having a main component of SiO□ in weight%:
65-80%, 'CaO: 5-15% Alt03
: 10% or less, Na2O+K2O: 10-20%M
gO: 10% or less, the main components of the high softening point glass powder are 5iOz 450 to 65% by weight, and CaO: 15 to 35%A.
t, o3: 10% or less, NazO+KzO: 2-1
The structure of the invention is that it is 0%.

また、その好適な製造方法として、主成分が重量%で Sing : 65〜80%、CaO: 5〜15%N
、o、  :10%以下、Na2O+K2O: 10〜
20%MgO:10%以下 である低軟化点ガラス粉末と、主成分が重量%で5iO
z : 50〜65%、CaO:15〜35%Nt03
:10%以下、Na2O+ KzO: 2〜10%であ
る高軟化点ガラス粉末との混合粉末を低軟化点ガラス粉
末の軟化点以上でかつ低軟化点ガラス粉末の結晶化開始
温度以下の温度で加圧成形し、高軟化点ガラス粉末の回
りに低軟化点ガラス粉末を軟化付着ないし融着させたガ
ラス粉末成形体を得、該成形体を高軟化点ガラス粉末の
軟化点以上の温度に加熱して結晶化することを発明の構
成とするものである。
In addition, as a preferred manufacturing method, the main components are Sing: 65-80%, CaO: 5-15%N by weight%.
, o, : 10% or less, Na2O+K2O: 10~
20% MgO: Low softening point glass powder that is 10% or less and the main component is 5iO in weight%
z: 50-65%, CaO: 15-35% Nt03
: 10% or less, Na2O + KzO: 2 to 10% mixed powder with high softening point glass powder is heated at a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the low softening point glass powder. Pressure molding is performed to obtain a glass powder molded body in which a low softening point glass powder is softened or fused around a high softening point glass powder, and the molded body is heated to a temperature equal to or higher than the softening point of the high softening point glass powder. The structure of the invention is to crystallize the material.

(作 用) 本発明の結晶化ガラス材は、低軟化点ガラス粉末と高軟
化点ガラス粉末とが低軟化点ガラス粉末の軟化融着後に
融着一体化し、結晶化したものであるから、低軟化点ガ
ラス粉末同士の軟化融着時に、ガラス粉末の間に存在し
た空気は未軟化状態の高軟化点ガラス粉末の粒子表面に
沿ってガラス粉末の外部へ排出され緻密化される。この
ため、両ガラス粉末の融着体中には気泡が残留し難く、
その結果、本発明の結晶化ガラス材中には、気泡や気孔
が可及的に排除されたものとなる。
(Function) The crystallized glass material of the present invention has a low softening point glass powder and a high softening point glass powder that are fused and crystallized after softening and fusing the low softening point glass powder. When the softening point glass powders are softened and fused together, the air existing between the glass powders is discharged to the outside of the glass powder along the particle surface of the unsoftened high softening point glass powder and becomes densified. Therefore, it is difficult for air bubbles to remain in the fused product of both glass powders,
As a result, bubbles and pores are eliminated as much as possible in the crystallized glass material of the present invention.

本発明で使用する低軟化点ガラス粉末は通常のソーダ石
灰ガラスの組成であり、一方、高軟化点ガラス粉末は軟
化と共に速やかに結晶化する組成としており、高軟化点
ガラス粉末の軟化点以上の温度で結晶化することにより
、同粉末自体も結晶化し、低軟化点ガラス粉末による緻
密化と相まって高強度化が容易に図られる。以下、各粉
末の主成分限定理由を下記に記す。単位は重量%である
The low softening point glass powder used in the present invention has a composition of ordinary soda-lime glass, while the high softening point glass powder has a composition that quickly crystallizes as it softens. By crystallizing at high temperature, the powder itself also crystallizes, and in combination with the densification of the low softening point glass powder, high strength can be easily achieved. The reasons for limiting the main components of each powder are described below. The unit is weight %.

A、低軟化点ガラス粉末 Sing : 65〜80% 65%未満では結晶析出が速くなり、80%を越えると
軟化点が高くなる。
A. Low softening point glass powder Sing: 65-80% If it is less than 65%, crystal precipitation will be rapid, and if it exceeds 80%, the softening point will be high.

CaO: 5〜15% 5%未満では結晶が析出し難(なり、一方15%を越え
ると結晶析出が速くなる。
CaO: 5-15% If it is less than 5%, crystals will be difficult to precipitate (on the other hand, if it exceeds 15%, crystals will precipitate quickly).

/V20:l  :10%以下 N2O3の添加量が増えるほど軟化点が高くなるので、
10%以下に止める。
/V20:l: 10% or less The higher the amount of N2O3 added, the higher the softening point.
Keep it below 10%.

Na2O+K2O: 10〜20% 10%未満では軟化点が高くなり、一方20%を越える
と耐候性が劣化する。
Na2O+K2O: 10-20% If it is less than 10%, the softening point will be high, while if it exceeds 20%, the weather resistance will deteriorate.

MgO:10%以下 異結晶が出やすくなり好ましくないので10%以下に止
める。
MgO: 10% or less Because foreign crystals tend to appear, which is not preferable, MgO is kept at 10% or less.

B、高軟化点ガラス粉末 5t(h : 50〜65% 50%未満では結晶析出が速くなり、一方65%を越え
ると軟化点が高くなり、低軟化点ガラス粉末との融着一
体化に時間がかかる。
B. High softening point glass powder 5t (h: 50-65% If it is less than 50%, crystal precipitation will be rapid, while if it exceeds 65%, the softening point will be high and it will take time to fuse and integrate with the low softening point glass powder. It takes.

CaO: 15〜35% 15%未満では結晶の析出量が少なくなり、一方35%
を越えると結晶析出が速くなる。
CaO: 15-35% If it is less than 15%, the amount of crystal precipitation will decrease, while if it is 35%
When the temperature exceeds 100%, crystal precipitation becomes faster.

Ajzol  :10%以下 N t O、Iの含有量が高いほど、軟化点が高くなり
、低軟化点ガラス粉末との融着一体化に時間がかかるの
で、10%以下に止める。
Ajzol: 10% or less The higher the content of N t O, I, the higher the softening point, and it takes time to fuse and integrate with the low softening point glass powder, so it is limited to 10% or less.

Na2O+K2O: 2〜10% 2%未満では軟化点が高くなり、一方10%を越えると
軟化点が低くなり、結晶化熱処理の際に形削れが生じ易
くなる。
Na2O+K2O: 2 to 10% If it is less than 2%, the softening point will be high, while if it exceeds 10%, the softening point will be low, making it easy to cause deformation during crystallization heat treatment.

低軟化点および高軟化点ガラス粉末の主成分は以上の通
りであるが、その他、着色剤や物性調整のためガラス工
業分野で通常添加される成分の含有が許容される。
The main components of the low softening point and high softening point glass powders are as described above, but in addition, coloring agents and other components commonly added in the glass industry for adjusting physical properties are allowed to be included.

また、本発明の製造方法によれば、前記高軟化点ガラス
粉末と低軟化点ガラス粉末との混合粉末を低軟化点ガラ
ス粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化
開始温度以下の温度で加圧するので、低軟化点ガラス粉
末は高軟化点ガラス粉末に隣接した状態で、それ自体が
軟化融着すると共に高軟化点ガラス粉末に付着し、同粉
末粒子表面に融着する。この際、ガラス粉末の間に存在
した空気は、未軟化状態の高軟化点ガラス粉末の表面を
伝わって外部に排出される。
Further, according to the manufacturing method of the present invention, the mixed powder of the high softening point glass powder and the low softening point glass powder is prepared at a temperature higher than the softening point of the low softening point glass powder and lower than the crystallization start temperature of the low softening point glass powder. Since the pressure is applied at a temperature of , the low softening point glass powder is adjacent to the high softening point glass powder and is softened and fused by itself, and also adheres to the high softening point glass powder and fuses to the surface of the powder particles. At this time, the air existing between the glass powders is discharged to the outside through the surface of the unsoftened high softening point glass powders.

このようにして低軟化点ガラス粉末と高軟化点ガラス粉
末との混合粉末は付着ないし融着一体化し、緻密なガラ
ス粉末成形体となる。このガラス粉末成形体は取扱い上
必要とされる十分な強度を有し、単独で取扱うことがで
きる。
In this way, the mixed powder of the low softening point glass powder and the high softening point glass powder is adhered or fused to form a dense glass powder compact. This glass powder compact has sufficient strength required for handling and can be handled alone.

次に、ガラス粉末成形体を高軟化点ガラス粉末の軟化点
以上の温度に加熱するので、昇温過程で低軟化点ガラス
粉末と高軟化点ガラス粉末との融着が進行すると共に、
低軟化点ガラス粉末同士の軟化融着した部分、低軟化点
ガラス粉末と高軟化点ガラス粉末とが軟化融着した部分
および軟化した高軟化点ガラス粉末自体すなわちガラス
粉末成形体の全域に結晶が析出し、成長する。この際、
高軟化点ガラス粉末は速やかに結晶化する組成で構成し
ているため、高軟化点ガラス粉末の軟化点以上の温度で
結晶化してもガラス粉末成形体に著しい形削れは生じな
い。
Next, since the glass powder compact is heated to a temperature higher than the softening point of the high softening point glass powder, the fusion of the low softening point glass powder and the high softening point glass powder progresses during the temperature raising process, and
Crystals are formed in the areas where low softening point glass powders are softened and fused together, in the areas where low softening point glass powders and high softening point glass powders are softened and fused together, and in the entire area of the softened high softening point glass powder itself, that is, the glass powder compact. Precipitates and grows. On this occasion,
Since the high softening point glass powder has a composition that quickly crystallizes, even if it crystallizes at a temperature higher than the softening point of the high softening point glass powder, no significant deformation occurs in the glass powder molded body.

従って、ガラス粉末成形体を混合粉末の加圧成形に要し
た成形型ごと結晶化熱処理に供する必要はなく、ガラス
粉末成形体を単独で取り扱うことができ、作業が容易で
生産性に優れる。また、高価な耐熱性成形型を多数準備
する必要がない。
Therefore, it is not necessary to subject the glass powder molded body to the crystallization heat treatment together with the mold required for pressure molding of the mixed powder, and the glass powder molded body can be handled independently, making the work easy and excellent in productivity. Further, there is no need to prepare a large number of expensive heat-resistant molds.

(実施例) 以下、本発明の結晶化ガラス材をその製造方法と共に説
明する。
(Example) Hereinafter, the crystallized glass material of the present invention will be explained along with its manufacturing method.

まず、本発明において使用するガラス粉末について説明
する。
First, the glass powder used in the present invention will be explained.

低軟化点ガラス粉末および高軟化点ガラス粉末の主成分
については既述の通りであるが、後者はそのガラス軟化
点が800℃程度以上となるように成分を調整すること
が望ましい。低軟化点ガラス粉末は、通常のソーダ石灰
ガラスの組成であり、軟化点が600〜750°C1結
晶化開始温度が800″C程度以下だからである。
The main components of the low softening point glass powder and the high softening point glass powder are as described above, but it is desirable to adjust the components of the latter so that the glass softening point thereof is about 800° C. or higher. This is because the low softening point glass powder has a composition of ordinary soda lime glass, and has a softening point of 600 to 750°C and a crystallization initiation temperature of about 800″C or lower.

尚、ガラス粉末は、所期組成のガラスを溶製し、これを
水砕し、更に粉砕することによって得られるが、低軟化
点ガラス粉末原料としてはソーダ石灰ガラスのカレット
 (屑ガラス)を利用することができる。
Glass powder can be obtained by melting glass of the desired composition, pulverizing it, and then crushing it, but soda lime glass cullet (waste glass) is used as a raw material for low softening point glass powder. can do.

前記低軟化点および高軟化点ガラス粉末の粒度は、粒度
が小さいほど、またその量が多いほど低軟化点ガラス粉
末同士の軟化融着が容易となり、また高軟化点ガラス粉
末との融着が容易となり、ひいてはガラス粉末成形体の
緻密化および結晶化が促進される。このため、ガラス粉
末の粒度は、200メツシユ以下の粉末を80%以上(
好ましくは90%以上)占めるようにしておくことが望
ましい。
Regarding the particle size of the low softening point glass powder and the high softening point glass powder, the smaller the particle size and the larger the amount, the easier the softening and fusing of the low softening point glass powders, and the easier the fusing with the high softening point glass powder. This facilitates the densification and crystallization of the glass powder compact. Therefore, the particle size of the glass powder is 80% or more (
(preferably 90% or more).

前記低軟化点ガラス粉末と高軟化点ガラス粉末との混合
粉末における両粉末の配合割合は、前記低軟化点ガラス
粉末が20〜90重量%となるようにすることが望まし
い。20%未満では高軟化点ガラス粉末との融着不足、
ガラス粉末成形体の緻密化不足を招来する。一方、90
%を越えると熱処理時のガラス粉末成形体の形状保持が
不十分となり、また該成形体中の気泡の排出作用が不足
する。
The blending ratio of the low softening point glass powder and the high softening point glass powder in the mixed powder is preferably such that the low softening point glass powder accounts for 20 to 90% by weight. If it is less than 20%, there will be insufficient fusion with the high softening point glass powder.
This results in insufficient densification of the glass powder compact. On the other hand, 90
If it exceeds %, the shape of the glass powder molded body during heat treatment will be insufficient, and the air bubbles in the molded body will not be sufficiently discharged.

低軟化点ガラス粉末および、又は高軟化点ガラス粉末の
一部又は全部には着色成分を含有させた着色ガラス粉末
を使用することができる。かかる低軟化点着色ガラス粉
末と高軟化点着色ガラス粉末との混合粉末(以下、着色
混合粉末という。)を使用することにより、又その複数
種を組み合せて使用することにより、種々の着色結晶化
ガラス材や色模様材の結晶化ガラス材を得ることができ
る。
A colored glass powder containing a coloring component can be used as part or all of the low softening point glass powder and/or the high softening point glass powder. By using a mixed powder of such a low softening point colored glass powder and a high softening point colored glass powder (hereinafter referred to as colored mixed powder), or by using a combination of multiple types thereof, various colored crystallizations can be achieved. Crystallized glass materials such as glass materials and colored pattern materials can be obtained.

尚、着色成分を含有しない低軟化点ガラス粉末と高軟化
点ガラス粉末との混合粉末に金属酸化物の着色剤(通常
、200メツシユ以下の微粉が使用される。)を添加混
合した添加混合粉末を使用することによっても、着色結
晶化ガラス材の製造が可能である0着色剤は、結晶化ガ
ラス材に要求される物性(特に強度)を低下させない範
囲で添加されるが、その添加量の一例を下記に示す。添
加量は添加混合粉末に対するものであり、単位は重量%
である。
Additionally, an additive mixed powder is obtained by adding and mixing a metal oxide coloring agent (usually a fine powder of 200 mesh or less is used) to a mixed powder of a low softening point glass powder and a high softening point glass powder that does not contain a coloring component. It is also possible to produce colored crystallized glass materials by using colorants.Colorants are added within a range that does not reduce the physical properties (especially strength) required for crystallized glass materials, but the amount of addition An example is shown below. The amount added is based on the added mixed powder, and the unit is weight%.
It is.

Cr=03 、CuO、Mn0z   ・・・1%以下
CoO・・・3%以下 FeO、Fe3O4、FezOz  ”’10%以下ま
た、斑点状の着色模様を形成するには、4〜100メツ
シユの粗粒の低軟化点およ)び、又は高軟化点ガラス粉
末を使用すればよい。尚、粗粒の着色ガラス粉末の使用
量は、既述の通り、ガラス粉末は20メツシユ以下の粉
末を80%以上占めるようにすることが望ましいため、
粉末全量に対し20%以下に止めておくことが好ましい
Cr=03, CuO, Mn0z...1% or less CoO...3% or less FeO, Fe3O4, FezOz ''10% or less In addition, to form a spotted colored pattern, coarse grains of 4 to 100 meshes are required. It is sufficient to use a glass powder with a low softening point) or a high softening point.The amount of coarse colored glass powder to be used is as described above. Since it is desirable to have at least
It is preferable to limit the amount to 20% or less based on the total amount of powder.

本発明の結晶化ガラス材を製造するには、以上説明した
混合粉末(着色混合粉末、添加混合粉末を含む。)によ
って、まずガラス粉末成形体を成形する。
To produce the crystallized glass material of the present invention, first, a glass powder molded body is molded using the mixed powder (including colored mixed powder and additive mixed powder) described above.

ガラス粉末成形体の成形方法としては、例えば第1図に
示すように、成形型1 (金型)に混合粉末2を入れた
後、上型3を嵌入し、常温で加圧成形する方法(常温加
圧成形法)、該混合粉末2を低軟化点ガラス粉末の軟化
点以上でかつ同粉末の結晶化開始温度以下の温度(以下
、緻密化温度という。〉で加熱すると共に加圧成形する
方法(高温加圧成形法)がある。ガラス粉末成形体は成
形後、成形型から取り出され、熱処理炉に装入され、後
述の熱処理に供される。尚、成形後、成形型に入れたま
ま熱処理を行うこともできるが、取り扱いが煩雑となり
、成形型も耐熱性の良好なものが必要となる。
As shown in FIG. 1, a method for forming a glass powder compact is, for example, a method in which a mixed powder 2 is put into a mold 1 (mold), an upper mold 3 is fitted therein, and the molded body is press-molded at room temperature ( The mixed powder 2 is heated at a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the same powder (hereinafter referred to as the densification temperature), and is then press-molded. There is a method (high-temperature pressure molding method).After molding, the glass powder molded body is taken out from the mold, charged into a heat treatment furnace, and subjected to the heat treatment described below. Although heat treatment can be performed as is, handling becomes complicated and a mold with good heat resistance is required.

常温加圧成形法による場合、通常、粉末同士が接触する
程度(相対密度で50%以上が望ましい。
In the case of cold press molding, the powders are usually in contact with each other (relative density of 50% or more is desirable).

)に加圧され、また取扱い上の強度(曲げ強度10kg
 f / c+11以上が望ましい。)の確保や成形性
の向上のため、混合粉末にバインダが数%添加混合され
る。大形の成形体を得る場合は、強度確保のためバイン
ダの添加は必須となる。バインダとしては有機系のもの
、例えばポリビニルアルコール(PVA)が通常使用さ
れる。
) and handling strength (bending strength 10kg)
f/c+11 or more is desirable. ) and to improve moldability, a few percent of binder is added to the mixed powder. When obtaining a large molded body, it is essential to add a binder to ensure strength. Organic binders, such as polyvinyl alcohol (PVA), are usually used.

常温で加圧成形されたガラス粉末成形体は、第2図中の
実線で示すような熱処理に供される。
The glass powder compact formed under pressure at room temperature is subjected to heat treatment as shown by the solid line in FIG.

C区間はバインダ中の水分、有機溶媒を排除するための
乾燥区間である。
Section C is a drying section for eliminating moisture and organic solvent in the binder.

b区間は脱バインダ区間であり、300〜400°Cに
保持することによって、バインダの高分子成分を分解し
、ガス化して成形体外へ排出する。成形体中にバインダ
が残留すると、爾後の熱処理区間で膨れや割れが発生し
たり、製品物性を低下させるため、バインダはほぼ完全
に除去する必要がある。
Section b is a binder removal section, and by maintaining the temperature at 300 to 400°C, the polymer component of the binder is decomposed, gasified, and discharged out of the molded body. If the binder remains in the molded article, it may cause blistering or cracking in the subsequent heat treatment section or deteriorate the physical properties of the product, so it is necessary to remove the binder almost completely.

C区間は緻密化区間であり、緻密化温度(通常、600
〜800’C)で低軟化点ガラス粉末同士が軟化融着す
ると共に高軟化点ガラス粉末に付着ないし粒子表面に融
着する。同図ではCは連続的な昇温状態として示されて
いるが、緻密化温度範囲のある温度で保持して十分に軟
化融着させた後、次の区間へ移行してもよい。
Section C is a densification section, where the densification temperature (usually 600
~800'C), the low softening point glass powders soften and fuse together, and also adhere to the high softening point glass powder or fuse to the particle surface. In the figure, C is shown as a continuous temperature increase state, but it may be held at a certain temperature in the densification temperature range to sufficiently soften and fuse, and then move to the next section.

d区間は結晶化区間であり、高軟化点ガラス粉末の軟化
点以上の温度(以下、結晶化温度という。
The d section is a crystallization section, where the temperature is higher than the softening point of the high softening point glass powder (hereinafter referred to as crystallization temperature).

)に保持して高軟化点ガラス粉末を軟化すると共に既に
軟化している低軟化点ガラス粉末との融着を促進させ、
低軟化点ガラス粉末同士が軟化融着した部分や低軟化点
ガラス粉末と高軟化点ガラス粉末とが融着した部分さら
に軟化した高軟化点ガラス粉末自体を結晶化させる。尚
、結晶化温度を高軟化点ガラス粉末の軟化点から著しく
高温側に設定すると結晶化速度が低下し、ガラス粉末成
形体に形削れが生じ易くなるので、結晶化温度は高軟化
点ガラス粉末の軟化点から200 ’C程度高温範囲内
(通常、800〜1000°Cの間)に設定するのがよ
い。
) to soften the high softening point glass powder and promote fusion with the already softened low softening point glass powder,
A portion where low softening point glass powders are softened and fused together, a portion where a low softening point glass powder and a high softening point glass powder are fused together, and the softened high softening point glass powder itself is crystallized. In addition, if the crystallization temperature is set significantly higher than the softening point of the high softening point glass powder, the crystallization rate will decrease and the glass powder compact will be more likely to be deformed. It is preferable to set the temperature within a high temperature range of about 200'C from the softening point of (usually between 800 and 1000C).

C区間は結晶化後の徐冷区間である。Section C is a slow cooling section after crystallization.

高温加圧成形法によれば緻密化温度で成形型内のガラス
粉末を加圧するので、バインダを一切使用することなく
、低軟化点ガラス粉末同士が軟化融着すると共に高軟化
点ガラス粉末に付着ないし融着し、単独で取り扱い可能
な相対密度50%以上、曲げ強度10 kg f / 
c4以上のガラス粉末成形体が容易に得られる。この場
合、加圧成形温度に急速加熱すればよく、成形時間もご
く短時間で(数分程度)でよい。
According to the high-temperature pressure molding method, the glass powder in the mold is pressurized at the densification temperature, so the low softening point glass powders soften and fuse together and adhere to the high softening point glass powder without using any binder. Relative density: 50% or more, bending strength: 10 kg f/
A glass powder compact of c4 or higher can be easily obtained. In this case, it is sufficient to rapidly heat the material to the pressure molding temperature, and the molding time may be very short (about several minutes).

加圧成形後、ガラス粉末成形体は、成形型から取り出さ
れ、熱処理炉に速やかに装入されるが、−旦、常温まで
冷却した場合は第2図中の破線で示すように、C区間の
緻密化温度に急速加熱して以後の熱処理を行うことがで
き、常温加圧成形法において必要とされるa −b区間
の加熱を省略することができる。a −b区間は通常長
時間を要するため、高温加圧成形法は、生産性に極めて
優れる。例えば、700 cm角、20〜30ffII
11厚の板状結晶化ガラス材を得るのにa −b区間は
70〜80時間必要であり、たとえガラス粉末成形体を
熱処理前に予め乾燥しておいたとしても、脱バインダの
ため40〜50時間の加熱を要する。
After pressure molding, the glass powder molded body is taken out from the mold and promptly charged into a heat treatment furnace. The subsequent heat treatment can be performed by rapid heating to the densification temperature of , and the heating in the a-b interval required in the room temperature pressing method can be omitted. Since the section a-b usually takes a long time, the high-temperature press molding method has extremely high productivity. For example, 700 cm square, 20-30ffII
It takes 70 to 80 hours for the a-b section to obtain a plate-shaped crystallized glass material with a thickness of 11. Even if the glass powder molded body is dried in advance before heat treatment, it takes 40 to 80 hours to remove the binder. Requires heating for 50 hours.

高温加圧成形法において、混合粉末の加熱成形方法とし
ては、常温の成形型に常温の混合粉末を入れ、成形型ご
と所期の温度に加熱した後、5 kgfoct以上の圧
力で加圧成形する方法が一般的である。この場合、通常
、成形型に備えられたヒータにより、あるいは成形型ご
と加熱炉に入れて加熱される。この他、種々の加熱成形
方法を採ることができる。例えば、 ■ 所定温度に加熱された混合粉末を常温の成形型に入
れて加圧成形する方法。
In the high-temperature pressure molding method, the mixed powder is heated and molded by putting the mixed powder at room temperature into a mold at room temperature, heating the mold together to the desired temperature, and then pressing at a pressure of 5 kg or more. The method is common. In this case, the mold is usually heated by a heater provided in the mold or by placing the mold together in a heating furnace. In addition, various heat forming methods can be used. For example, (1) A method in which a mixed powder heated to a predetermined temperature is placed in a mold at room temperature and pressure-molded.

■ 所定温度に加熱した成形型に常温の混合粉末を入れ
、成形型の保有する熱によって加熱すると共に加圧成形
する方法。
■ A method in which mixed powder at room temperature is placed in a mold heated to a predetermined temperature, and the powder is heated and pressurized using the heat contained in the mold.

■ 常温の成形型に常温の混合粉末を入れ、その表面の
みを電熱輻射、赤外線放射、バーナによる直接加熱など
によって所定温度に加熱し加圧成形する方法。
■ A method in which room-temperature mixed powder is placed in a room-temperature mold, and only the surface of the powder is heated to a predetermined temperature using electric radiation, infrared radiation, direct heating with a burner, etc., and pressure molding is performed.

がある。また、一対の熱ロールによって常温の混合粉末
を所定温度に加熱すると共に加圧成形することも可能で
ある。尚、ここに常温とは低軟化点ガラス粉末の軟化温
度未満の温度で予熱された状態を含む。
There is. Further, it is also possible to heat the mixed powder at room temperature to a predetermined temperature using a pair of heating rolls and to press-form it. Note that the term "normal temperature" here includes a state where the glass powder is preheated to a temperature lower than the softening temperature of the low softening point glass powder.

成形型には、低軟化点ガラス粉末の粘着防止のため、ジ
ルコンサイド、黒鉛等の塗型剤やセラミック粉末等をコ
ーティングしたり、セラミックシートを被着するなどの
処理を施しておくことが望ましい。
In order to prevent the low softening point glass powder from sticking, the mold should preferably be coated with a coating agent such as zirconside or graphite or ceramic powder, or coated with a ceramic sheet. .

次に具体的実施例について説明する。Next, specific examples will be described.

(1)第1表に示した組成、粒度の各種ガラス粉末を調
整した。
(1) Various glass powders having the composition and particle size shown in Table 1 were prepared.

第1表 (2)第1表のガラス粉末を第2表の配合によって混合
粉末を調整し、同表の成形条件によって350 X35
0 ff1ff+(厚さ20〜25M)の板状ガラス粉
末成形体を製造した。尚、同表中Nα1は常温加圧成形
法によるもの、Na2は高温加圧成形法によるものであ
る。バインダとしてはPVAの3%水溶液を混合粉末重
量に対して12%使用した。
Table 1 (2) A mixed powder was prepared from the glass powder in Table 1 according to the formulation in Table 2, and according to the molding conditions in the same table, 350 x 35
A plate-shaped glass powder compact of 0 ff1ff+ (thickness 20 to 25 M) was manufactured. In the same table, Nα1 is obtained by the cold pressure molding method, and Na2 is obtained by the high temperature pressure molding method. As a binder, a 3% aqueous solution of PVA was used in an amount of 12% based on the weight of the mixed powder.

第2表 (注)A・・・低軟化点ガラス粉末 B・・・高軟化点ガラス粉末 (3)成形後、ガラス粉末成形体を成形用金型から取り
出して加熱炉に装入し、下記の熱処理に供した。
Table 2 (Note) A...Low softening point glass powder B...High softening point glass powder (3) After molding, the glass powder compact is taken out from the mold and charged into a heating furnace, and the following It was subjected to heat treatment.

〈階1〉 a 乾燥 ステップ加熱によって行った。<Floor 1> a Drying This was done by step heating.

40℃X10Hr、 80°CX 1011r、 60
″(x5Hr80°CX10Hr、 120℃X5Hr
b 脱バインダ 120°Cより20℃/ Hrで400°Cに昇温し3
0Hr保持した。
40℃X10Hr, 80℃X 1011r, 60
''(x5Hr80°CX10Hr, 120℃X5Hr
b Binder removal from 120°C to 400°C at 20°C/Hr 3
It was maintained for 0 hours.

400″Cより40°C/Hrで600°Cに昇温し、
成形体の温度を均一化するため2Hr保持した。
Raise the temperature from 400″C to 600°C at 40°C/Hr,
The temperature of the molded body was maintained for 2 hours to make it uniform.

C緻密化および結晶化 600℃より30°C/Hrで900°Cに昇温し、5
Hr保持した。その後、徐冷した。
C densification and crystallization The temperature was raised from 600°C to 900°C at 30°C/Hr, and
Hr was maintained. Then, it was slowly cooled.

くNα2〉 成形後、成形用金型から取り出した成形体を速やかに6
00°Cに保持した加熱炉に装入し、2時間保持した後
、30°C/Hrで850°Cに昇温し、10時間保持
して徐冷した。
Nα2〉 After molding, the molded product taken out from the mold is immediately heated to 6
The sample was placed in a heating furnace maintained at 00°C, held for 2 hours, then heated to 850°C at 30°C/Hr, held for 10 hours, and slowly cooled.

(4)得られた結晶化ガラス材の断面を肉眼で観察した
結果、随1およびNα2とも気泡や気孔は皆無であった
。また、曲げ強度を測定したところ、Na 1は830
 kgf/c+d、 No、2は790 kgf/cf
flであり、従来の集積法によるものが前記公報によれ
ば450 kgf/cd程度であるのに比べて、著しい
強度の向上が認められた。また、吸水率を調べた結果、
両者ともほぼ0であった。また、特性X線による粉末X
線回折によって析出結晶を固定したところ、主としてウ
オラストナイト(CaO−5iO2)品であった。その
他にクリストバライト(Sing)品やジオプサイド(
MgO−CaO・2Si(h)品の析出も若干見られた
(4) Visual observation of the cross section of the obtained crystallized glass material revealed that there were no bubbles or pores in both No. 1 and Nα2. In addition, when the bending strength was measured, Na 1 was 830
kgf/c+d, No. 2 is 790 kgf/cf
According to the above-mentioned publication, the strength was approximately 450 kgf/cd using the conventional accumulation method, but a significant improvement in strength was observed. In addition, as a result of examining the water absorption rate,
Both values were approximately 0. In addition, powder X using characteristic X-rays
When the precipitated crystals were fixed by line diffraction, they were found to be mainly wollastonite (CaO-5iO2). In addition, cristobalite (Sing) products and diopside (
Some precipitation of MgO-CaO.2Si(h) was also observed.

(発明の効果) 以上説明した通り、本発明の結晶化ガラス材は、低軟化
点ガラス粉末と高軟化点ガラス粉末とが低軟化点ガラス
粉末の軟化融着後に融着一体化し、結晶化したものであ
るの)ら、低軟化点ガラス粉末同士の軟化融着時にガラ
ス粉末の間に存在した空気は未軟化状態の高軟化点ガラ
ス粉末表面に沿って外部に排出され、組織中に気孔や気
泡がほとんど存在しないものとなる。
(Effects of the Invention) As explained above, in the crystallized glass material of the present invention, the low softening point glass powder and the high softening point glass powder are fused and integrated after the low softening point glass powder is softened and fused, and crystallized. When the low softening point glass powders are softened and fused together, the air that exists between the glass powders is discharged to the outside along the unsoftened high softening point glass powder surface, creating pores and There will be almost no bubbles.

また、高軟化点ガラス粉末は軟化と共に結晶化が開始す
る組成としているので、高軟化点ガラス粉末の軟化点以
上の温度で結晶化熱処理することにより、ガラス質のま
まで残存するガラス粉末部分がほとんどなく、強度およ
びその均一性の向上が著しい。
In addition, since the high softening point glass powder has a composition that begins to crystallize as it softens, by performing crystallization heat treatment at a temperature higher than the softening point of the high softening point glass powder, the glass powder portion that remains glassy can be removed. The improvement in strength and uniformity is remarkable.

一方、本発明の製造方法によれば、バインダを一切使用
することなく、単独で取り扱いの可能な強度の大きいガ
ラス粉末成形体を容易に得ることができるので、熱処理
に際して長時間の加熱を要する脱バインダが不要となり
生産性に極めて優れる。しかも、ガラス粉末成形体の結
晶化を高軟化点ガラス粉末の軟化以上の温度で行っても
、低軟化点ガラス粉末はすでに軟化融着状態にあり、高
軟化点ガラス粉末は軟化と共に低軟化点ガラス粉末と融
着して結晶化し、高温の結晶化熱処理に際しても成形体
の形状が保持され形部れが生じにくい。このため、成形
型ごと熱処理に供する必要がなく、生産性の向上、設備
コストの低減を図ることができる。
On the other hand, according to the manufacturing method of the present invention, it is possible to easily obtain a strong glass powder molded body that can be handled independently without using any binder. No binder is required, resulting in extremely high productivity. Moreover, even if the glass powder molded body is crystallized at a temperature higher than the softening temperature of the high softening point glass powder, the low softening point glass powder is already in a softened and fused state, and the high softening point glass powder softens and the low softening point It fuses with the glass powder and crystallizes, and even during high-temperature crystallization heat treatment, the shape of the molded body is maintained and deformation is less likely to occur. Therefore, it is not necessary to subject the entire mold to heat treatment, and it is possible to improve productivity and reduce equipment costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガラス粉末成形体の成形要領を示す成形型の断
面図、第2図は本発明の結晶化ガラス材の熱処理の一例
を示す熱処理線図である。
FIG. 1 is a sectional view of a mold showing the procedure for forming a glass powder compact, and FIG. 2 is a heat treatment diagram showing an example of the heat treatment of the crystallized glass material of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)低軟化点ガラス粉末と高軟化点ガラス粉末とが低
軟化点ガラス粉末の軟化融着後に融着一体化し、高軟化
点ガラス粉末の軟化点以上の温度で結晶化してなる結晶
化ガラス材であって、前記低軟化点ガラス粉末は主成分
が重量%でSiO_2:65〜80%、CaO:5〜1
5%Al_2O_3:10%以下、Na_2O+K_2
O:10〜20%MgO:10%以下 であり、前記高軟化点ガラス粉末は主成分が重量%で SiO_2:50〜65%、CaO:15〜35%Al
_2O_3:10%以下、Na_2O+K_2O:2〜
10%であることを特徴とする結晶化ガラス材。
(1) Crystallized glass formed by fusing and integrating a low softening point glass powder and a high softening point glass powder after softening and fusing the low softening point glass powder, and crystallizing at a temperature higher than the softening point of the high softening point glass powder. The main components of the low softening point glass powder are SiO_2: 65-80% and CaO: 5-1% by weight.
5% Al_2O_3: 10% or less, Na_2O+K_2
O: 10-20% MgO: 10% or less, and the main components of the high softening point glass powder are SiO_2: 50-65%, CaO: 15-35% Al
_2O_3: 10% or less, Na_2O+K_2O: 2~
10% crystallized glass material.
(2)主成分が重量%で SiO_2:65〜80%、CaO:5〜15%Al_
2O_3:10%以下、Na_2O+K_2O:10〜
20%MgO:10%以下 である低軟化点ガラス粉末と、主成分が重量%で SiO_2:50〜65%、CaO:15〜35%Al
_2O_3:10%以下、Na_2O+K_2O:2〜
10%である高軟化点ガラス粉末との混合粉末を低軟化
点ガラス粉末の軟化点以上でかつ低軟化点ガラス粉末の
結晶化開始温度以下の温度で加圧成形し、高軟化点ガラ
ス粉末の回りに低軟化点ガラス粉末を軟化付着ないし融
着させたガラス粉末成形体を得、該成形体を高軟化点ガ
ラス粉末の軟化点以上の温度に加熱して結晶化すること
を特徴とする結晶化ガラス材の製造方法。
(2) Main components are SiO_2: 65-80%, CaO: 5-15% Al_
2O_3: 10% or less, Na_2O+K_2O: 10~
20% MgO: Low softening point glass powder which is 10% or less, and the main components are SiO_2: 50-65%, CaO: 15-35% Al
_2O_3: 10% or less, Na_2O+K_2O: 2~
A mixed powder with 10% high softening point glass powder is pressure-molded at a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the low softening point glass powder. A crystallization process characterized by obtaining a glass powder molded body around which a low softening point glass powder is softened and adhered or fused, and crystallizing the molded body by heating the molded body to a temperature equal to or higher than the softening point of the high softening point glass powder. A method for producing glass-cured material.
JP27400088A 1988-10-28 1988-10-28 Crystallized glass material and production thereof Pending JPH02120254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27400088A JPH02120254A (en) 1988-10-28 1988-10-28 Crystallized glass material and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27400088A JPH02120254A (en) 1988-10-28 1988-10-28 Crystallized glass material and production thereof

Publications (1)

Publication Number Publication Date
JPH02120254A true JPH02120254A (en) 1990-05-08

Family

ID=17535554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27400088A Pending JPH02120254A (en) 1988-10-28 1988-10-28 Crystallized glass material and production thereof

Country Status (1)

Country Link
JP (1) JPH02120254A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455910A (en) * 2018-12-12 2019-03-12 惠州市彩玉微晶新材有限公司 A kind of devitrified glass de-soak and floral designs customization technique
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710918B1 (en) 2018-02-19 2020-07-14 Owens-Brockway Glass Container Inc. Method of manufacturing a hollow glass article having a container shape
CN109455910A (en) * 2018-12-12 2019-03-12 惠州市彩玉微晶新材有限公司 A kind of devitrified glass de-soak and floral designs customization technique

Similar Documents

Publication Publication Date Title
US4196004A (en) Corrosion resistant glasses that contain chemical additives for application over metal substrates
US4552915A (en) Low-temperature sintered porcelain composition suitable for forming
JPH02120254A (en) Crystallized glass material and production thereof
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPS63156024A (en) Production of glass ceramic article
KR970004970B1 (en) Crystallized glass articles having an irregular rough surface pattern and a method for producing the same
JPH0218338A (en) Crystallized glass material and its production
JPH0218337A (en) Crystallized glass material and its production
JPH0436098B2 (en)
JPH0575701B2 (en)
JPS6317238A (en) Production of crystallized glass
JPS63129025A (en) Production of glass ceramic article
DE1596839C (en) Process for the production of shaped bodies made of glasses at a temperature below the usual melting temperature
JPH0292835A (en) Production of crystallized glass material
JPS6374936A (en) Crystallized glass and production thereof
JPH0575702B2 (en)
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPS62143842A (en) Crystallized glass and production thereof
JPH02167832A (en) Mold-releasing material for glass powder forming mold
JPH01252551A (en) Production of crystallized glass containing dot pattern
JPS5945941A (en) Formed article of crystallized glass and its manufacture
JPH02192424A (en) Mold release material for glass powder molding mold
JPS63170230A (en) Production of plate crystal glass
JPS63144142A (en) Crystallized glass and production thereof
JPH0193440A (en) Production of crystallized glass having color pattern