JPH0218338A - Crystallized glass material and its production - Google Patents

Crystallized glass material and its production

Info

Publication number
JPH0218338A
JPH0218338A JP16634288A JP16634288A JPH0218338A JP H0218338 A JPH0218338 A JP H0218338A JP 16634288 A JP16634288 A JP 16634288A JP 16634288 A JP16634288 A JP 16634288A JP H0218338 A JPH0218338 A JP H0218338A
Authority
JP
Japan
Prior art keywords
softening point
glass powder
powder
point glass
low softening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16634288A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16634288A priority Critical patent/JPH0218338A/en
Publication of JPH0218338A publication Critical patent/JPH0218338A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To eliminate the bubbles and pores in glass by subjecting a powder mixture composed of low softening point glass powder specified in SiO2, CaO, etc., and high softening point glass powder contg. quartz to pressurized molding and heating under prescribed conditions, thereby crystallizing the mixture. CONSTITUTION:The low softening point glass powder consisting, by weight %, of 65-80% SiO2, 5-10% CaO, 10-20% Na2O+K2O and 2-8% MgO is prepd. The high softening point glass powder is prepd. from the high softening point fusible glass powder consisting of 65-80% SiO2, <=25% Al2O3, and 5-15% Na2O+ K2O is prepd. and quartz powder. This high softening point glass powder and the above-mentioned low softening point glass powder are mixed. The powder mixture is then subjected to the pressurized molding at a prescribed temp. The molding fused with the low softening point glass around the high softening point glass is obtd. This molding is heated to the temp. within the prescribed temp. range and is crystallized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建材や壁材等として使用される結晶化ガラス
材及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystallized glass material used as a building material, wall material, etc., and a method for manufacturing the same.

(従来の技術) 従来、結晶化ガラス材の好適な製造方法として、特開昭
48−78217号公報に開示されているように、特定
組成のガラス粉粒体を耐火性成形型に集積し、成形型ご
とガラス軟化点より高温に加熱し、ガラス粉粒体を軟化
させて融着すると共に結晶化する方法(以下、集積法と
いう。)がある。
(Prior Art) Conventionally, as disclosed in Japanese Unexamined Patent Application Publication No. 48-78217, a suitable method for manufacturing crystallized glass materials involves accumulating glass powder particles of a specific composition in a fire-resistant mold, There is a method (hereinafter referred to as the accumulation method) in which the entire mold is heated to a temperature higher than the glass softening point to soften and fuse the glass powder and crystallize it.

この方法によると、基地形成用のガラス粉粒体に適宜の
着色成分を含んだ模様形成用のガラス粉粒体を添加して
、これを集積し、熱処理することにより、任意の色模様
を有する結晶化ガラス材が容易に得られるという利点が
ある。
According to this method, a pattern-forming glass powder containing an appropriate coloring component is added to a base-forming glass powder, which is accumulated and heat-treated to form an arbitrary color pattern. It has the advantage that crystallized glass material can be easily obtained.

(発明が解決しようとする課題) しかしながら、集積法によると、熱処理に際し、ガラス
粉粒体がほぼ同時に軟化融着するため、粉粒体の間に存
在した空気は軟化融着体中に閉じ込められ、気泡となっ
て残留する。この気泡は、粉粒体の粒子が小さいほど発
生量が多く、また相互に凝集して大きな気孔となる。
(Problem to be solved by the invention) However, according to the accumulation method, the glass powder particles are softened and fused almost simultaneously during heat treatment, so the air existing between the powder particles is trapped in the softened and fused body. , and remain as bubbles. The smaller the particles of the powder or granular material, the more these bubbles are generated, and they aggregate together to form large pores.

軟化融着体中の気泡や気孔は、熱処理中に膨張するため
、結晶化ガラス材に膨れや割れを発生させる要因となる
。また、結晶化ガラス材は、通常その表面を平滑に研摩
して板材として使用することが多いため、ガラス材中に
気泡や気孔が多数存在すると、研摩後の表面に気泡や気
孔に起因した凹みが多数露呈し、製品欠陥となる。また
、気泡や気孔は、部材に作用する応力を負担することが
できず、強度の低下の要因となる。
Bubbles and pores in the softened and fused body expand during heat treatment, which causes blisters and cracks in the crystallized glass material. In addition, crystallized glass materials are often used as plate materials after the surface is polished smooth, so if there are many air bubbles or pores in the glass material, dents due to the air bubbles or pores may appear on the surface after polishing. A large number of defects are exposed, resulting in product defects. In addition, air bubbles and pores cannot bear the stress acting on the member, which causes a decrease in strength.

また、集積法は、ガラス粉粒体の集積体を軟化すると共
に結晶化するものであるから、熱処理時に集積体の軟化
による形崩れを防止しなければならず、このため成形型
ごと熱処理に供しなければならない。すなわち、ガラス
粉粒体の集積から熱処理完了まで成形型単位で取り扱わ
なければならず、取り扱いが煩雑であり、生産性に劣る
。また、高価な耐熱性成形型を多数準備しなければなら
ず設備コストが高くなる。
In addition, since the accumulation method softens and crystallizes the aggregate of glass powder particles, it is necessary to prevent the aggregate from deforming due to softening during heat treatment, and for this reason, the entire mold is subjected to heat treatment. There must be. That is, the process from the accumulation of the glass powder to the completion of the heat treatment must be handled on a mold-by-molding mold basis, resulting in complicated handling and poor productivity. Furthermore, a large number of expensive heat-resistant molds must be prepared, which increases equipment costs.

本発明はかかる問題点に鑑みなされたもので、色模様を
容易に付けられ、かつ気泡の含有を可及的に抑制するこ
とができる結晶化ガラス材および成形型ごとの取り扱い
が不要な同ガラス材の製造方法の提供を目的とする。
The present invention was made in view of the above problems, and includes a crystallized glass material that can easily be colored and patterned and can suppress the inclusion of air bubbles as much as possible, and a crystallized glass material that does not require the handling of each mold. The purpose is to provide a method for manufacturing materials.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の結晶化ガラ
ス材は、低軟化点ガラス粉末と高軟化点ガラス粉末とが
低軟化点ガラス粉末の軟化融着後に融着一体化し、結晶
化してなる結晶化ガラス材であって、 前記低軟化点ガラス粉末は主成分が重量%で5in2:
 65〜80%、  CaO: 5〜10%NatO+
KzO: 10〜20%、MgO22〜8%であり、 前記高軟化点ガラス粉末は主成分が重量%でSiO□:
65〜80%、 Al2O3:25%以下NaxO+K
tO:  5〜15% である高軟化点融着性ガラス粉末と石英ガラス粉末とか
らなることを発明の構成とするものである。
(Means for Solving the Problems) In the crystallized glass material of the present invention, which has been made to achieve the above object, a low softening point glass powder and a high softening point glass powder are bonded together after softening and fusing of the low softening point glass powder. A crystallized glass material formed by fusion and integration and crystallization, wherein the main component of the low softening point glass powder is 5in2 by weight:
65-80%, CaO: 5-10%NatO+
KzO: 10-20%, MgO 22-8%, and the main component of the high softening point glass powder is SiO□:
65-80%, Al2O3: 25% or less NaxO+K
The structure of the invention is composed of a high softening point melting glass powder having a tO of 5 to 15% and a quartz glass powder.

また、その好適な製造方法として、主成分が重量%で Stow : 65〜80%、  CaO: 5〜10
%NatO+ KzO: 10〜20%、 MgO: 
2〜8%である低軟化点ガラス粉末と、主成分が重量%
でSiO□:65〜80%、 N2O2:25%以下N
a、O+にzo  7 5〜15% である高軟化点融着性ガラス粉末と石英ガラス粉末とか
らなる高軟化点ガラス粉末との混合粉末を低軟化点ガラ
ス粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化
開始温度以下の温度で加圧成形し、高軟化点ガラス粉末
の回りに低軟化点ガラス粉末を軟化付着ないし融着させ
たガラス粉末成形体を得、該成形体を低軟化点ガラス粉
末の結晶化開始温度以上でかつ高軟化点融着性ガラス粉
末の軟化点以下の温度に加熱して結晶化することを発明
の構成とするものである。
In addition, as a preferred manufacturing method, the main components are Stow: 65-80%, CaO: 5-10% by weight.
%NatO+ KzO: 10-20%, MgO:
Low softening point glass powder which is 2-8% and main component is wt%
SiO□: 65-80%, N2O2: 25% or less N
a, a mixed powder of a high softening point glass powder consisting of a high softening point fusible glass powder having 5 to 15% of zo 7 to O+ and a high softening point glass powder consisting of a quartz glass powder at a temperature equal to or higher than the softening point of the low softening point glass powder and having low softening temperature. Pressure molding is performed at a temperature below the crystallization start temperature of point glass powder to obtain a glass powder molded body in which low softening point glass powder is softened and adhered or fused around high softening point glass powder. The structure of the invention is to perform crystallization by heating to a temperature higher than the crystallization start temperature of the softening point glass powder and lower than the softening point of the high softening point fusion glass powder.

(作 用) 本発明の結晶化ガラス材は、低軟化点ガラス粉末と高軟
化点ガラス粉末とが低軟化点ガラス粉末の軟化融着後に
融着一体化し、結晶化したものであるから、低軟化点ガ
ラス粉末同士の軟化融着時に、ガラス粉末の間に存在し
た空気は未軟化状態の高軟化点ガラス粉末の粒子表面に
沿ってガラス粉末の外部へ排出される。このため、両ガ
ラス粉末の融着体中には気泡が残留し難く、その結果、
本発明の結晶化ガラス材中には、気泡や気孔が可及的に
排除されたものとする。
(Function) The crystallized glass material of the present invention has a low softening point glass powder and a high softening point glass powder that are fused and crystallized after softening and fusing the low softening point glass powder. When the softening point glass powders are softened and fused together, the air existing between the glass powders is discharged to the outside of the glass powder along the particle surface of the unsoftened high softening point glass powder. Therefore, it is difficult for air bubbles to remain in the fused body of both glass powders, and as a result,
It is assumed that air bubbles and pores are eliminated as much as possible in the crystallized glass material of the present invention.

本発明で使用する低軟化点ガラス粉末は通常のソーダ石
灰ガラスの組成であり、一方、高軟化点ガラス粉末の主
体となる高軟化点融着性ガラス粉末は、5iOz含有量
を低軟化点ガラス粉末と同範囲としたものであるので、
低軟化点ガラス粉末の軟化端以上がかつ同粉末の結晶化
開始温度以下の温度でも軟化融着した低軟化点ガラス粉
末から未軟化状態の高軟化点融着性ガラス粉末へNaや
に等の網目修飾イオンの拡散移行が起こり易い。その結
果、高軟化点融着性ガラス粉末の成分拡散域は軟化温度
が降下し、軟化融着した低軟化点ガラス粉末と高軟化点
ガラス粉末とは融着一体化し易い。
The low softening point glass powder used in the present invention has the composition of ordinary soda lime glass, while the high softening point fusible glass powder, which is the main component of the high softening point glass powder, has a 5iOz content of low softening point glass. Since it is in the same range as powder,
From a low softening point glass powder that is softened and fused even at a temperature above the softening edge of the low softening point glass powder and below the crystallization start temperature of the same powder, to an unsoftened high softening point fusion glass powder, Na, etc. Diffusion migration of network-modifying ions is likely to occur. As a result, the softening temperature decreases in the component diffusion region of the high softening point fusible glass powder, and the softened and fused low softening point glass powder and high softening point glass powder are easily fused and integrated.

前記低軟化点および高軟化点融着性ガラス粉末の主成分
限定理由を下記に示す。単位は重量%である。
The reasons for limiting the main components of the low softening point and high softening point fusible glass powders are shown below. The unit is weight %.

A、低軟化点ガラス粉末 SiO□:65〜80% 65%未満ではSiO□結晶は析出し難く、一方80%
を超えると軟化点が高くなり、熱処理において高温加熱
が必要となり、製造上好ましくない。
A. Low softening point glass powder SiO□: 65 to 80% If it is less than 65%, SiO□ crystals are difficult to precipitate, but on the other hand, if it is 80%
If it exceeds 100%, the softening point becomes high and high temperature heating is required in heat treatment, which is not preferable in terms of manufacturing.

CaO:5〜10% 5%未満では軟化点が高くなり、一方10%を超えると
SiO□結晶が析出しにくくなる。
CaO: 5-10% If it is less than 5%, the softening point will be high, while if it exceeds 10%, SiO□ crystals will be difficult to precipitate.

NazO+ MgO: 10〜20% 10%未満では軟化点が高くなり、一方20%を超える
とSi0g結晶が析出しにくくなる。
NazO+MgO: 10-20% If it is less than 10%, the softening point will be high, while if it exceeds 20%, Si0g crystals will be difficult to precipitate.

MgO:2〜8% 2%未満ではSi0g結晶の成長が速くなり過ぎ、十分
な軟化融着による緻密化が行われる前に結晶化が開始す
ることになる。一方8%を越えると5in2結晶が析出
しにくくなる。
MgO: 2 to 8% If it is less than 2%, Si0g crystals will grow too quickly and crystallization will start before densification by sufficient softening and fusion is achieved. On the other hand, if it exceeds 8%, it becomes difficult for 5in2 crystals to precipitate.

B、高軟化点融着性ガラス粉末 5iOt: 65〜80% 65%未満ではSiO□結晶は析出し難く、一方80%
を超えると軟化点が高くなり過ぎ、低軟化点ガラス粉末
との成分の拡散が起こりにくくなる。
B. High softening point fusible glass powder 5iOt: 65-80% At less than 65%, SiO□ crystals are difficult to precipitate, while at 80%
If it exceeds this, the softening point will become too high, making it difficult for the components to diffuse with the low softening point glass powder.

N、o、  :25%以下 N2O3はガラス軟化点を上昇させる作用をなすが、2
5%を越えるとSiO□結晶が析出しに(くなる。
N, o,: 25% or less N2O3 has the effect of increasing the glass softening point, but 2
If it exceeds 5%, SiO□ crystals will precipitate.

Na2O+K2O:5〜15% 5%未満では軟化点が高くなり過ぎ、低軟化点ガラス粉
末との成分の拡散が起こりにくくなる。一方15%を越
えると軟化点が低くなり過ぎ、軟化温度が低軟化点ガラ
ス粉末の結晶化開始温度以下になるおそれが出てくる。
Na2O+K2O: 5 to 15% If it is less than 5%, the softening point becomes too high and diffusion of the components with the low softening point glass powder becomes difficult. On the other hand, if it exceeds 15%, the softening point will become too low, and there is a possibility that the softening temperature will fall below the crystallization start temperature of the low softening point glass powder.

低軟化点および高軟化点融着性ガラス粉末の主成分は以
上の通りであるが、その他、着色剤や物性調整のためガ
ラス工業分野で通常添加される成分の含有が許容される
The main components of the low softening point and high softening point fusible glass powders are as described above, but in addition, coloring agents and other components commonly added in the glass industry for adjusting physical properties may be included.

高軟化点ガラス粉末には石英ガラス粉末が含まれる。石
英ガラス粉末は、低軟化点ガラス粉末と成分の拡散移行
が起こりにくく融着し難いが、線膨張率が0.3〜0.
5 Xl0−b/”Cであり、線膨張率が低軟化点ガラ
ス粉末に比べて1桁程度小さい。
High softening point glass powder includes quartz glass powder. Quartz glass powder is difficult to fuse with low softening point glass powder due to diffusion of components, but it has a coefficient of linear expansion of 0.3 to 0.
5 Xl0-b/''C, and the coefficient of linear expansion is about one order of magnitude smaller than that of low softening point glass powder.

このため、該石英ガラス粉末を添加しておくことにより
、結晶化後の冷却過程で結晶化ガラス材に圧縮応力を残
留させることができ、結晶化ガラス材を強化することが
できる。また、結晶化ガラス材自体の熱膨張率も低下さ
せることができるため、耐熱衝撃性に優れたものとなる
。尚、既述の通り、石英ガラス粉末は低軟化点ガラス粉
末と融着し難く、多量の添加は返って強度低下、吸水率
の上昇を招来するので、その添加量は高軟化点ガラス粉
末の全量に対して30重量%以下に止めておくのがよい
。もっとも、圧縮残留応力による有効な強化作用を得る
には1重量%以上添加することが望ましい。
Therefore, by adding the quartz glass powder, compressive stress can be left in the crystallized glass material during the cooling process after crystallization, and the crystallized glass material can be strengthened. Furthermore, since the coefficient of thermal expansion of the crystallized glass material itself can be lowered, it has excellent thermal shock resistance. As mentioned above, silica glass powder is difficult to fuse with low softening point glass powder, and adding a large amount will result in a decrease in strength and an increase in water absorption. It is preferable to limit the amount to 30% by weight or less based on the total amount. However, in order to obtain an effective reinforcing effect due to compressive residual stress, it is desirable to add 1% by weight or more.

また、本発明の製造方法によれば、前記高軟化点ガラス
粉末と低軟化点ガラス粉末との混合粉末を低軟化点ガラ
ス粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化
開始温度以下の温度で加圧するので、低軟化点ガラス粉
末は高軟化点ガラス粉末に隣接した状態で、軟化融着す
ると共に高軟化点ガラス粉末に付着する。この際、ガラ
ス粉末の間に存在した空気は、未軟化状態の高軟化点ガ
ラス粉末の表面を伝わって外部に排出される。また、加
熱温度が前記温度範囲で比較的高い場合、低軟化点ガラ
ス粉末の軟化融着部分と該部分が付着した高軟化点融着
性ガラス粉末表面との間で成分の拡散、移行が生じ、成
分拡散域が軟化して高軟化点融着性ガラス粉末と前記低
軟化点ガラス粉末の軟化融着部分とが融着する。
Further, according to the manufacturing method of the present invention, the mixed powder of the high softening point glass powder and the low softening point glass powder is prepared at a temperature higher than the softening point of the low softening point glass powder and lower than the crystallization start temperature of the low softening point glass powder. Since the pressure is applied at a temperature of , the low softening point glass powder is softened and fused in a state adjacent to the high softening point glass powder, and is attached to the high softening point glass powder. At this time, the air existing between the glass powders is discharged to the outside through the surface of the unsoftened high softening point glass powders. In addition, when the heating temperature is relatively high within the above temperature range, components diffuse and migrate between the softened and fused portion of the low softening point glass powder and the surface of the high softening point fused glass powder to which the portion is attached. , the component diffusion region is softened, and the high softening point fusible glass powder and the softened and fusible portion of the low softening point glass powder are fused together.

このようにして低軟化点ガラス粉末と高軟化点ガラス粉
末との混合粉末は付着ないし融着一体化し、緻密なガラ
ス粉末成形体となる。このガラス粉末成形体は取扱い上
必要とされる十分な強度を有し、単独で取り扱うことが
できる。
In this way, the mixed powder of the low softening point glass powder and the high softening point glass powder is adhered or fused to form a dense glass powder compact. This glass powder compact has sufficient strength required for handling and can be handled alone.

次に、ガラス粉末成形体を低軟化点ガラス粉末の結晶化
開始温度以上でかつ高軟化点融着性ガラス粉末の軟化点
以下の温度に加熱するので、昇温過程で低軟化点ガラス
粉末と高軟化点融着性ガラス粉末との融着が進行し、軟
化融着部分が拡大する。また、内部が未軟化状態の高軟
化点融着性ガラス粉末および石英ガラス粉末が骨材とし
ての役目を果たし、成形体の形状を保持した状態で、低
軟化点ガラス粉末同士の軟化融着した部分及び高軟化点
融着性ガラス粉末との成分拡散域の軟化融着部分に結晶
が析出し、成長する。
Next, the glass powder molded body is heated to a temperature above the crystallization start temperature of the low softening point glass powder and below the softening point of the high softening point fusible glass powder, so that the low softening point glass powder and Fusion with the high softening point melting glass powder progresses, and the softened and fused portion expands. In addition, the high softening point fusible glass powder and quartz glass powder whose interior is unsoftened serve as aggregates, and the low softening point glass powders are softened and fused together while maintaining the shape of the compact. Crystals precipitate and grow in the softened and fused portions of the component diffusion region and the high softening point fused glass powder.

従って、ガラス粉末成形体を混合粉末の加圧成形に要し
た成形型ごと結晶化熱処理に供する必要はなく、ガラス
粉末成形体を単独で取り扱うことができ、作業が容易で
生産性に優れる。また、高価な耐熱性成形型を多数準備
する必要がない。
Therefore, it is not necessary to subject the glass powder molded body to the crystallization heat treatment together with the mold required for pressure molding of the mixed powder, and the glass powder molded body can be handled independently, making the work easy and excellent in productivity. Further, there is no need to prepare a large number of expensive heat-resistant molds.

結晶化熱処理後、常温まで冷却されるが、この間、石英
ガラス粉末部分は基地に比べて熱膨張率が小さいので、
結晶化ガラスに圧縮応力が残留し、材質が強化される。
After the crystallization heat treatment, it is cooled to room temperature, but during this time, the quartz glass powder part has a smaller coefficient of thermal expansion than the base, so
Compressive stress remains in the crystallized glass, strengthening the material.

(実施例) 以下、本発明の結晶化ガラス材をその製造方法と共に説
明する。
(Example) Hereinafter, the crystallized glass material of the present invention will be explained along with its manufacturing method.

まず、本発明において使用するガラス粉末について説明
する。
First, the glass powder used in the present invention will be explained.

低軟化点ガラス粉末および高軟化点融着性ガラス粉末の
主成分については既述の通りであるが、後者はそのガラ
ス軟化点が800°C程度以上となるように成分を調整
することが望ましい。低軟化点ガラス粉末は、通常のソ
ーダ石灰ガラスの組成であり、軟化点が600〜750
°C1結晶化開始温度が800″C程度以下だからであ
る。
The main components of the low softening point glass powder and the high softening point fusible glass powder are as described above, but for the latter, it is desirable to adjust the components so that the glass softening point is about 800°C or higher. . The low softening point glass powder has the composition of normal soda lime glass and has a softening point of 600 to 750.
This is because the crystallization initiation temperature in °C1 is about 800''C or lower.

尚、ガラス粉末は、所期組成のガラスを溶製し、これを
水砕し、更に粉砕することによって得られるが、低軟化
点ガラス粉末原料としてはソーダ石灰ガラスのカレント
 (屑ガラス)を利用すればよく、また、高軟化点融着
性ガラス粉末についても、パーライト(真珠岩)を粉砕
したものを使用することができる。パーライトはN20
.を十数%含有しており、軟化点が900°C程度以上
あるうえ、骨材等として市場に多量に供給され、入手が
容易であり、経済性に優れる。
Glass powder can be obtained by melting glass of the desired composition, pulverizing it, and then crushing it, but soda lime glass current (waste glass) can be used as a raw material for low softening point glass powder. Furthermore, for the high softening point fusible glass powder, crushed pearlite can be used. Perlite is N20
.. It has a softening point of about 900°C or higher, is supplied in large quantities to the market as aggregate, etc., is easily available, and has excellent economic efficiency.

尚、天然に算出するパーライトは、層状構造をしており
、人工的に製造されたガラスとは成分が同一でも性質が
若干具なるが、本発明において、ガラスという場合はか
かるものも含む。パーライトは眉間に3〜5%の水分を
含んでいるが熱処理時に脱水される。また、同成分の人
ニガラスに比ぺて軟化点が高くなっている。
Naturally produced pearlite has a layered structure and has slightly different properties than artificially produced glass even though it has the same components, and in the present invention, the term "glass" includes such things. Perlite contains 3 to 5% water between the eyebrows, but it is dehydrated during heat treatment. Additionally, it has a higher softening point compared to the same ingredient as Nigarasu.

低軟化点および高軟化点ガラス粉末の粒度は、粒度が小
さいほど、またその量が多いほど低軟化点ガラス粉末同
士の軟化融着が容易となり、また高軟化点融着性ガラス
粉末との融着が容易となり、ひいてはガラス粉末成形体
の緻密化および結晶化が促進される。このため、ガラス
粉末の粒度は、200メツシユ以下の粉末を80%以上
(好ましくは90%以上)占めるようにしておくことが
望ましい。
Regarding the particle size of low softening point and high softening point glass powders, the smaller the particle size and the larger the amount, the easier the softening and fusion of low softening point glass powders with each other, and the easier the fusion with high softening point glass powder. This facilitates adhesion, and in turn promotes densification and crystallization of the glass powder compact. For this reason, it is desirable that the particle size of the glass powder is such that 80% or more (preferably 90% or more) of the glass powder has a particle size of 200 mesh or less.

尚、石英ガラス粉末は、粒度が粗くなると、基地との熱
膨張差により熱処理後の冷却過程でクランクが入り易く
なるので、100メツシユ以下のものを使用するのがよ
い。
Incidentally, when the particle size of the quartz glass powder becomes coarse, it becomes easy to be cranked during the cooling process after heat treatment due to the difference in thermal expansion with the base, so it is preferable to use one having a mesh size of 100 mesh or less.

前記低軟化点ガラス粉末と石英ガラス粉末を含む高軟化
点ガラス粉末との混合粉末における両粉末の配合割合は
、前記低軟化点ガラス粉末が20〜90重量%となるよ
うにすることが望ましい。20%未満では高軟化点融着
性ガラス粉末との軟化融着不足、ガラス粉末成形体の緻
密化不足を招来する。
In the mixed powder of the low softening point glass powder and the high softening point glass powder containing quartz glass powder, it is desirable that the blending ratio of both powders is such that the low softening point glass powder accounts for 20 to 90% by weight. If it is less than 20%, insufficient softening and fusing with the high softening point fusible glass powder and insufficient densification of the glass powder compact result.

また、結晶量が不足し、強度が低下する。一方、90%
を越えると熱処理時のガラス粉末成形体の形状保持が不
十分となり、また、該成形体中の気泡の排出作用が不足
する。
Furthermore, the amount of crystals is insufficient, resulting in a decrease in strength. On the other hand, 90%
If it exceeds this value, the shape retention of the glass powder molded body during heat treatment will be insufficient, and the effect of discharging air bubbles in the molded body will be insufficient.

低軟化点ガラス粉末および、または高軟化点融着性ガラ
ス粉末の一部又は全部に着色成分の含有を除いて同成分
の着色ガラス粉末を使用することができる。かかる低軟
化点着色ガラス粉末と高軟化点着色ガラス粉末との混合
粉末(以下、着色混合粉末という。)を使用することに
より、又その複数種を組み合わせて使用することにより
、種々の着色結晶化ガラス材や色模様付の結晶化ガラス
材を得ることができる。
It is possible to use a colored glass powder having the same components as the low softening point glass powder and/or the high softening point melting glass powder, except that the colored component is contained in part or all of the glass powder. By using a mixed powder of such a low softening point colored glass powder and a high softening point colored glass powder (hereinafter referred to as colored mixed powder), or by using a combination of multiple types thereof, various colored crystallizations can be achieved. Glass materials and crystallized glass materials with colored patterns can be obtained.

尚、着色成分を含有しない低軟化点ガラス粉末と高軟化
点ガラス粉末との混合粉末に金属酸化物の着色剤(通常
、200メツシユ以下の微粉が使用される。)を添加混
合した添加混合粉末を使用することによっても、着色結
晶化ガラス材の製造が可能である。着色剤は、結晶化ガ
ラス材に要求される物性(特に強度)を低下させない範
囲で添加されるが、その添加量の一例を下記に示す。添
加量は添加混合粉末に対するものであり、単位は重量%
である。
Additionally, an additive mixed powder is obtained by adding and mixing a metal oxide coloring agent (usually a fine powder of 200 mesh or less is used) to a mixed powder of a low softening point glass powder and a high softening point glass powder that does not contain a coloring component. It is also possible to produce colored crystallized glass materials by using. The colorant is added within a range that does not reduce the physical properties (particularly strength) required of the crystallized glass material, and an example of the amount added is shown below. The amount added is based on the added mixed powder, and the unit is weight%.
It is.

CrzOi+  CuO+ Mn0z’−’−’ 1%
以下Coo        −3%以下 FeO+ Fe、04. Peg’5−40%以下また
、斑点状の着色模様を形成するには、4〜100メツシ
ユの粗粒の低軟化点および、又は高軟化点融着性ガラス
粉末を使用すれば、尚、粗粒の着色ガラス粉末の使用量
は、既述の通り、ガラス粉末は200メツシユ以下の粉
末を80%以上占めるようにすることが望ましいため、
粉末全量に対し20%以下に止めおくことが好ましい。
CrzOi+ CuO+ Mn0z'-'-' 1%
Below Coo -3% or below FeO+ Fe, 04. Peg'5 - 40% or less In addition, to form a spotted colored pattern, if you use coarse grained low softening point and/or high softening point fusible glass powder of 4 to 100 meshes, Regarding the amount of colored glass powder to be used, as mentioned above, it is desirable that the glass powder should account for 80% or more of powder of 200 mesh or less.
It is preferable to limit the amount to 20% or less based on the total amount of powder.

本発明の結晶化ガラス材を製造するには、以上説明した
混合粉末(以下、混合粉末という場合は、着色混合粉末
、添加混合粉末を含む。)によって、まずガラス粉末成
形体を成形する。
In order to produce the crystallized glass material of the present invention, first, a glass powder molded body is molded using the mixed powder described above (hereinafter, the term "mixed powder" includes colored mixed powder and additive mixed powder).

ガラス粉末成形体の成形方法としては、例えば第1図に
示すように、成形型1 (金型)に混合粉末2を入れた
後、上型3を嵌入し、常温で加圧成形する方法(常温加
圧成形法)、該混合粉末2を低軟化点ガラス粉末の軟化
点以上でかつ同粉末の結晶化開始温度以下の温度(以下
、緻密化温度という。)で加熱すると共に加圧成形する
方法(高温加圧成形法)がある。ガラス粉末成形体は成
形後、成形型から取り出され、熱処理炉に装入され、後
述の熱処理に供される。尚、成形後、成形型に入れたま
ま熱処理を行なうこともできるが、取り扱いが煩雑とな
り、成形形も耐熱性の良好なものが必要となる。
As shown in FIG. 1, a method for forming a glass powder compact is, for example, a method in which a mixed powder 2 is put into a mold 1 (mold), an upper mold 3 is fitted therein, and the molded body is press-molded at room temperature ( Room temperature pressure molding method), the mixed powder 2 is heated at a temperature higher than the softening point of the low softening point glass powder and lower than the crystallization start temperature of the same powder (hereinafter referred to as densification temperature), and pressure molded. There is a method (high temperature pressure molding method). After molding, the glass powder molded body is taken out from the mold, placed in a heat treatment furnace, and subjected to heat treatment as described below. Note that after molding, heat treatment can be performed while the mold is in the mold, but handling becomes complicated and the molded shape needs to have good heat resistance.

常温加圧成形法による場合、通常、粉末同士が接触する
程度(相対密度で50%以上が望ましい。)に加圧され
、また取扱い上の強度(曲げ強度10kgf / a1
以上が望ましい。)の確保や成形性の向上のため、混合
粉末にバインダが数%添加混合される。
When using the room temperature press molding method, the powders are usually pressurized to such an extent that they contact each other (relative density is preferably 50% or more), and handling strength (bending strength 10 kgf/a1) is applied.
The above is desirable. ) and to improve moldability, a few percent of binder is added to the mixed powder.

大形の成形体を得る場合は、強度確保のためバインダの
添加は必須となる。バインダとしては有機系のもの、例
えばポリビニルアルコール(PVA)が通常使用される
When obtaining a large molded body, it is essential to add a binder to ensure strength. Organic binders, such as polyvinyl alcohol (PVA), are usually used.

常温で加圧成形されたガラス粉末成形体は、第2図中の
実線で示すような熱処理に供される。C区間はバインダ
中の水分、有機溶媒を排除するための乾燥区間である。
The glass powder compact formed under pressure at room temperature is subjected to heat treatment as shown by the solid line in FIG. Section C is a drying section for eliminating moisture and organic solvent in the binder.

b区間は脱バインダ区間であり、300〜400°Cに
保持することによって、バインダの高分子成分を分解し
、ガス化して成形体外へ排出する。成形体中にバインダ
が残留すると、爾後の熱処理区間で膨れや割れが発生し
たり、製品物性を低下させるため、バインダは積極的に
除去する必要がある。C区間は緻密化区間であり、緻密
化温度(通常、600〜800°C)で低軟化点ガラス
粉末同士が軟化融着すると共に高軟化点ガラス粉末に付
着ないし融着し、更に昇温に伴って融着が進行する。同
図ではCは連続的な昇温状態として示されているが、緻
密化温度範囲のある温度で保持して十分に軟化融着させ
た後、次の区間へ移行してもよい、C区間は結晶化区間
であり、低軟化点ガラス粉末の結晶化開始温度以上でか
つ高軟化点融着性ガラス粉末の軟化点以下の温度(以下
、結晶化温度という。通常800〜1000’C)で保
持して、軟化融着部分の結晶化を図る。尚、高軟化点融
着性ガラス粉末の軟化点以上の温度で結晶化してもよい
が、この場合は、形崩れ防止のために、ガラス粉末成形
体を成形型ごと熱処理する必要がある。C区間は徐冷区
間である。
Section b is a binder removal section, and by maintaining the temperature at 300 to 400°C, the polymer component of the binder is decomposed, gasified, and discharged out of the molded body. If the binder remains in the molded article, it may cause blistering or cracking in the subsequent heat treatment section or deteriorate the physical properties of the product, so it is necessary to actively remove the binder. Section C is a densification section, in which the low softening point glass powders soften and fuse together at the densification temperature (usually 600 to 800°C), and also adhere or fuse to the high softening point glass powder, and further rise in temperature. As a result, fusion progresses. In the same figure, C is shown as a continuous temperature increase state, but it may be held at a certain temperature in the densification temperature range to sufficiently soften and fuse, and then move on to the next section. is the crystallization zone, which is at a temperature above the crystallization start temperature of the low softening point glass powder and below the softening point of the high softening point fusible glass powder (hereinafter referred to as crystallization temperature, usually 800 to 1000'C). Hold it to crystallize the softened and fused portion. Note that crystallization may be performed at a temperature equal to or higher than the softening point of the high softening point fusible glass powder, but in this case, it is necessary to heat-treat the glass powder molded body together with the mold to prevent deformation. Section C is a slow cooling section.

高温加圧成形法によれば緻密化温度で成形型内のガラス
粉末を加圧するので、バインダを一切使用することなく
、低軟化点ガラス粉末同士が軟化融着すると共に高軟化
点ガラス粉末に付着ないし融着し、単独で取り扱い可能
な相対密度50%以上、曲げ強度L Okg f / 
cff1以上のガラス粉末成形体が容易に得られる。こ
の場合、加圧成形温度に急速加熱すればよく、成形時間
もごく短時間で(数分程度)でよい。
According to the high-temperature pressure molding method, the glass powder in the mold is pressurized at the densification temperature, so the low softening point glass powders soften and fuse together and adhere to the high softening point glass powder without using any binder. Relative density of 50% or more, bending strength L Okg f /
A glass powder compact having a cff of 1 or more can be easily obtained. In this case, it is sufficient to rapidly heat the material to the pressure molding temperature, and the molding time may be very short (about several minutes).

加圧成形後、ガラス粉末成形体は、成形型から取り出さ
れ、熱処理炉に速やかに装入されるが、−旦、常温まで
冷却した場合は第2図中の破線で示すように、C区間の
緻密化温度に急速加熱して以後の熱処理を行うことがで
き、常温加圧成形法において必要とされるa % b区
間の加熱を省略することができる。awb区間は通常長
時間を要するため、高温加圧成形法は、生産性に極めて
優れる。例えば、700 cm角、20〜30鴫厚の板
状結晶化ガラス材を得るのにa −b区間は70〜80
時間必要であり、たとえガラス粉末成形体を熱処理前に
予め乾燥しておいたとしても、脱バインダのため40〜
50時間の加熱を要する。
After pressure molding, the glass powder molded body is taken out from the mold and promptly charged into a heat treatment furnace. The subsequent heat treatment can be performed by rapid heating to the densification temperature of , and the heating in the a % b interval required in the room temperature pressing method can be omitted. Since the awb section usually takes a long time, the high temperature press molding method has extremely high productivity. For example, to obtain a plate-shaped crystallized glass material 700 cm square and 20 to 30 mm thick, the a-b section is 70 to 80 mm thick.
Even if the glass powder molded body is dried in advance before heat treatment, it takes about 40 to 40 hours to remove the binder.
Requires heating for 50 hours.

高温加圧成形法において、混合粉末の加熱成形方法とし
ては、常温の成形型に常温の混合粉末を入れ、成形型ご
と所期の温度に加熱した後、5 kgf/cr1以上の
圧力で加圧成形する方法が一般的である。この場合、通
常、成形型に備えられたヒータにより、あるいは成形型
ごと加熱炉に入れて加熱される。この他、種々の加熱成
形方法を採ることができる。例えば、 ■ 所定温度に加熱された混合粉末を常温の成形型に入
れて加圧成形する方法 ■ 所定温度に加熱した成形型に常温の混合粉末を入れ
、成形型の保有する熱によって加熱すると共に加圧成形
する方法 ■ 常温の成形型に常温の混合粉末を入れ、その表面の
みを電熱輻射、赤外線放射、バーナによる直接加熱など
によって所定温度に加熱し加圧成形する方法 がある。また、一対の熱ロールによって常温の混合粉末
を所定温度に加熱すると共に加圧成形することも可能で
ある。尚、ここに常温とは低軟化点ガラス粉末の軟化温
度未満の温度で予熱された状態を含む。
In the high-temperature pressure molding method, the mixed powder is heated and molded by putting the mixed powder at room temperature into a mold at room temperature, heating the mold together to the desired temperature, and then pressing at a pressure of 5 kgf/cr1 or more. A common method is molding. In this case, the mold is usually heated by a heater provided in the mold or by placing the mold together in a heating furnace. In addition, various heat forming methods can be used. For example, ■ A method in which a mixed powder heated to a predetermined temperature is placed in a mold at room temperature and pressure-molded ■ A mixed powder at room temperature is placed in a mold heated to a predetermined temperature and heated by the heat held by the mold. Pressure molding method■ There is a method of pressure molding by placing room temperature mixed powder in a room temperature mold and heating only the surface thereof to a predetermined temperature by electric radiation, infrared radiation, direct heating with a burner, etc. Further, it is also possible to heat the mixed powder at room temperature to a predetermined temperature using a pair of heating rolls and to press-form it. Note that the term "normal temperature" here includes a state where the glass powder is preheated to a temperature lower than the softening temperature of the low softening point glass powder.

成形型には、低軟化点ガラス粉末の粘着防止のため、ジ
ルコンサンド、黒鉛等の塗型剤やセラミック粉末等をコ
ーティングしたり、セラミックシートを被着するなどの
処理を施しておくことが望ましい。
In order to prevent the low softening point glass powder from sticking, the mold should preferably be coated with a coating agent such as zircon sand or graphite, or ceramic powder, or coated with a ceramic sheet. .

次に具体的実施例について説明する。Next, specific examples will be described.

(1)第1表に示した組成、粒度の各種ガラス粉末を調
整した。尚、低軟化点ガラス粉末原料としてカレット、
高軟化点融着性ガラス粉末原料としてパーライトを利用
した。
(1) Various glass powders having the composition and particle size shown in Table 1 were prepared. In addition, cullet is used as a raw material for low softening point glass powder.
Pearlite was used as a raw material for high softening point fusion glass powder.

(次 葉) 第1表 (2)第1表A−Cのガラス粉末を第2表の配合によっ
て混合粉末を調整し、同表の高温加圧成形条件によって
350X350 mm (厚さ20M)の板状ガラス粉
末成形体を製造した。同表中、NcLlは(3)高温加
圧成形後、Nα1およびNα2のガラス粉末成形体を成
形用金型から取り出して600°Cに保持した加熱炉に
挿入し均熱した後、30°C/Hrで900°Cに昇温
し、4時間保持して結晶化を図った後、徐冷した。
(Next page) Table 1 (2) A mixed powder was prepared from the glass powders in Table 1 A to C according to the formulations in Table 2, and a plate of 350 x 350 mm (thickness 20M) was prepared under the high-temperature pressing conditions in the same table. A shaped glass powder compact was produced. In the same table, NcLl is (3) After high-temperature pressure molding, the glass powder molded bodies of Nα1 and Nα2 are taken out from the molding mold, inserted into a heating furnace maintained at 600°C, and soaked at 30°C. /Hr to 900°C, held for 4 hours to achieve crystallization, and then slowly cooled.

(4)゛ 得られた結晶化ガラス材の機械的性質を第3
表に示す。
(4)゛ The mechanical properties of the obtained crystallized glass material were
Shown in the table.

第3表 第3表によると、実施例に係るNα2は比較例に係るN
α1に対して著しい曲げ強度の向上が認められた。また
、線膨張率も階2の方がNα1よりも小さいことが確か
められた。このため、実施例の結晶化ガラス材は熱衝撃
に対して強いことが知られる。尚、100〜200°C
で線膨張率が大きくなっているのは、5iOz結晶の変
態に伴ない、体積膨張が生じているからである。また、
No、 1およびNα2とも、組織中には肉眼で観察さ
れる気孔、気泡は皆無であった。
Table 3 According to Table 3, Nα2 according to the example is Nα2 according to the comparative example
A remarkable improvement in bending strength was observed compared to α1. It was also confirmed that the coefficient of linear expansion at floor 2 was smaller than Nα1. Therefore, it is known that the crystallized glass material of the example is strong against thermal shock. In addition, 100-200°C
The reason why the coefficient of linear expansion is large is that volume expansion occurs as the 5iOz crystal transforms. Also,
For both No. 1 and Nα2, there were no pores or bubbles observed with the naked eye in the tissues.

(発明の効果) 以上説明した通り、本発明の結晶化ガラス材は、低軟化
点ガラス粉末と高軟化点ガラス粉末とが低軟化点ガラス
粉末の軟化融着後に融着一体化し、結晶化したものであ
るから、低軟化点ガラス粉末同士の軟化融着時にガラス
粉末の間に存在した空気は未軟化状態の高軟化点ガラス
粉末表面に沿って外部に排出され、組織中に気孔や気泡
がほとんど存在しないものとなる。
(Effects of the Invention) As explained above, in the crystallized glass material of the present invention, the low softening point glass powder and the high softening point glass powder are fused and integrated after the low softening point glass powder is softened and fused, and crystallized. Therefore, when the low softening point glass powders are softened and fused together, the air that existed between the glass powders is discharged to the outside along the unsoftened high softening point glass powder surface, creating pores and bubbles in the structure. It becomes almost non-existent.

また、本発明において使用する特定組成の低軟化点およ
び高軟化点融着性ガラス粉末は入手も容易であり、軟化
温度差を確保し易いうえ、相互に融着し易く、生産性、
経済性に優れる。また、所期の着色ガラス粉末や着色剤
を使用することにより、任意の色模様を有する結晶化ガ
ラス材が容易に得られる。
In addition, the low softening point and high softening point fusible glass powders of the specific composition used in the present invention are easily available, and it is easy to ensure a softening temperature difference, and they are easy to fuse with each other, increasing productivity.
Excellent economy. Further, by using the desired colored glass powder or coloring agent, a crystallized glass material having an arbitrary color pattern can be easily obtained.

更に、高軟化点ガラス粉末には石英ガラス粉末が添加さ
れているから、結晶化ガラス材に圧縮応力を残留させる
ことができ、強度の向上を図ることができ、熱膨張率の
低下と相まって耐熱衝撃性の向上を図ることができる。
Furthermore, since quartz glass powder is added to the high softening point glass powder, it is possible to leave compressive stress in the crystallized glass material, improving strength, and coupled with a decrease in thermal expansion coefficient, it improves heat resistance. Impact resistance can be improved.

一方、本発明の製造方法によれば、バインダを一切使用
することなく、単独で取り扱いの可能な強度の大きいガ
ラス粉末成形体を容易に得ることができるので、熱処理
に際して長時間の加熱を要する脱バインダが不要となり
生産性に極めて優れる。しかも、ガラス粉末成形体の結
晶化を高軟化点融着性ガラス粉末の軟化以下の温度で行
なうので、内部が未軟化の高軟化点融着性ガラス粉末お
よび石英ガラス粉末が骨材として機能し、高温の結晶化
熱処理に際しても成形体の形状が保持され形崩れが生じ
ない。このため成形型ごと熱処理に供する必要がなく、
生産性の向上、設備コストの低減を図ることができる。
On the other hand, according to the manufacturing method of the present invention, it is possible to easily obtain a strong glass powder molded body that can be handled independently without using any binder. No binder is required, resulting in extremely high productivity. Moreover, since the glass powder molded body is crystallized at a temperature below the softening temperature of the high softening point fusible glass powder, the high softening point fusible glass powder and quartz glass powder whose internal parts are not softened function as aggregates. Even during high-temperature crystallization heat treatment, the shape of the molded body is maintained and no deformation occurs. Therefore, there is no need to subject the entire mold to heat treatment.
It is possible to improve productivity and reduce equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガラス粉末成形体の成形要領を示す成形型の断
面図、第2図は本発明の結晶化ガラス材の熱処理の一例
を示す熱処理線図である。
FIG. 1 is a sectional view of a mold showing the procedure for forming a glass powder compact, and FIG. 2 is a heat treatment diagram showing an example of the heat treatment of the crystallized glass material of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)低軟化点ガラス粉末と高軟化点ガラス粉末とが低
軟化点ガラス粉末の軟化融着後に融着一体化し、結晶化
してなる結晶化ガラス材であって、前記低軟化点ガラス
粉末は主成分が重量%でSiO_2:65〜80%、C
aO:5〜10%Na_2O+K_2O:10〜20%
、MgO:2〜8%であり、 前記高軟化点ガラス粉末は主成分が重量%でSiO_2
:65〜80%、Al_2O_3:25%以下Na_2
O+K_2O:5〜15% である高軟化点融着性ガラス粉末と石英ガラス粉末とか
らなることを特徴とする結晶化ガラス材。
(1) A crystallized glass material obtained by fusing and crystallizing a low softening point glass powder and a high softening point glass powder after softening and fusing the low softening point glass powder, wherein the low softening point glass powder is Main components are SiO_2: 65-80% by weight, C
aO: 5-10% Na_2O+K_2O: 10-20%
, MgO: 2 to 8%, and the main component of the high softening point glass powder is SiO_2 in weight%.
: 65-80%, Al_2O_3: 25% or less Na_2
A crystallized glass material comprising a high softening point melting glass powder having an O+K_2O content of 5 to 15% and a quartz glass powder.
(2)主成分が重量%で SiO_2:65〜80%、CaO:5〜10%Na_
2O+K_2O:10〜20%、MgO:2〜8%であ
る低軟化点ガラス粉末と、主成分が重量%で SiO_2:65〜80%、Al_2O_3:25%以
下Na_2O+K_2O:5〜15% である高軟化点融着性ガラス粉末と石英ガラス粉末とか
らなる高軟化点ガラス粉末との混合粉末を低軟化点ガラ
ス粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化
開始温度以下の温度で加圧成形し、高軟化点ガラス粉末
の回りに低軟化点ガラス粉末を軟化付着ないし融着させ
たガラス粉末成形体を得、該成形体を低軟化点ガラス粉
末の結晶化開始温度以上でかつ高軟化点融着性ガラス粉
末の軟化点以下の温度に加熱して結晶化することを特徴
とする結晶化ガラス材の製造方法。
(2) Main components are SiO_2: 65-80%, CaO: 5-10% Na_
A low softening glass powder whose main components are SiO_2: 65-80% and Al_2O_3: 25% or less Na_2O+K_2O: 5-15% by weight. A mixed powder of a high softening point glass powder consisting of a point melting glass powder and a quartz glass powder is pressed at a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the low softening point glass powder. Molding is performed to obtain a glass powder molded body in which a low softening point glass powder is softened and adhered or fused around a high softening point glass powder, and the molded body is heated to a temperature equal to or higher than the crystallization start temperature of the low softening point glass powder and is highly softened. A method for producing a crystallized glass material, which comprises heating to a temperature below the softening point of point-fusible glass powder to crystallize it.
JP16634288A 1988-07-04 1988-07-04 Crystallized glass material and its production Pending JPH0218338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16634288A JPH0218338A (en) 1988-07-04 1988-07-04 Crystallized glass material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16634288A JPH0218338A (en) 1988-07-04 1988-07-04 Crystallized glass material and its production

Publications (1)

Publication Number Publication Date
JPH0218338A true JPH0218338A (en) 1990-01-22

Family

ID=15829593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16634288A Pending JPH0218338A (en) 1988-07-04 1988-07-04 Crystallized glass material and its production

Country Status (1)

Country Link
JP (1) JPH0218338A (en)

Similar Documents

Publication Publication Date Title
EP0629589B1 (en) Method for making sheets for buildings and decoration which resemble natural stone
EP0615959B1 (en) Fire-resistant or refractory brick for use as tin bath bottom block
US3592619A (en) High-silica glass foam method
US3279931A (en) Glass-ceramic body and method of making it
US3825468A (en) Sintered ceramic
JPH0218338A (en) Crystallized glass material and its production
US3486872A (en) Method for producing a crystallized sintered glass article with a nonporous surface
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPH02120254A (en) Crystallized glass material and production thereof
JPH0218337A (en) Crystallized glass material and its production
KR970004970B1 (en) Crystallized glass articles having an irregular rough surface pattern and a method for producing the same
JPS63156024A (en) Production of glass ceramic article
JPH0436098B2 (en)
JPH0575701B2 (en)
JPS6317238A (en) Production of crystallized glass
JPH0575702B2 (en)
KR950006206B1 (en) Process for the preparation of multiple foamed glass
JPH0193441A (en) Production of crystallized glass building material
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPS62143842A (en) Crystallized glass and production thereof
JPS62207756A (en) Ceramic material and manufacture
DE1596839C (en) Process for the production of shaped bodies made of glasses at a temperature below the usual melting temperature
JPH0292835A (en) Production of crystallized glass material
JPS63170230A (en) Production of plate crystal glass
JPS63129025A (en) Production of glass ceramic article