JPH0575701B2 - - Google Patents
Info
- Publication number
- JPH0575701B2 JPH0575701B2 JP269386A JP269386A JPH0575701B2 JP H0575701 B2 JPH0575701 B2 JP H0575701B2 JP 269386 A JP269386 A JP 269386A JP 269386 A JP269386 A JP 269386A JP H0575701 B2 JPH0575701 B2 JP H0575701B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- less
- colored
- powder
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 78
- 239000000843 powder Substances 0.000 claims description 51
- 239000002994 raw material Substances 0.000 claims description 39
- 239000013078 crystal Substances 0.000 claims description 28
- 239000002245 particle Substances 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 18
- 238000002425 crystallisation Methods 0.000 claims description 15
- 230000008025 crystallization Effects 0.000 claims description 15
- 239000003086 colorant Substances 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 8
- 238000000748 compression moulding Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 229910052593 corundum Inorganic materials 0.000 claims description 3
- 229910052882 wollastonite Inorganic materials 0.000 claims description 3
- 239000010456 wollastonite Substances 0.000 claims description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 12
- 239000002667 nucleating agent Substances 0.000 description 11
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 238000000280 densification Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Glass Compositions (AREA)
Description
(産業上の利用分野)
本発明は色模様を有する結晶化ガラスの製造方
法に関する。
(従来の技術)
従来の結晶化ガラスは一般に核形成剤を含むガ
ラス原料を溶融し、各種の成形機等により成形し
て後、結晶化熱処理を施し結晶を析出させてお
り、結晶の析出により白色を呈している。着色の
結晶化ガラスとするには、上記製造原料にガラス
着色剤を加えることによつて可能である。
他に結晶化ガラスを得る方法として、溶融した
ガラスを水冷等により破砕してガラス小体を得、
核ガラス小体を型枠に集積して熱処理することに
より、各ガラス小体を融着一体化する一方、結晶
化する方法(以下集積法と称す)が「特開昭48−
78217」に開示されており、同方法による結晶化
ガラスは不均一な結晶の成長による模様の現われ
た白色である。
なお、この集積法においても原料となるガラス
に、ガラス着色剤を加えた着色ガラスを用いるこ
とによつて着色の結晶化ガラスとすることも可能
である。
(発明が解決しようとする問題点)
一般にガラスは強度的に問題のある材質で、そ
の向上は常に希求されているところであり、また
装飾材、建築材等における多様化は色付きガラス
においても均一な着色でなく変化のあるガラス、
例えば斑模様を呈するようなガラスの出現が期待
されるところであり、こう云つた観点からすれ
ば、前記核形成剤及びガラス着色剤を含むガラス
原料を溶融し成形して後結晶化熱処理により結晶
を析出させる方法は、均一な着色であると共に原
料に比べて核形成剤が高価な場合のあることが問
題であり、次の集積法の場合は既述のように不均
一な結晶の成長による模様化は行われるものゝ、
集積のガラス小体を加熱して行つた場合、結晶の
析出する温度で各ガラス小体が互いに融着一体化
できるような充分低い粘性をもつものでなければ
適さない。というように原料ガラスに制限があ
り、従つて核形成剤や核形成剤としても作用する
ような着色剤、たとえばFeS+MnS、FeO+
Fe2O3などを含むガラス小体は使用することがで
きないのである。
つまり加熱されたガラス小体において、軟化温
度で析出している結晶核の成長速度が速く、融着
する前に結晶が成長するような組成や上記のよう
に核成形剤を含むような場合は、結晶の成長によ
つて粘度を増大し、各ガラス小体は融着一体化で
きず、更に温度を上げて一体化を図ろうとすれ
ば、逆に結晶が破壊し若しくは転移して結晶化ガ
ラスにならないのである。
なおこの集積法で、核形成剤として作用しない
着色剤で着色する場合も色が鮮明に出ないという
問題点や、更に製品内部に比較的大きな気泡(径
0.5mm以上)を含むという問題点を有しているの
である。
(問題点を解決するための手段)
本発明は以上のような従来技術の有する問題点
を特別な成分を必要とすることなく解決して、斑
状の色模様付きの結晶化ガラスの提供を可能とし
たものであり、そのための手段として、
必須成分として重量百分率で、SiO2:45〜75
%、Al2O3:20%以下、CaO:5〜40%、Na2O
+K2O:2〜20%を、SiO2+Al2O3+CaO+
Na2O+K2O>85%であるように含有して成るガ
ラス状原料を粉砕して、200mesh以下の粒子が90
%以上を占めるようにした粉体と、前記組成範囲
の各成分及び重量百分率で10%以下の着色剤を含
有して成る有色のガラス状態の原料を粉砕して、
10〜200mesh若しくは10〜200meshとそれ以下の
粒子を含むようにした粉体との混合に当り、両者
の混合物中において200mesh以下の粒子が50%以
下を占める範囲で両者を所望割合に混合し、次い
で該混合物を所望形状の圧縮成形枠を用いて真密
度の55%以上の圧粉体に圧縮成形して後、熱処理
することにより核圧粉体の各ガラス粉末を相互に
軟化融着させて一体化及び緻密化する一方結晶化
を図り、主としてウオラストナイト結晶を析出さ
せるようにしたのである。
(作用)
本発明の最も特徴としている技術的手段は、ガ
ラス状原料の微粉末とし、これを緻密な圧縮成形
体として後加熱し、各ガラス粉末を軟化融着させ
て一体化及び緻密化する一方結晶化を図るところ
にあるが、ガラス状原料の微粉化と、それを緻密
圧縮体としたことは、ガラス粉末間の軟化融着が
比較的低温で容易に行われるように作用している
のである。
すなわちガラス粒が粗粒で単に集積された状態
のものを加熱してゆく場合、軟化点に到達しても
各粒子は着ちに融着一体化しない。まず各粒子の
鋭角部分等から軟化しはじめ、粒子体の略全体が
軟化するためには軟化点以上の高温に加熱しなけ
ればならず、このように高温に加熱しはじめて融
着一体化が起こるのである。
しかるに微粉末の緻密圧縮体の場合は、各粒子
が質量に比して広い面積で互いに緻密に接触して
おり、極めて容易に融着一体化し緻密化が進むの
である。
このようにガラス粒子の一体緻密化を比較的低
温で行えるようになつたことは、一体緻密化の後
に結晶の成長化が図れるということであり、従来
の集積法の問題点に見事に解決しているのであつ
て、核形成剤や核形成剤の作用をする着色剤を含
む場合も圧粉体粒子の一体緻密化の後に結晶化が
図れ、しかもその結晶化に際しては含有の核形成
剤が有効に働くのである。
第1図はガラスの微粉圧縮体を加熱したときの
温度と核形成速度及び結晶成長速度との関係を概
念的に示したグラフであり、縦軸に核形成速度及
び結晶成長速度をとり、横軸に温度をとつてい
る。破線が「核形成速度−温度」曲線、実線が
「結晶の成長速度−温度」曲線である。なお、S.
P.は軟化点、M.P.は融点である。
ガラスの微粉圧縮体の加熱においては既述のよ
うに軟化点をあまり越えない比較的低温の範囲で
各ガラス粒子の融着一体化及び緻密化が行われる
のであり、この時期に核が発生しその数を増して
ゆくことをグラフは示しており、その後の昇温に
おいて結晶の成長が盛んになつている。
次に微粉末の緻密圧縮体としたことによる今一
つの作用を挙げると、結晶化し難いような組成の
ガラス、すなわち結晶の成長速度の遅い組成のガ
ラスであつても比較的容易に結晶化が進むように
なることである。
すなわち結晶化速度は
(結晶化速度)=(結晶核数)×(結晶成長速度)の
ように表され、結晶核はガラス粒子間の融着界面
に発生しやすく、微粉末の圧粉体においては融着
界面が多くかつ広く、従つて発生の核も多く、た
とえ結晶の成長速度が大きくなくとも結果的には
結晶化速度を大ならしめるのである。
本発明における今一つの大きな特徴とする手段
は、無色ガラス粉末と有色ガラス粉末を混合する
のであり、その際の有色ガラス粉末の粒子を無色
ガラス粉末の粒子より粗粒としている点である。
つまり粗粒であることが作用して斑模様が形成
されるのである。
若し無色、有色の原料共同様な微粒子たとえば
200mesh以下の微粒子として混合してこれを結晶
化ガラスとして製造した場合、製品は均一な色を
呈して斑模様とならない。これでは有色、無色の
原料を別々に製造し、各粉末を混合するという工
程が無意味となるのである。
(実施例)
先ず必須成分の限定理由から述べる。なお必須
成分は、無色、有色のガラス状原料において共通
である。
SiO2:45〜75%(重量百分率以下同じ)
45%以下では熱処理中の圧縮成形体の形状保持
が難しく、75%以上ではガラスの粘度が高くな
り、圧縮成形体の緻密化が遅くなる。
Al2O3:20%以下
20%以上ではガラスの粘性が高くなり、圧縮成
形体の緻密化が遅くなる。
CaO:5〜40%
5%以下ではウオライトナイト、アノルサイト
などの結晶が析出し難くなる。また40%以上では
耐水、耐酸性などの物性値に影響を及ぼすように
なる。
Ka2O+K2O:2〜20%
2%以下ではガラスの粘性が高くなり、圧縮成
形体の緻密化が遅くなる。また20%以上では熱処
理中の圧縮成形体の形状保持が難しい。
なお上記必須成分は、その合計85%以上となる
ように含有させるのであり、その理由はガラスと
しての物性を適正に保つためである。
次に有色ガラス状原料における必須成分の着色
剤(CoO、FeO+Fe2O3、Cr2O3、NiO、CuO、
MnO2など)を10%以下とした理由については、
着色という観点からすると10%以上は不必要であ
るばかりでなく、10%以上の含有によつて無色の
ガラス状原料との物性値の差が大きくなるためで
ある。
次に必須外成分について述べると、無色及び有
色のガラス原料共に、
MgO、ZnO、BaO、PbO、B2O3等の各2%ま
での添加は支障なく、またSb2O3は清澄剤として
作用するので溶融時に1%以下を添加してもよ
い。また核形成剤を含有させることも可能であ
る。
次に製造方法について詳述する。
無色及び有色のガラス状原料の製造は、前記成
分の原料をそれぞれ所定の組成になるように調合
融解し、これを水砕などの方法で急冷破砕してガ
ラス状の小体を得てこれを原料とする。
勿論限定範囲の成分組成を有して既にガラス状
になつているものを原料として用いて差支えな
く、これを適宜の手段で破砕し小体とする。
このようにして得られたガラス小体を、たとえ
ばボールミルなどにより更に破砕するものであ
り、このとき無色のガラス状原料(以下無色原料
と称す)は200mesh以下の微粒子が90%以上含ま
れるようにし、有色のガラス状原料(以下有色原
料と称す)では10〜200meshの粉末か、若しくは
10〜200meshの粉末を必ず含み更に200mesh以下
の微粉末を含むような粉体とするのである。
かくして得られた無色及び有色原料の粉体を混
合するのであるが、混合粉体において200mesh以
下の微粉が50%以上を占める範囲で両者を所望割
合に混合するのである。
このように200mesh以下が50以上であるように
限定したのは、50%以下の場合すなわち粗粒が多
く混在する場合は、緻密圧縮に影響し、粒子の融
着一体化温度を高温化するようになると共に、特
に粗粒としている有色原料粉末の粒度や量が大き
くなると製品内部に気泡を含むようになるから
で、有色原料の粉末粒度を10mesh以下としたの
も、10mesh以上の粗粒とすると上述のように製
品内部に気泡を含みやすくなり、強度を低下する
怖れがあるためである。但し強度や気泡の存在を
問題としないような場合は前記粗粒の若干の混在
は許容されることもある。
次に混合した粉末は所望形状の圧縮形成枠を用
いて真密度の55%以上の緻密な圧粉体に圧縮成形
するのであり、55%以上の限定は熱処理時の形状
保持と粒子の融着緻密化が低温で行われることを
確実とするためであり、上記粒度のガラス粉末を
真密度の55%以上の密度に圧縮成形するためには
20Kgf/cm2以上の圧力が適当である。
なお粉末の圧縮成形に際しては予め粉末にポリ
ビニルアルコール(P.V.A.)などの粘結剤の少
量を添加することは成形を容易にする上で有効で
ある。
このようにして得られた圧粉体はガラス粒子の
融着一体化及び緻密化のために軟化点以上(実際
は軟化点+100℃以上が好ましい。)で結晶の成長
速度が速くなる温度以下の温度で熱処理を行う。
この処理によつて各ガラス粉末は融着一体化及び
緻密化し、それと同時に粒子間の融着界面では核
形成が進行しているのである。
一体緻密化を了へた成形体は更に温度を上げて
結晶の成長を助長し結晶化を図るのであるが、既
に述べたように混合の有色原料粉末は無色原料粉
末に比し、その組成において10%以下の着色剤を
添加したに過ぎない組成であるから、両原料粉末
の軟化点その他の特性は大差なく、上述の熱処理
において粉末の一体緻密化及び結晶化は支障なく
進行するのである。
第2図は上記の圧粉体の熱処理曲線で、aa間
がガラス粒子の一体緻密化区間、bb間が結晶化
区間であり、S.P.が軟化点、M.P.が融点である。
以上の工程によつて得られた結晶化ガラスは、
他は結晶析出により白色であり、これに着色部分
が斑状に分布しているのであり、斑状も粉末の混
合程度により、着色部分が均一に分布した微細斑
点模様、或は不均一に分布した塊状斑模様などを
呈するようにすることが可能であり、また有色及
び無色原料粉末の混合比の変化による斑模様の濃
淡調整も可能である。また色の異なる有色原料を
複数種用いることによつて多色の斑模様とするこ
とも可能である。
次に本発明の具体的実施例を示す。
実施例に供した無色及び有色原料は次表のよう
な組成を有するものであり、それぞれの成分を配
合した配合原料を1500℃で溶解し、次いでこれを
水中に投入してそれぞれ無色及び有色のガラス状
小体を得た。
(Industrial Application Field) The present invention relates to a method for producing crystallized glass having a color pattern. (Prior art) Conventional crystallized glass is generally produced by melting a glass raw material containing a nucleating agent, molding it using various molding machines, etc., and then subjecting it to crystallization heat treatment to precipitate crystals. It has a white color. Colored crystallized glass can be produced by adding a glass coloring agent to the above raw materials. Another method for obtaining crystallized glass is to obtain glass bodies by crushing molten glass by water cooling, etc.
A method of fusing and crystallizing each glass body by accumulating the core glass bodies in a mold and heat-treating them (hereinafter referred to as the accumulation method) was developed in ``Japanese Unexamined Patent Application Publication No. 1973-1989.
78217'', and the crystallized glass produced by this method is white with patterns due to non-uniform crystal growth. In addition, also in this accumulation method, it is also possible to obtain colored crystallized glass by using colored glass in which a glass colorant is added to the raw material glass. (Problems to be solved by the invention) Generally, glass is a material with a problem in terms of strength, and improvements in its strength are always sought after.Also, the diversification of decorative materials, construction materials, etc. has caused uniformity in colored glass as well. Glass that is not colored but has a change,
For example, the appearance of glass exhibiting a mottled pattern is expected, and from this point of view, the glass raw material containing the nucleating agent and glass coloring agent is melted and formed, and then crystallized by heat treatment for crystallization. The problem with the precipitation method is that the nucleating agent is expensive compared to the raw material, as well as uniform coloring, and the next accumulation method produces patterns due to non-uniform crystal growth as described above. transformation takes place,
When the glass bodies are heated, it is not suitable unless the glass bodies have a sufficiently low viscosity that they can be fused together at the temperature at which the crystals precipitate. As such, there are limitations to the raw material glass, and therefore colorants that also act as nucleating agents or nucleating agents, such as FeS+MnS, FeO+
Glass bodies containing Fe 2 O 3 etc. cannot be used. In other words, in a heated glass body, the growth rate of the crystal nuclei precipitated at the softening temperature is fast, and if the composition is such that the crystals grow before fusion, or if it contains a nucleating agent as described above, The viscosity increases due to the growth of crystals, and the individual glass bodies cannot be fused and integrated, and if an attempt is made to further increase the temperature to achieve integration, the crystals will instead break or transfer, resulting in crystallized glass. It doesn't become. However, with this accumulation method, there are problems in that the color does not come out clearly even when colored with a coloring agent that does not act as a nucleating agent, and there is also the problem that relatively large air bubbles (diameter) may occur inside the product.
It has the problem that it contains particles (more than 0.5 mm). (Means for Solving the Problems) The present invention solves the problems of the prior art as described above without requiring any special ingredients, and makes it possible to provide crystallized glass with a mottled color pattern. As a means for that purpose, SiO 2 is added as an essential component in weight percentage, from 45 to 75.
%, Al2O3 : 20% or less, CaO: 5-40 % , Na2O
+ K2O : 2-20%, SiO2 + Al2O3 + CaO +
A glassy raw material containing Na 2 O + K 2 O > 85% is crushed to produce 90 particles of 200 mesh or less.
% or more, each component in the composition range and a colorant in a weight percentage of 10% or less by pulverizing a raw material in a colored glass state,
When mixing the powder containing particles of 10 to 200 mesh or 10 to 200 mesh and smaller, mix the two at a desired ratio within the range in which particles of 200 mesh or smaller account for 50% or less in the mixture, Next, the mixture is compression-molded into a compact having a true density of 55% or more using a compression molding frame of a desired shape, and then heat-treated to soften and fuse the glass powders of the core compact to each other. The aim was to integrate and densify the material, while also crystallizing it, so that wollastonite crystals were mainly precipitated. (Function) The most characteristic technical means of the present invention is to form a glassy raw material into a fine powder, which is then heated in the form of a dense compression molded body, to soften and fuse each glass powder to integrate and densify it. On the other hand, with regard to crystallization, the pulverization of the glassy raw material and the creation of a densely compressed body work to facilitate softening and fusion between the glass powders at relatively low temperatures. It is. In other words, when coarse glass particles are heated, even when the softening point is reached, the particles are not immediately fused and integrated. First, the sharp corners of each particle begin to soften, and in order to soften almost the entire particle, it must be heated to a high temperature above the softening point, and it is only when heated to such a high temperature that fusion and integration occur. It is. However, in the case of a dense compacted body of fine powder, each particle is in close contact with each other over a large area relative to its mass, and it is extremely easy to fuse and integrate the particles, resulting in progress in densification. The fact that it has become possible to integrally densify glass particles at a relatively low temperature means that crystal growth can be achieved after integral densification, and this successfully solves the problems of conventional integration methods. Even if a nucleating agent or a coloring agent that acts as a nucleating agent is included, crystallization can be achieved after the green compact particles are densified, and furthermore, during the crystallization, the nucleating agent contained It works effectively. Figure 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when heating a compressed glass fine powder, with the nucleation rate and crystal growth rate plotted on the vertical axis, and the horizontal axis. The temperature is maintained at the shaft. The broken line is the "nucleation rate-temperature" curve, and the solid line is the "crystal growth rate-temperature" curve. In addition, S.
P. is the softening point and MP is the melting point. As mentioned above, when heating a compacted glass powder, each glass particle is fused and integrated and densified at a relatively low temperature that does not exceed its softening point, and it is during this period that nuclei are generated. The graph shows that the number increases, and as the temperature increases thereafter, crystal growth becomes more active. Next, to mention another effect of forming a densely compressed body of fine powder, even if the composition of the glass is difficult to crystallize, that is, the glass has a composition where the crystal growth rate is slow, crystallization progresses relatively easily. It is to become like that. In other words, the crystallization rate is expressed as (crystallization rate) = (crystal nucleus number) x (crystal growth rate), and crystal nuclei are likely to occur at the fused interface between glass particles, and in a green compact of fine powder. The number of fused interfaces is large and wide, and therefore many nuclei are generated, and even if the crystal growth rate is not high, the crystallization rate is increased as a result. Another major feature of the present invention is that colorless glass powder and colored glass powder are mixed, and the colored glass powder particles are coarser than the colorless glass powder particles. In other words, the coarse grains act to form a mottled pattern. For example, similar fine particles of colorless and colored raw materials are used.
When mixed as fine particles of 200 mesh or less and manufactured as crystallized glass, the product exhibits a uniform color and does not have a mottled pattern. This makes the process of separately manufacturing colored and colorless raw materials and mixing the powders of each powder meaningless. (Example) First, the reason for limiting the essential components will be described. Note that the essential components are common to colorless and colored glassy raw materials. SiO2 : 45 to 75% (weight percentages are the same) If it is less than 45%, it is difficult to maintain the shape of the compression molded product during heat treatment, and if it is more than 75%, the viscosity of the glass increases and the densification of the compression molded product becomes slow. Al 2 O 3 : 20% or less If it is 20% or more, the viscosity of the glass becomes high and the densification of the compression molded product becomes slow. CaO: 5-40% If it is less than 5%, crystals such as wollite night and anorsite will be difficult to precipitate. Moreover, if it exceeds 40%, physical properties such as water resistance and acid resistance will be affected. Ka 2 O + K 2 O: 2 to 20% If it is less than 2%, the viscosity of the glass increases and the densification of the compression molded product becomes slow. Moreover, if it exceeds 20%, it is difficult to maintain the shape of the compression molded product during heat treatment. The above-mentioned essential components are contained in a total amount of 85% or more in order to maintain appropriate physical properties as a glass. Next, coloring agents (CoO, FeO + Fe 2 O 3 , Cr 2 O 3 , NiO, CuO,
Regarding the reason why MnO 2 etc.) was set to 10% or less,
From the viewpoint of coloring, a content of 10% or more is not only unnecessary, but also a content of 10% or more increases the difference in physical properties from a colorless glassy raw material. Next, regarding non-essential components, up to 2% of each of MgO, ZnO, BaO, PbO, B 2 O 3 , etc. can be added to both colorless and colored glass raw materials without any problem, and Sb 2 O 3 can be used as a fining agent. 1% or less may be added at the time of melting. It is also possible to contain a nucleating agent. Next, the manufacturing method will be explained in detail. Colorless and colored glassy raw materials are produced by mixing and melting the raw materials for each of the above components to a predetermined composition, and then quenching and crushing this by a method such as water pulverization to obtain glassy bodies. Use as raw material. Of course, a material having a limited range of component compositions and already in the form of glass may be used as the raw material, and this may be crushed into small bodies by an appropriate means. The glass bodies thus obtained are further crushed using, for example, a ball mill, and at this time, the colorless glassy raw material (hereinafter referred to as colorless raw material) is made to contain 90% or more of fine particles of 200 mesh or less. , colored glassy raw materials (hereinafter referred to as colored raw materials) are powders of 10 to 200 mesh, or
The powder must contain powder of 10 to 200 mesh and further contain fine powder of 200 mesh or less. The thus obtained colorless and colored raw material powders are mixed, and both are mixed in a desired ratio so that fine powder of 200 mesh or less accounts for 50% or more of the mixed powder. The reason why we limited 200mesh or less to 50 or more is because if it is 50% or less, that is, if there are many coarse particles mixed in, it will affect dense compaction and raise the temperature for fusing and integrating the particles. At the same time, if the particle size and amount of the coarse colored raw material powder becomes large, air bubbles will be included inside the product. This is because, as mentioned above, the product tends to contain air bubbles, which may reduce its strength. However, in cases where strength and the presence of bubbles are not a problem, some amount of the coarse particles may be allowed. Next, the mixed powder is compression-molded into a dense green compact with a true density of 55% or more using a compression molding frame of the desired shape. This is to ensure that densification is performed at low temperatures, and in order to compression mold glass powder with the above particle size to a density of 55% or more of the true density.
A pressure of 20 Kgf/cm 2 or more is suitable. Note that when compression molding the powder, it is effective to add a small amount of a binder such as polyvinyl alcohol (PVA) to the powder in advance to facilitate molding. The green compact obtained in this way is heated to a temperature above the softening point (actually, preferably above the softening point + 100°C) and below the temperature at which the crystal growth rate increases in order to fuse and integrate the glass particles and make it densified. Heat treatment is performed.
Through this treatment, each glass powder is fused and integrated and densified, and at the same time, nucleation is progressing at the fused interface between the particles. Once the compact has been densified, the temperature is further increased to encourage crystal growth and crystallization, but as mentioned above, the mixed colored raw material powder has a different composition compared to the colorless raw material powder. Since the composition contains only 10% or less of a coloring agent, there is no significant difference in the softening point or other properties of the two raw material powders, and the integral densification and crystallization of the powder proceed without any problems during the heat treatment described above. FIG. 2 shows the heat treatment curve of the above-mentioned green compact, in which the interval aa is the integral densification section of the glass particles, the interval bb is the crystallization section, SP is the softening point, and MP is the melting point. The crystallized glass obtained through the above steps is
The rest is white due to crystal precipitation, and the colored parts are distributed in a patchy manner. Depending on the degree of mixing of the powder, the colored part can be a fine speckled pattern with a uniform distribution, or a lump-like pattern with an uneven distribution. It is possible to make it exhibit a mottled pattern, and it is also possible to adjust the density of the mottled pattern by changing the mixing ratio of colored and colorless raw material powders. It is also possible to create a multicolored mottled pattern by using multiple types of colored raw materials with different colors. Next, specific examples of the present invention will be shown. The colorless and colored raw materials used in the examples have the compositions shown in the table below.The raw materials containing each component were dissolved at 1500℃, and then poured into water to form colorless and colored raw materials, respectively. Glassy bodies were obtained.
【表】
前記ガラス小体はボールミルを用いて粉砕し、
次のような粉末とした。
無色原料は200mesh以下の粉末
有色原料は(40〜200meshの粉末):(200mesh
以下の粉末)=1:2の割合いで含む粉末
上記両粉末を1:1の割合で混合し、これに粘
結剤としてP.V.A.の3%溶液を5w.t%加え、圧
縮成形枠を用いて100×100×25(mm)の圧縮成形
体を得た。なお成形時のプレス圧は30Kgf/cm2の
2種で行つたが、熱処理品の物性に差異は見られ
なかつた。
上記の圧縮成形体の熱処理は150℃/hrの昇温
速度で690℃まで上げ、同温度を30分間保つてガ
ラス粉末の融着一体化及び緻密化を図つて後、
800℃に昇温して同温度を30分間保ち結晶化を図
つたところ製品にウオラストナイト(CaO・
SiO2)の結晶が析出していることを認めた。
第3図は上記熱処理の熱処理曲線であり、同処
理によつて得られた結晶化ガラスの物性値は、密
度2.5Kg/cm2、吸水率0.02%、曲げ強さ710Kgf/
cm2であつた。なお第4図、第5図は上記実施例で
得られた結晶化ガラスの模様構成図であり、第4
図は原料ガラス粉末を均一に混合した場合で、着
色部が細かく均一に分布した微細斑点模様を呈し
ており、第5図は不均一に混合した場合で着色部
は塊状斑模様を呈している。
(発明の効果)
以上のように本発明の方法は、ガラス状原料の
微粉末を圧縮成形体とし熱処理することによつ
て、集積法におけるような結晶の成長に伴う粘性
増大による障害もなく、広い範囲の組成のガラス
(本発明で特定した組成範囲は広く、従来ガラス
もこの範囲に入るものが多い)において容易に結
晶化ができるのであり、着色も着色ガラス粉末と
無色ガラス粉末を混じて圧粉体として熱処理する
という手段によるのであるから斑状模様を出現さ
せることができるのであり、同模様の変化も有色
ガラス粒子の色、粒子、量、混合程度等により、
更には結晶化の程度等によつて種々に変化せしめ
ることができる。また形状においても圧粉体とし
て成形するために容易に所望形状とすることが可
能であり、表面に凹凸をつけることなども容易で
ある。
更には多きな気泡を製品内部に含むことなく製
造できることも材質として大きな利点であり、結
晶化ガラスの強度をより確実にしているのであ
る。このように種々の利点を有して、優れた装飾
材、建築材としての色模様付結晶化ガラスの提供
を可能とした本発明の工程的価値は著大である。[Table] The glass bodies were crushed using a ball mill,
The following powder was prepared. Colorless raw materials are powders of 200mesh or less Colored raw materials are (40-200mesh powders): (200mesh
The following powders) = Powders containing at a ratio of 1:2 Mix both of the above powders at a ratio of 1:1, add 5w.t% of a 3% solution of PVA as a binder, and use a compression molding frame. A compression molded body of 100×100×25 (mm) was obtained. Although the press pressure during molding was 30 Kgf/cm 2 , no difference was observed in the physical properties of the heat-treated products. The above compression molded body was heat-treated by increasing the temperature to 690℃ at a rate of 150℃/hr and maintaining the same temperature for 30 minutes to fuse and integrate the glass powder, and then
When the temperature was raised to 800℃ and the same temperature was maintained for 30 minutes to achieve crystallization, the product turned into wollastonite (CaO.
It was observed that crystals of SiO 2 ) were precipitated. Figure 3 shows the heat treatment curve of the above heat treatment, and the physical properties of the crystallized glass obtained by the same treatment are density 2.5Kg/cm 2 , water absorption 0.02%, and bending strength 710Kgf/cm 2 .
It was warm in cm2 . Note that FIGS. 4 and 5 are diagrams of the pattern structure of the crystallized glass obtained in the above example, and
The figure shows the case where the raw glass powder is mixed uniformly, and the colored part exhibits a fine speckled pattern with fine and uniform distribution, and Figure 5 shows the case where the raw glass powder is mixed unevenly, and the colored part has a lumpy mottled pattern. . (Effects of the Invention) As described above, the method of the present invention heat-treats a fine powder of a glassy raw material as a compression molded body, thereby eliminating the problem of increased viscosity due to crystal growth unlike in the accumulation method. Glasses with a wide range of compositions (the composition range specified in the present invention is wide, and many conventional glasses fall within this range) can be easily crystallized, and coloring can be achieved by mixing colored glass powder and colorless glass powder. Because it is heat treated as a green compact, it is possible to create a mottled pattern, and the pattern changes depending on the color, particle size, amount, degree of mixing, etc. of the colored glass particles.
Furthermore, it can be varied in various ways depending on the degree of crystallization. In addition, since it is molded as a powder compact, it can be easily formed into a desired shape, and it is also easy to form irregularities on the surface. Furthermore, it is a great advantage as a material that it can be manufactured without including many air bubbles inside the product, making the strength of crystallized glass even more reliable. The process value of the present invention, which has various advantages as described above and makes it possible to provide colored patterned crystallized glass as an excellent decorative material and building material, is enormous.
第1図はガラスの微粉圧縮体を加熱したときの
温度と核形成速度及び結晶成長速度との関係を概
念的に示したグラフで、破線グラフが「核形成速
度−温度」曲線、実線グラフが「結晶成長速度−
温度」曲線である。第2図は本発明における熱処
理様式を示す熱処理曲線、第3図は本発明実施例
の熱処理曲線を示す。第4、第5図は本発明実施
例の結晶化ガラスの模様構成を示す図であり、第
4図は原料ガラス粉末を均一に混合した場合に得
られた結晶化ガラス、第5図は不均一に混合した
場合に得られた結晶化ガラスである。
Figure 1 is a graph conceptually showing the relationship between temperature, nucleation rate, and crystal growth rate when a compacted glass powder is heated; the broken line graph is the ``nucleation rate-temperature'' curve, and the solid line graph is “Crystal growth rate-
temperature” curve. FIG. 2 shows a heat treatment curve showing the heat treatment mode in the present invention, and FIG. 3 shows a heat treatment curve of an example of the present invention. 4 and 5 are diagrams showing the pattern structure of crystallized glass according to an example of the present invention. FIG. 4 shows the crystallized glass obtained when the raw material glass powders are uniformly mixed, and FIG. This is a crystallized glass obtained when uniformly mixed.
Claims (1)
75%、Al2O3:20%以下、CaO:5〜40%、
Na2O+K2O:2〜20%を、SiO2+Al2O3+CaO
+Na2O+K2O>85%であるように含有して成る
ガラス状原料を粉砕して、200mesh以下の粒子が
90%以上を占めるようにした粉体と、前記組成範
囲の各成分及び重量百分率で10%以下の着色剤を
含有して成る有色のガラス状態の原料を粉砕し
て、10〜200mesh若しくは10〜200meshとそれ以
下の粒子を含むようにした粉体との混合に当り、
両者の混合物中において200mesh以下の粒子が50
%以下を占める範囲で両者を所望割合に混合し、
次いで該混合物を所望形状の圧縮成形枠を用いて
真密度の55%以上の圧粉体に圧縮成形して後、熱
処理することにより核圧粉体の各ガラス粉末を相
互に軟化融着させて一体化及び緻密化する一方結
晶化を図り、主としてウオラストナイト結晶を析
出させるようにしたことを特徴とする色模様付結
晶化ガラスの製造方法。1 As an essential component, SiO 2 : 45 to 45% by weight
75%, Al2O3 : 20% or less , CaO: 5-40%,
Na 2 O + K 2 O: 2 to 20%, SiO 2 + Al 2 O 3 + CaO
A glassy raw material containing +Na 2 O + K 2 O > 85% is crushed to produce particles of 200 mesh or less.
A colored glass-like raw material comprising a powder that accounts for 90% or more, each component in the above composition range, and a coloring agent of 10% or less by weight is pulverized to produce 10 to 200 mesh or 10 to 200 mesh. When mixing powder containing 200mesh and smaller particles,
In the mixture of both, there are 50 particles of 200 mesh or less.
% or less in a desired proportion,
Next, the mixture is compression-molded into a compact having a true density of 55% or more using a compression molding frame of a desired shape, and then heat-treated to soften and fuse the glass powders of the core compact to each other. 1. A method for producing crystallized glass with a colored pattern, characterized in that crystallization is achieved while integrating and densifying the glass, so that wollastonite crystals are mainly precipitated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP269386A JPS62162631A (en) | 1986-01-08 | 1986-01-08 | Production of crystallized glass having colored pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP269386A JPS62162631A (en) | 1986-01-08 | 1986-01-08 | Production of crystallized glass having colored pattern |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62162631A JPS62162631A (en) | 1987-07-18 |
JPH0575701B2 true JPH0575701B2 (en) | 1993-10-21 |
Family
ID=11536356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP269386A Granted JPS62162631A (en) | 1986-01-08 | 1986-01-08 | Production of crystallized glass having colored pattern |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62162631A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0725570B2 (en) * | 1988-05-31 | 1995-03-22 | 日本特殊陶業株式会社 | Colored crystallized glass body and its manufacturing method |
JP2611546B2 (en) * | 1991-12-12 | 1997-05-21 | 日本電気硝子株式会社 | Patterned crystallized glass |
CN110156331A (en) * | 2019-04-28 | 2019-08-23 | 安徽建筑大学 | It is a kind of using gangue as colored ecological glass-ceramic of major ingredient and preparation method thereof |
-
1986
- 1986-01-08 JP JP269386A patent/JPS62162631A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62162631A (en) | 1987-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1596839B1 (en) | Process for the production of molded articles from glasses at a temperature below the usual melting temperature | |
JPH0575701B2 (en) | ||
US3057741A (en) | Method of making ceramoplastic material | |
JPH0575702B2 (en) | ||
JPS6224365B2 (en) | ||
CN101851066A (en) | Pot-shaped glass-ceramic panel and manufacturing method thereof | |
JPS6317238A (en) | Production of crystallized glass | |
JPH0444622B2 (en) | ||
JPS62235230A (en) | Production of crystallized glass with colored pattern | |
DE1471337B2 (en) | Process for the production of porcelain-like objects | |
JPH0751448B2 (en) | Crystallized glass building material and manufacturing method thereof | |
JPS63144142A (en) | Crystallized glass and production thereof | |
JPS62143842A (en) | Crystallized glass and production thereof | |
JP4041546B2 (en) | Method for producing colored crystallized glass article | |
JPS6374936A (en) | Crystallized glass and production thereof | |
JPH0436098B2 (en) | ||
JPS6317239A (en) | Production of crystallized glass with color pattern | |
JPH0193441A (en) | Production of crystallized glass building material | |
JPH01252551A (en) | Production of crystallized glass containing dot pattern | |
JPS6340737A (en) | Production of high-strength crystallized glass | |
JPH02120254A (en) | Crystallized glass material and production thereof | |
JPS58176140A (en) | Molded article of sintered and crystallized glass and its preparation | |
DE1596839C (en) | Process for the production of shaped bodies made of glasses at a temperature below the usual melting temperature | |
JPS62235229A (en) | Production of crystallized glass | |
JPS63129025A (en) | Production of glass ceramic article |