JPH0444622B2 - - Google Patents

Info

Publication number
JPH0444622B2
JPH0444622B2 JP61291203A JP29120386A JPH0444622B2 JP H0444622 B2 JPH0444622 B2 JP H0444622B2 JP 61291203 A JP61291203 A JP 61291203A JP 29120386 A JP29120386 A JP 29120386A JP H0444622 B2 JPH0444622 B2 JP H0444622B2
Authority
JP
Japan
Prior art keywords
raw material
softening point
powder
glassy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61291203A
Other languages
Japanese (ja)
Other versions
JPS63156024A (en
Inventor
Yoshihiro Nakagawa
Yoshito Seto
Akitoshi Okabayashi
Hiroyuki Kimura
Takashi Shikata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of JPS63156024A publication Critical patent/JPS63156024A/en
Publication of JPH0444622B2 publication Critical patent/JPH0444622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高強度の建築外装材や内装材、装飾品
等のガラスセラミツクス製品の製造方法に関す
る。 (従来の技術) 従来の一般的なガラスセラミツクス製品の製法
は、該形成剤を含むガラス原料を溶融し、各種の
成形手段によつて成形して後、結晶化熱処理を行
つて結晶を析出させ、ガラスセラミツクス製品と
していた。 又核形成剤を含まないでガラスセラミツクスを
得る方法として、溶融状態のガラスを水冷等で破
砕して得たガラス小体を、型枠に集積して熱処理
することにより、各ガラス小体を融着する一方結
晶化する方法(集積法と称す)が「特公昭55−
29018号公報」に開示されている。 更に本発明者等が「特願昭60−284150号」にお
いて開示したところの、特定組成(主としてウオ
ラストナイト晶生成組成)のガラス状原料を微粉
化し、該微粉の圧粉成形体を熱処理することによ
り、粉末粒子を相互に軟化融着させて一体化及び
緻密化する一方、結晶化を図つて主としてウオラ
ストナイト結晶を析出させる方法がある。 (発明が解決しようとする問題点) 上記従来方法のうち核形成剤を含み、ガラス製
品として成形して後熱処理して結晶化を図る方法
は、該形成剤が原料に比し高価なことが多いとい
う点が問題であり、集積法はガラス小体の軟化融
着の時期に、析出の結晶核の成長速度が速く既に
結晶としての成長時期に入つているような組成の
場合、結晶化に伴う粘性の増大によつて前記小体
の融着一体化が困難になる。つまり使用のガラス
小体の成分組成に制限があり、核形成剤や核形成
作用を有する着色剤を含有する場合も適さないの
である。 次に本発明者等による先願発明のガラス状原料
の微粉化と該微粉を圧粉成形体として熱処理する
方法は、微粉同士の接触による接触面積の拡大
と、緻密接触によつて軟化点をやゝ上回る程度の
低温でガラス粒子間の軟化融着及び緻密化ができ
るのである。すなわち集積法におけるガラス小体
の軟化融着が、粗粒かつ単なる集積状態であるた
めに軟化温度を相当上回る温度でなければ実現し
ないのに対して、上記先願発明では上述のように
軟化点をやゝ上回る程度の低温で行われ、従つて
軟化融着及び緻密化の後に更に昇温して結晶化が
行える。このことは核形成剤又は核形成作用を有
する着色剤を含む場合も同様である。 上記圧粉成形体の成形には粘結剤を添加すると
成形の容易及び成形体(しら地)の強度を向上し
て、運搬時や焼結時の損傷防止に有効である。 特に取扱い時に損傷しやすい大形品の製造には
その添加は必要であるが、これらの粘結剤は完成
時の製品の特性とは殆んど関係なく、むしろ残留
粘結剤が製品特性を低下させるようなことがあ
り、このような場合は焼結に際して脱バインダー
工程を組込に、積極的に除去する必要がある。し
かし脱バインダー手段は困難な場合が多く種々の
考案がなされているがこれによるコスト上昇は問
題である。 又粘結剤そのものによるコスト高、粘結剤を均
一に混練する装置によるコスト高等も問題であ
る。 粘結剤にはPVA(ポリビニルアルコール)が多
用され、他にモンモリロナイト系、アルミナセメ
ント系等も使用されるが、以上のような問題点に
鑑み、粘結剤を使用せずかつしら地の強度を向上
させる手段の開発が強く希求されてきたのであ
り、本発明はその希求に応えてなされたものであ
る。 (問題点を解決するための手段) 前記希求に応えてなされた本発明の特徴とする
手段は、特定化学組成の低軟化点ガラス状原料粉
末と特定化学組成の高軟化点ガラス状原料粉末と
の混合物を成形用金型に供給し、該混合物を低軟
化点ガラス状原料粉末の軟化点以上でかつ高軟化
点ガラス状原料粉末の軟化点未満の成形温度に加
熱し、加圧成形して混合粉末成形体を得、該混合
粉末成形体を高軟化点ガラス状原料粉末の軟化点
以上の温度に加熱し、ガラス状原料粉末相互を軟
化融着させ緻密化すると共に結晶を析出させるよ
うにした点である。 (作用) 低軟化点ガラス状原料粉末と高軟化点ガラス状
原料粉末との混合物を成形用金型に供給し、該混
合物を低軟化点ガラス状原料粉末の軟化点以上で
かつ高軟化点ガラス状原料粉末の軟化点未満の成
形温度に加熱して、前者が軟化、後者が未軟化の
状態で加圧成形するのであるから、軟化粉末が粘
結剤として作用し粉末相互を一体化する。従つて
従来の非成分系粘結剤使用に起因する前記諸種の
問題点を解消しているのである。 それに軟化粉末は成形体構成粒子そのものであ
るから、添加量の制限される粘結剤と異なつて多
量であり、従つて加圧力が比較的小さくとも強度
の大きい混合粉末成形体(しら地)が得られるの
である。 加えて軟化、未軟化の混合粉末の加圧成形のた
めに、粉末間に滞留の空気が逃げ易く健全なしら
地ができるのである。すなわち軟化粉末が変形し
て空気を追出しつゝ粒子間空気を埋めると共に未
軟化粒子間の細隙が空気通路として作用するので
ある。 若し、全粉末が軟化状態で加圧成形される場合
は、粉末間に滞留の空気は閉じ込められやすく、
後の結晶化のための昇温時に閉じ込められた空気
が膨脹し、しら地の膨脹あるいは割れなどを梯子
しやすいのである。 前記混合粉末成形体を高軟化点ガラス状原料粉
末の軟化点以上の温度に加熱すると、ガラス状原
料粉末相互は軟化融着し、緻密化すると共に結晶
が析出する。この際、本発明において使用する特
定組成の低軟化点および高軟化点ガラス状原料粉
末は、軟化点の差が少なくとも100℃以上あるた
め成形温度の設定が容易で、成形加工を容易に行
うことができる。また、それぞれのガラス状原料
粉末単独よりも両者が融合した成分組成の方が結
晶化し易いため、融合前においては結晶化が生じ
にくく、混合粉末成形体として緻密化を容易に行
うことができる。更に、融合後は結晶化が速やか
であり、高強度の結晶化ガラス材を容易に得るこ
とができる。 (実施例) 以下実施例と共に本発明を詳述する。 先ず原料粉末から述べると、溶融ガラスの水砕
等、ガラスを適宜の方法で小体とし、これを更に
粉末として用いるのであり、既にガラスとなつて
いるものを原料とする意味でガラス状原料と称し
ているのである。 ところで低軟化点原料としては軟化点400〜800
℃のガラス状原料が望ましく、高軟化点原料とし
ては、低軟化点原料より少なくとも100℃高い軟
化点を有するものが望ましいのである。 すなわち400℃以下で軟化のガラス(ガラス状
原料)は一般に低融点ガラスと呼ばれ、ガラスセ
ラミツクス建材の原料としては適さず、また800
℃以上で軟化のガラス状原料は、加圧成形に際し
加圧成形枠(金型等)の強度の面で問題を残すの
であり、より好ましくは軟化点500〜700℃のガラ
ス状原料である。 一方高軟化点ガラス状原料が低軟化点ガラス状
原料より少なくとも100℃高い軟化点を有するこ
とが望ましいとしているのは、加熱炉内の温度分
布に若干のむらがあつてもなお両粉末が軟化、未
軟化の差を保持できるようにするためである。 上記ガラス状原料の混合粉末の加熱は通常該粉
末が酸化されるものでないため、不活性雰囲気と
する必要はなく、加熱方式としてはバツヂ式、連
続式等種々の方法によることが可能であるが、加
熱攪拌中に原料粉末の粒度及び種類分布が不均一
にならないように注意する必要がある。 かくて成形温度に加熱した混合粉末は成形枠に
投入して加圧成形するのであり、成形温度、加圧
力等から好ましい成形枠として金型がある。 第1図は本発明実施例の金型成形例の説明断面
図であり、1が金型の上型、2は同横型、3が同
下型であり、4が加熱したガラス状原料粉末の混
合物であり、該混合物4を金型中に投入後、上型
1により加圧成形する。 金型には、軟化のガラス状原料粉末が粘着する
場合があり、この防止に、塗型(ジルコンサン
ド、黒鉛等)の塗布、セラミツクスシートの貼
付、セラミツクスコーテイング等を行うことが望
ましい。 なお金型は常温使用、予熱使用のいずれによる
こともできる。常温使用では投入の加熱原料粉末
の熱が熱伝導により奪われるが、投入から加圧成
形までの時間が短かければ問題はない。調査例を
示すと、原料粉末の加熱温度600℃、雰囲気温度
30℃の場合、30秒経過後の原料粉末の平均低下温
度は30℃であつた。しかし成形温度近くへの余熱
は好ましいことである。 金型の予熱にはガスバーナ等による外部加熱の
他に、金型内部に電熱線を設置するなどによつて
加熱する内部加熱がある。 このようにして原料粉末の混合物の一方が軟
化、他方が未軟化の状態で加圧成形すると、既述
のように軟化粉末が粘結剤として作用し、緻密な
加圧成形体を得ることができる。しかして該成形
体密度は真密度の50%以上、曲げ強さは10Kgf/
cm2以上とすることが適当である。これは成形体構
成の両原料粉末相互の軟化融着、緻密化を可及的
低温で行わせるためと、緻密化、結晶化に当つて
の体積変化を少なくするための密度であり、成形
体の運搬、熱処理に際して損傷防止を可能とした
強さである。 次に本発明に使用するガラス状原料粉末につい
て具体的に説明する。まず、その組成について説
明する。 第1ガラス状原料組成(軟化温度400℃〜800
℃の低軟化点ガラス状原料粉末組成) SiO2:55〜75%,Al2O3:15%以下、 CaO:5〜15%,Na2O+K2O:10〜20%、 以上を必須成分とし、かつSiO2+Al2O3+CaO
+Na2O+K2O>90%(重量百分率、以下同じ) 第2ガラス状原料組成(高軟化点ガラス状原
料粉末組成) SiO2:40〜60%,Al2O3:5〜20%。 CaO:25〜45%、 以上を必須成分とし、かつSiO2+Al2O3+CaO
>85%。 なお上記第2ガラス状原料組成に、15%以下の
ガラス着色剤を含有させることによつて、ガラス
セラミツクス製品を色付若しくは色模様付製品と
することが可能である。以下、前記組成の限定理
由について説明する。 第1ガラス状原料組成 SiO2:55〜75% SiO2は材料の結晶化を抑制する作用がある。
55%未満では結晶析出が速くなり、熱処理時の緻
密化が不充分となる。また、軟化点を高くする作
用があり、本発明目的からは、軟化点を低くする
必要があるため、75%以下とする。 CaO:5〜15% CaOは材料の結晶化に大きな効果がある。低軟
化点ガラスは、熱処理時の材料の緻密化を目的と
するものであるが、結晶化が全く起こらなけば、
材料の強度面で問題となるため、特に重要な成分
である。5%未満では結晶の析出が難しく、ま
た、15%を越えると結晶化速度が速くなり過ぎて
材料の緻密化が不充分となる。 Al2O3:15%以下 Al2O3は軟化点を高くする作用があり、本原料
の目的から、15%以下とする。 Na2O+K2O:10〜20% Na2OとK2Oとは共に軟化点を低くする作用
があり、両者を複合して10%以上の含有は必要で
ある。しかし、これらは最終製品の耐候性を劣化
させるため、20%以下とする。 SiO2+Al2O3+Na2O+K2O:90%より高 ガラス成分としては、前述の成分以外に多くの
他成分が混入していることが通例であるため、本
発明の目的を妨げない範囲として、これらの成分
の合計を90%を越える範囲とする。 第2ガラス状原料組成 si2:40〜60% 本原料は、材料の結晶化によつて、最終製品の
強度を高めることを目的とするが、結晶化が早過
ぎると、材料の緻密化が不充分となる場合があ
る。SiO2は結晶化を抑制する作用があるため、
本材料の目的から、60%以下とする。一方、40%
未満では結晶化が速くなり過ぎて、緻密化が不充
分となる。 CaO:25〜45% CaOは結晶化を促進する作用がある。25%未満
では結晶量が少なくなり、強度が低くなる。45%
を越えると、結晶化速度が速くなり過ぎて、緻密
化が不充分となる。 Al2O3:5〜20% Al2O3はガラス状原料の軟化点を上げ、また、
結晶化を抑制する作用がある。軟化点が上がり過
ぎると、緻密化が不充分となるため、20%以下と
する。また、SiO2,CaOとの結晶化に対するバ
ランスから、5%以上とする。 SiO2+Al2O3+CaO:85%より高 ガラス成分には、前述の成分以外に他の成分が
混入していることが通例であり、また、積極的に
着色剤を0.5〜1.5%含有させる場合もある。以上
の点から、本発明の目的に問題を発生させない範
囲として、合計量を85%を越える範囲とする。 上記第1、第2ガラス状原料組成の顕著な差
は、第1ガラス状原料に含まれるNa2O+K2
が、第2ガラス状原料には含有されず、替つて
CaO量が大きいことである。勿論他の成分含有量
のバランスも軟化点の差に関係するが、主として
上記組成の差によつて第2ガラス状原料の軟化点
が第1ガラス状原料の軟化点より高いのであり、
両者の組成を選択調整することによつて好ましい
軟化温度差100℃〜400℃を得ることができる。 なお上記第1、第2ガラス状原料組成は、各単
独よりも両者が融着一体化した場合の方が結晶化
の容易な組成となるように配慮された組成であ
り、今両者が1:1で混合一体化された場合の粒
子の融界面組成はSiO2:47〜68%,Al2O3:2〜
18%,CaO:15〜30%,Na2O+K2O:5〜10
%の範囲となり、主としてウオラストナイト晶、
他にアノルサイト晶が生成する組成範囲である。 以上は析出結晶がウオラストナイト、アノルサ
イト晶の場合を述べたが、勿論他の結晶、たとえ
ばデビトライト結晶を析出せしめるようなガラス
状原料を用いることも可能である。 ガラス状原料の製造はそれぞれ所定の化学組成
を有するように調整した原料を溶融して後、これ
を水砕などの方法で急冷破砕してガラス状小体と
する。勿論所定化学組成を有して既にガラス状に
なつているものを適宜の手段で小体としてもよ
い。 このようにして得られたガラス状小体を、たと
えばボールミルなどにより更に粉砕するのであ
り、このときの粒度は微細な程粉末の融着一体
化、緻密化が軟化点をやゝ上回る程度の低温で行
われるのであり、混合粉末中200メツシユ以下の
微粒子が少なくとも50%は含まれていることが望
ましい。一方10メツシユ以上の組粒の存在は製品
内部に気泡を含有しやすく避けるべきである。 なお高軟化点のガラス状原料が着色剤を含む有
色原料の場合、同原料粉末を10〜200メツシユの
粒子とし、低軟化点の無色ガラス状原料粉末を
200メツシユ以下の微粉として混合すると、完成
品を色模様(斑模様)付製品とすることができ
る。又両者共200メツシユ以下の微粉とすれば一
様な地色を呈して単なる色付製品となる。 以上のようにして得られたガラス状原料粉末を
混合し、該混合物を加熱し加圧成形体とすること
については既に述べたとおりであり、この場合の
加圧力は5Kgf/cm2以下では必要な強さ、つまり
次の熱処理まで形状を維持し得る強さが得られな
い。又300Kgf/cm2以上は金型の強度及び経済的
な面から問題であるし、それを超える必要もな
い。 次に該加圧成形体の熱処理について述べる。 加圧成形体の熱処理のための加熱は、成形温度
まで急速昇温して差支えなく、次いで結晶化温度
に昇温して同温度を保つ。勿論加圧成形後引続き
成形体を加熱してもよい。 加圧成形温度は既述のように2種のガラス状原
料粉末のうち1種が軟化し、他が未軟化状態を保
つ温度、すなわち低温軟化粉末の軟化点をやゝ上
回る温度であり、結晶化温度は上記の高温軟化粉
末の軟化点を上回りかつ結晶の成長速度の大きい
温度域である。 成形体を成形温度に加熱した時点では低温軟化
粉末は軟化(再軟化)しており、結晶化温度に保
持した状態では、高温軟化粉末も軟化して粉末粒
子相互の軟化融着、緻密化、すなわち焼結と結晶
化が進むのである。結晶化処理の後は除冷する。 前記例示の第1及び第2ガラス状原料の粉末に
よる場合は成形温度は400℃〜800℃であり、結晶
化温度は800℃〜1000℃である。 第2図は、上記第1及び第2ガラス状原料の粉
末による加圧成形体の成形を、従来の手法すなわ
ち粘結剤(PVA溶液を用いた)と共に混練して
後、圧縮成形枠を用いる常温の加圧成形で行い、
同成形体を熱処理した熱処理曲線(実線)と前記
本発明の熱処理の熱処理曲線(破線)を比較して
示すものである。 同図においてa区間は従来手法による圧縮成形
体の乾燥を含む昇温区間、b区間は脱バインダー
処理区間(300℃〜400℃)、C点は本発明に係る
加圧成形温度(400℃〜800℃)、d区間は焼結・
結晶化区間(800℃〜1000℃)、e区間は除冷区間
である。 a区間の脱水、b区間の脱バインダーの2工程
は急速に処理するとしら地に悪影響を及ぼし、ひ
いては熱処理後の製品の物性を劣化させるもので
短縮することができず、a〜eの全区間では100
時間以上を要していた。 しかるに本発明の製造方法ではa,b区間の工
程が不要であり、熱処理時間も薬30時間と上記の
1/3以下に短縮されている。 次に本発明の具体的実施例について説明する。 実施例 1 ガラス状原料は下記第1表に示す組成を有する
ものであり、それぞれの成分を含有するように配
合した配合原料を融解し、次いでこれを水砕して
ガラス状小体としたものを更にボールミルで粉砕
した。
(Industrial Application Field) The present invention relates to a method for manufacturing high-strength glass-ceramic products such as architectural exterior materials, interior materials, and decorative items. (Prior art) The conventional general manufacturing method for glass-ceramic products involves melting a glass raw material containing the forming agent, shaping it by various shaping means, and then performing a crystallization heat treatment to precipitate crystals. , glass-ceramics products. In addition, as a method for obtaining glass ceramics without using a nucleating agent, glass particles obtained by crushing molten glass by water cooling or the like are collected in a mold and heat-treated to melt each glass particle. The method of crystallization while depositing (referred to as the accumulation method) was
29018 Publication”. Further, as disclosed by the present inventors in "Japanese Patent Application No. 60-284150," a glassy raw material having a specific composition (mainly a composition for forming wollastonite crystals) is pulverized, and a green compact of the pulverized powder is heat-treated. Accordingly, there is a method in which powder particles are softened and fused to each other to be integrated and densified, while crystallization is attempted to mainly precipitate wollastonite crystals. (Problems to be Solved by the Invention) Among the conventional methods described above, the method in which a nucleating agent is included and the glass product is formed and then heat-treated to achieve crystallization is that the nucleating agent is expensive compared to the raw material. The problem with the accumulation method is that during the period of softening and fusion of glass bodies, if the growth rate of precipitated crystal nuclei is fast and the composition has already entered the period of crystal growth, crystallization may occur. The accompanying increase in viscosity makes it difficult to fuse and integrate the bodies. In other words, there are restrictions on the component composition of the glass bodies that can be used, and it is not suitable even if they contain a nucleating agent or a coloring agent that has a nucleating effect. Next, the method of pulverizing a glassy raw material and heat-treating the vitreous raw material in the form of a green compact according to the prior invention by the present inventors is to increase the contact area through contact between the fine powders and to lower the softening point through close contact. Softening, fusing, and densification between glass particles can be achieved at temperatures slightly higher than that of glass. In other words, the softening and fusing of the glass bodies in the accumulation method cannot be achieved unless the temperature is considerably higher than the softening temperature because the glass bodies are coarse particles and in a mere accumulation state, whereas in the prior invention, as described above, the softening point is Therefore, after softening, melting, and densification, the temperature can be further raised to effect crystallization. This also applies when a nucleating agent or a coloring agent having a nucleating effect is included. Addition of a binder to the molding of the compacted product facilitates molding and improves the strength of the compact (white base), which is effective in preventing damage during transportation and sintering. Their addition is necessary, especially in the manufacture of large products that are easily damaged during handling, but these binders have little to do with the properties of the finished product; rather, the residual binder influences the product properties. In such cases, it is necessary to actively remove the binder by incorporating a binder removal process during sintering. However, debinding methods are often difficult and various ideas have been made, but the resulting increase in costs is a problem. Another problem is the high cost due to the binder itself and the high cost due to the equipment for uniformly kneading the binder. PVA (polyvinyl alcohol) is often used as a binder, and other types such as montmorillonite and alumina cement are also used. There has been a strong desire to develop a means to improve this, and the present invention has been made in response to that desire. (Means for Solving the Problems) The characteristic means of the present invention, which has been made in response to the above-mentioned desire, is to combine a low softening point glassy raw material powder with a specific chemical composition and a high softening point glassy raw material powder with a specific chemical composition. The mixture is supplied to a molding die, heated to a molding temperature higher than the softening point of the low softening point glassy raw material powder and lower than the softening point of the high softening point glassy raw material powder, and pressure molded. A mixed powder compact is obtained, and the mixed powder compact is heated to a temperature equal to or higher than the softening point of the high softening point glassy raw material powder, so that the glassy raw material powders are softened and fused together to become densified and to precipitate crystals. This is the point. (Function) A mixture of a low softening point glassy raw material powder and a high softening point glassy raw material powder is supplied to a molding die, and the mixture is heated to a temperature higher than the softening point of the low softening point glassy raw material powder and a high softening point glass. The material is heated to a molding temperature below the softening point of the raw material powder, and the former is softened and the latter is unsoftened and pressure molded, so the softened powder acts as a binder and integrates the powders. Therefore, the various problems mentioned above caused by the use of conventional non-component binders are solved. In addition, since the softened powder is the particle itself that constitutes the compact, unlike the binder, which has a limited amount of addition, the amount of softened powder is large. Therefore, even if the pressing force is relatively small, the mixed powder compact (shiraji) has a high strength. You can get it. In addition, due to the pressure molding of the softened and unsoftened mixed powder, air trapped between the powders can easily escape, creating a healthy sloping surface. That is, the softened powder deforms and expels air, filling the air between the particles, and the slits between the unsoftened particles act as air passages. If all the powder is pressed and molded in a softened state, air stagnant between the powders is likely to be trapped.
When the temperature is raised for later crystallization, the trapped air expands and tends to cause expansion or cracking of the slag. When the mixed powder compact is heated to a temperature equal to or higher than the softening point of the high softening point glassy raw material powder, the glassy raw material powders soften and fuse together, becoming denser and precipitating crystals. In this case, since the low softening point and high softening point glassy raw material powders of the specific composition used in the present invention have a difference in softening point of at least 100°C or more, it is easy to set the molding temperature and the molding process can be performed easily. I can do it. In addition, since the component composition in which both glassy raw material powders are fused is easier to crystallize than the respective glassy raw material powders alone, crystallization is less likely to occur before fusion, and densification can be easily performed as a mixed powder compact. Furthermore, crystallization is rapid after fusion, and a high-strength crystallized glass material can be easily obtained. (Examples) The present invention will be described in detail below along with Examples. First of all, starting with the raw material powder, glass is made into small bodies by an appropriate method such as pulverization of molten glass, and then this is further used as a powder, and it is called a glassy raw material in the sense that the raw material is already made into glass. It is called. By the way, low softening point raw materials have a softening point of 400 to 800.
A glassy raw material having a temperature of 0.degree. In other words, glass that softens below 400°C (glass-like raw material) is generally called low-melting glass, and is not suitable as a raw material for glass-ceramic building materials.
A glassy raw material that softens at a temperature of 500 to 700°C poses a problem in terms of the strength of a pressure molding frame (mold, etc.) during pressure molding. On the other hand, the reason why it is desirable that the high softening point glassy raw material has a softening point at least 100°C higher than the low softening point glassy raw material is that even if the temperature distribution in the heating furnace is slightly uneven, both powders will still soften. This is to make it possible to maintain the unsoftened difference. The heating of the mixed powder of the glassy raw materials does not usually oxidize the powder, so there is no need to use an inert atmosphere, and various heating methods such as batch type and continuous type can be used. During heating and stirring, care must be taken to ensure that the particle size and type distribution of the raw material powder does not become non-uniform. The mixed powder thus heated to the molding temperature is charged into a molding frame and pressure-molded, and from the viewpoint of molding temperature, pressure, etc., a preferred molding frame is a mold. FIG. 1 is an explanatory sectional view of an example of mold forming according to an embodiment of the present invention, in which 1 is the upper mold, 2 is the horizontal mold, 3 is the lower mold, and 4 is the heated glassy raw material powder. The mixture 4 is put into a mold and then pressure molded using the upper mold 1. The softened glassy raw material powder may stick to the mold, and to prevent this, it is desirable to apply a coating (zircon sand, graphite, etc.), attach a ceramic sheet, ceramic coating, etc. The mold can be used either at room temperature or preheated. When used at room temperature, the heat of the input heated raw material powder is taken away by thermal conduction, but there is no problem as long as the time from input to pressure molding is short. An example of the investigation is that the heating temperature of the raw material powder is 600℃, and the ambient temperature is 600℃.
In the case of 30°C, the average temperature drop of the raw material powder after 30 seconds was 30°C. However, preheating near the molding temperature is preferable. Preheating of the mold includes external heating using a gas burner or the like, as well as internal heating using heating wires installed inside the mold. In this way, when one side of the raw powder mixture is softened and the other is unsoftened, the softened powder acts as a binder, making it possible to obtain a dense press-molded product. can. However, the density of the compact is more than 50% of the true density, and the bending strength is 10Kgf/
It is appropriate to set it to cm 2 or more. This is the density in order to soften, fuse, and densify the two raw material powders constituting the compact at the lowest possible temperature, and to reduce volume changes during densification and crystallization. This strength makes it possible to prevent damage during transportation and heat treatment. Next, the glassy raw material powder used in the present invention will be specifically explained. First, its composition will be explained. First glassy raw material composition (softening temperature 400℃~800℃
℃ low softening point glassy raw material powder composition) SiO 2 : 55-75%, Al 2 O 3 : 15% or less, CaO: 5-15%, Na 2 O + K 2 O: 10-20%, the above are essential components and SiO 2 +Al 2 O 3 +CaO
+ Na2O + K2O >90% (weight percentage, same below) Second glassy raw material composition (high softening point glassy raw material powder composition) SiO2 : 40 to 60%, Al2O3 : 5 to 20%. CaO: 25-45%, with the above as essential components, and SiO 2 + Al 2 O 3 + CaO
>85%. By adding 15% or less of a glass colorant to the second glassy raw material composition, it is possible to make the glass ceramic product colored or colored or patterned. The reasons for limiting the composition will be explained below. First glassy raw material composition SiO2 : 55-75% SiO2 has the effect of suppressing crystallization of the material.
If it is less than 55%, crystal precipitation will be rapid and densification during heat treatment will be insufficient. It also has the effect of raising the softening point, and for the purpose of the present invention, it is necessary to lower the softening point, so it is set to 75% or less. CaO: 5-15% CaO has a great effect on crystallization of materials. Low softening point glass is intended to make the material more dense during heat treatment, but if no crystallization occurs,
This is a particularly important component because it poses a problem in terms of material strength. If it is less than 5%, crystal precipitation will be difficult, and if it exceeds 15%, the crystallization rate will be too fast and the material will not be sufficiently densified. Al 2 O 3 : 15% or less Al 2 O 3 has the effect of increasing the softening point, and for the purpose of this raw material, it should be 15% or less. Na 2 O + K 2 O: 10-20% Both Na 2 O and K 2 O have the effect of lowering the softening point, and it is necessary to contain them in a combined amount of 10% or more. However, these should be kept at 20% or less since they deteriorate the weather resistance of the final product. SiO 2 + Al 2 O 3 + Na 2 O + K 2 O: higher than 90% Since the glass component usually contains many other components in addition to the above-mentioned components, it is within the range that does not impede the purpose of the present invention. The sum of these components shall exceed 90%. Second glassy raw material composition si 2 : 40-60% The purpose of this raw material is to increase the strength of the final product by crystallizing the material, but if the crystallization occurs too quickly, the material will become densified. It may be insufficient. Since SiO 2 has the effect of suppressing crystallization,
For the purpose of this material, it should be 60% or less. On the other hand, 40%
If it is less than that, crystallization will be too rapid and densification will be insufficient. CaO: 25-45% CaO has the effect of promoting crystallization. If it is less than 25%, the amount of crystals will be small and the strength will be low. 45%
If it exceeds this, the crystallization rate becomes too fast and densification becomes insufficient. Al 2 O 3 : 5-20% Al 2 O 3 increases the softening point of the glassy raw material and also
It has the effect of suppressing crystallization. If the softening point rises too much, densification will be insufficient, so it should be kept at 20% or less. In addition, from the viewpoint of the balance with SiO 2 and CaO for crystallization, the content should be 5% or more. SiO 2 + Al 2 O 3 + CaO: higher than 85% It is common for glass components to contain other components in addition to the above-mentioned components, and also to actively contain 0.5 to 1.5% of colorants. In some cases. From the above points, the total amount is set to exceed 85% as a range that does not cause problems for the purpose of the present invention. The remarkable difference between the compositions of the first and second glassy raw materials is that Na 2 O + K 2 O contained in the first glassy raw materials
However, it is not contained in the second glassy raw material, and instead
The amount of CaO is large. Of course, the balance of other component contents is also related to the difference in softening point, but the softening point of the second glassy raw material is higher than the softening point of the first glassy raw material mainly due to the difference in composition.
By selectively adjusting the composition of both, a preferable softening temperature difference of 100°C to 400°C can be obtained. The above-mentioned compositions of the first and second glassy raw materials were designed so that crystallization would be easier when they were fused and integrated than when each was used alone, and now both were 1: The melting surface composition of the particles when mixed and integrated in step 1 is SiO 2 : 47-68%, Al 2 O 3 : 2-68%.
18%, CaO: 15-30%, Na2O + K2O : 5-10
% range, mainly wollastonite crystals,
This is also the composition range in which anorsite crystals are formed. The case where the precipitated crystals are wollastonite or anorthite crystals has been described above, but it is of course possible to use a glassy raw material that precipitates other crystals, such as debitrite crystals. Glassy raw materials are manufactured by melting raw materials adjusted to have predetermined chemical compositions, and then rapidly cooling and crushing them by a method such as water pulverization to form glassy bodies. Of course, a substance having a predetermined chemical composition and already in the form of glass may be made into a small body by an appropriate means. The glassy particles thus obtained are further pulverized using, for example, a ball mill.The finer the particle size at this time, the more the powder is fused and densified at a low temperature that is slightly above the softening point. It is desirable that the mixed powder contains at least 50% of fine particles of 200 mesh or less. On the other hand, the presence of aggregates of 10 or more meshes should be avoided as they tend to contain air bubbles inside the product. If the glassy raw material with a high softening point is a colored raw material containing a colorant, the raw material powder is made into particles of 10 to 200 mesh, and the colorless glassy raw material powder with a low softening point is used.
When mixed as a fine powder of 200 mesh or less, the finished product can be made into a colored patterned product. Moreover, if both are made into fine powder of 200 mesh or less, a uniform ground color will be exhibited and the product will simply be a colored product. As already mentioned, the process of mixing the glassy raw material powders obtained as above and heating the mixture to form a press-molded product is necessary if the pressurizing force in this case is 5 kgf/cm 2 or less. In other words, it is difficult to obtain sufficient strength to maintain the shape until the next heat treatment. Moreover, 300 Kgf/cm 2 or more is a problem from the viewpoint of mold strength and economy, and there is no need to exceed it. Next, the heat treatment of the press-molded body will be described. Heating for heat treatment of the press-molded product may be done by rapidly raising the temperature to the molding temperature, then raising the temperature to the crystallization temperature and maintaining the same temperature. Of course, the molded product may be heated subsequently after pressure molding. As mentioned above, the pressure molding temperature is the temperature at which one of the two types of glassy raw material powder softens while the other remains unsoftened, that is, a temperature that slightly exceeds the softening point of the low-temperature softening powder, and is a temperature that slightly exceeds the softening point of the low-temperature softening powder. The softening temperature is a temperature range that exceeds the softening point of the above-mentioned high-temperature softening powder and where the crystal growth rate is high. When the compact is heated to the molding temperature, the low-temperature softened powder is softened (re-softened), and when maintained at the crystallization temperature, the high-temperature softened powder also softens, resulting in softening and fusion of the powder particles, densification, and In other words, sintering and crystallization progress. After the crystallization process, it is slowly cooled. In the case of using powders of the first and second glassy raw materials as exemplified above, the molding temperature is 400°C to 800°C, and the crystallization temperature is 800°C to 1000°C. Figure 2 shows the molding of a pressure-molded body using powders of the first and second glassy raw materials using a conventional method, that is, using a compression molding frame after kneading with a binder (using a PVA solution). Performed by pressure molding at room temperature,
The heat treatment curve (solid line) obtained by heat treating the molded body and the heat treatment curve (broken line) obtained by heat treatment according to the present invention are shown in comparison. In the same figure, section a is a temperature increasing section including drying of the compression molded product using the conventional method, section b is a debinding section (300°C to 400°C), and point C is the pressure molding temperature according to the present invention (400°C to 400°C). 800℃), d section is sintered
The crystallization zone (800° C. to 1000° C.) and zone e are slow cooling zones. The two steps of dehydration in section a and debinding in section b cannot be shortened because rapid processing will have a negative impact on the plain fabric and will eventually deteriorate the physical properties of the product after heat treatment, so all sections a to e So 100
It took more than time. However, in the manufacturing method of the present invention, the steps in sections a and b are unnecessary, and the heat treatment time is also shortened to 30 hours, which is less than one third of the above. Next, specific examples of the present invention will be described. Example 1 The glassy raw material has the composition shown in Table 1 below, and is obtained by melting the blended raw materials containing each component and then pulverizing this into glassy corpuscles. was further ground in a ball mill.

【表】 上記粉砕したガラス状原料粉末(200メツシユ
以下)を1:1で混合し、第2表のように500℃
〜600℃の間で、加圧力30Kgf/cm2,100Kgf/cm2
で金型を用い加圧成形した。加圧成形体の形状
は、150×150×30(mm)である。 但し、金型は予熱せず。塗型は黒鉛系で0.2mm
厚である。
[Table] Mix the pulverized glassy raw material powder (200 mesh or less) at a ratio of 1:1 and heat to 500℃ as shown in Table 2.
Between ~600℃, pressurizing force 30Kgf/cm 2 , 100Kgf/cm 2
Pressure molding was performed using a mold. The shape of the press-molded body is 150 x 150 x 30 (mm). However, the mold is not preheated. The coating mold is graphite based and is 0.2mm.
It is thick.

【表】 上記しら地は900℃×4hrで焼結・結晶化処理を
行つた結果、アノルサイト結晶、ウオラストナイ
ト結晶を析出した。製品の曲げ強さはいずれも
630Kgf/cm2であつた。 なお上記実施例におけるしら地の昇温及び、結
晶・結晶化熱処理、除冷終了に到る全熱処理時間
は28時間で、従来手法によるしら地の処理時間
(乾燥時間を含む)が101時間を要したのに比し、
1/3.6に短縮することができた。 実施例 2
[Table] As a result of sintering and crystallizing the above-mentioned white ground at 900°C for 4 hours, anorsite crystals and wollastonite crystals were precipitated. The bending strength of each product is
It was 630Kgf/ cm2 . In the above example, the total heat treatment time for heating up the white ground, crystallization/crystalization heat treatment, and slow cooling was 28 hours, and the processing time (including drying time) for the white ground using the conventional method was 101 hours. Compared to what it took,
We were able to shorten the time to 1/3.6. Example 2

【表】 上記のような組成の無色及び有色のガラス状原
料を、有色原料は200メツシユ以下が50〜60%、
20〜50メツシユが30〜40%の粉末に粉砕し、無色
原料は200メツシユ以下が98%以上の粉末として、
両者を1:1で混合、これを下記条件で加圧成形
体とし次いで緻密化及び結晶化熱処理して製品と
した。 ガラス状原料粉末の加熱温度…570℃ 成形体寸法…300×300×25(mm) 金型余熱温度…400〜500℃ 加圧力……15Kgf/cm2 金型塗型…黒鉛系塗型、0.2mm厚 成形体(しら地)密度…1.68g/cm3 同曲げ強さ…13.8Kgf/cm2 (この調査は成形後室温まで除冷して行つ
た) 上記しら地を900℃×4hrで焼結・結晶化処理
を行つた結果主としてウオラストナイト結晶を
析出したガラスセラミツクス製品となつた。 製品物性 密 度…2.34g/cm3 曲げ強さ…525Kgf/cm2 吸水率…0.28% これらの値は建材品として十分満足される値で
ある。 (発明の効果) 本発明においては、低軟化点ガラス状原料粉末
と高軟化点ガラス状原料粉末との混合物を成形用
金型に供給し、該混合物を低軟化点ガラス状原料
粉末の軟化点以上でかつ高軟化点ガラス状原料粉
末の軟化点未満の温度で加圧成形するので、低軟
化点ガラス状原料粉末が粘結剤の役目をして、高
強度かつ気泡のほとんどない緻密な混合粉末成形
体を容易に得ることができる。更に、特定組成の
ガラス状原料粉末を使用しているので、成形温度
の設定が容易であり、ひいては成形加工性に優
れ、また低軟化点および高軟化点ガラス状原料粉
末の融合前には結晶化が生じにくいため、緻密化
に優れ、更に融合後には結晶化が促進されて高強
度の結晶化ガラス材からなるガラスセラミツクス
製品を容易に得ることができる。
[Table] Colorless and colored glassy raw materials with the above compositions, 50 to 60% of the colored raw materials are 200 mesh or less,
20-50 mesh is ground into a powder of 30-40%, and the colorless raw material is powdered with 200 mesh or less as a powder of 98% or more.
Both were mixed at a ratio of 1:1, and this was made into a press-molded body under the following conditions, and then heat-treated for densification and crystallization to produce a product. Heating temperature of glassy raw material powder...570℃ Molded object dimensions...300 x 300 x 25 (mm) Mold preheat temperature...400~500℃ Pressure force...15Kgf/cm 2 Mold coating mold...Graphite coating mold, 0.2 mm thickness Molded body (white ground) density...1.68 g/cm 3 Bending strength...13.8 Kgf/cm 2 (This investigation was carried out by slowly cooling to room temperature after forming) The above white ground was baked at 900℃ x 4 hours. As a result of the crystallization treatment, a glass-ceramic product containing mainly wollastonite crystals was obtained. Product properties Density: 2.34 g/cm 3 Bending strength: 525 Kgf/cm 2 Water absorption: 0.28% These values are fully satisfactory as a building material. (Effects of the Invention) In the present invention, a mixture of a low softening point glassy raw material powder and a high softening point glassy raw material powder is supplied to a molding die, and the mixture is added to the softening point of the low softening point glassy raw material powder. Since the pressure molding is carried out at a temperature above and below the softening point of the high softening point glassy raw material powder, the low softening point glassy raw material powder acts as a binder, resulting in a dense mixture with high strength and almost no bubbles. A powder compact can be easily obtained. Furthermore, since glassy raw material powder with a specific composition is used, it is easy to set the molding temperature, which in turn has excellent molding processability. Since it is difficult to cause curing, it is excellent in densification, and furthermore, crystallization is promoted after fusion, making it possible to easily obtain a glass-ceramic product made of a high-strength crystallized glass material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の金型成形例の説明断面
図であり、第2図は本発明に係る加圧成形体及び
従来手法による加圧成形体の熱処理曲線である。 1……金型の上型、2……同横型、3……同下
型、4……加熱したガラス状原料粉末の混合物。
FIG. 1 is an explanatory sectional view of an example of molding according to an embodiment of the present invention, and FIG. 2 is a heat treatment curve of a press-formed body according to the present invention and a press-formed body according to a conventional method. 1... Upper mold of the mold, 2... Same horizontal mold, 3... Same lower mold, 4... Mixture of heated glassy raw material powder.

Claims (1)

【特許請求の範囲】 1 化学組成が重量%で、 SiO2:55〜75%,Al2O3:15%以下、 CaO:5〜15%,Na2O+K2O:10〜20%、 かつ SiO2+Al2O3+Na2O+K2O:90%より高 を含む低軟化点ガラス状原料粉末と、 化学組成が重量で、 SiO2:40〜60%,Al2O3:5〜20%、 CaO:25〜45%、 かつ SiO2+Al2O3+CaO:85%より高 を含む高軟化点ガラス状原料粉末との混合物を成
形用金型に供給し、 該混合物を低軟化点ガラス状原料粉末の軟化点
以上でかつ高軟化点ガラス状原料粉末の軟化点未
満の成形温度に加熱し、加圧成形して混合粉末成
形体を得、 該混合粉末成形体を高軟化点ガラス状原料粉末
の軟化点以上の温度に加熱し、ガラス状原料粉末
相互を軟化融着させ緻密化すると共に結晶を析出
させることを特徴とするガラスセラミツクス製品
の製造方法。 2 成形温度に加熱したガラス状原料粉末の混合
物を金型に投入し、加圧成形することを特徴とす
る特許請求の範囲第1項に記載のガラスセラミツ
クス製品の製造方法。
[Claims] 1. Chemical composition in weight percent: SiO 2 : 55-75%, Al 2 O 3 : 15% or less, CaO: 5-15%, Na 2 O + K 2 O: 10-20%, and SiO 2 + Al 2 O 3 + Na 2 O + K 2 O: Low softening point glassy raw material powder containing more than 90%, chemical composition by weight: SiO 2 : 40-60%, Al 2 O 3 : 5-20% , CaO: 25 to 45%, and SiO 2 + Al 2 O 3 + CaO: higher than 85%. Heating to a molding temperature higher than the softening point of the raw material powder and lower than the softening point of the high softening point glassy raw material powder, and pressurizing to obtain a mixed powder compact, and converting the mixed powder compact into a high softening point glassy raw material A method for manufacturing a glass-ceramic product characterized by heating to a temperature above the softening point of the powder to soften and fuse the glassy raw material powders to make them denser and precipitate crystals. 2. The method for manufacturing a glass ceramic product according to claim 1, characterized in that a mixture of glassy raw material powder heated to a molding temperature is charged into a mold and pressure molded.
JP29120386A 1986-08-08 1986-12-06 Production of glass ceramic article Granted JPS63156024A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18761386 1986-08-08
JP61-187613 1986-08-08

Publications (2)

Publication Number Publication Date
JPS63156024A JPS63156024A (en) 1988-06-29
JPH0444622B2 true JPH0444622B2 (en) 1992-07-22

Family

ID=16209171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29120386A Granted JPS63156024A (en) 1986-08-08 1986-12-06 Production of glass ceramic article

Country Status (1)

Country Link
JP (1) JPS63156024A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501211B2 (en) * 1987-05-19 1996-05-29 日本板硝子株式会社 Glass body manufacturing method
CA2455953A1 (en) * 2001-08-02 2003-02-13 3M Innovative Properties Company Method of making articles from glass and glass ceramic articles so produced
US7292766B2 (en) 2003-04-28 2007-11-06 3M Innovative Properties Company Use of glasses containing rare earth oxide, alumina, and zirconia and dopant in optical waveguides
JP4855869B2 (en) * 2006-08-25 2012-01-18 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4650378B2 (en) * 2006-08-31 2011-03-16 日亜化学工業株式会社 Method for manufacturing light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291200A (en) * 1985-06-19 1986-12-20 サンコ−マ−ク工業株式会社 Heat transfer method
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291200A (en) * 1985-06-19 1986-12-20 サンコ−マ−ク工業株式会社 Heat transfer method
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Also Published As

Publication number Publication date
JPS63156024A (en) 1988-06-29

Similar Documents

Publication Publication Date Title
EP2749544A1 (en) A glaze composition, method for manufacturing the glaze composition and methods of glazing
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
JPH0444622B2 (en)
CN100526256C (en) Production technique for preparing architectural ornament phosphorus slag cast stone by employing high-temperature phosphorus slag liquid
JPH0436098B2 (en)
JPS6224365B2 (en)
CN101851066A (en) Pot-shaped glass-ceramic panel and manufacturing method thereof
JPS6317238A (en) Production of crystallized glass
JPS63129025A (en) Production of glass ceramic article
JPS6374936A (en) Crystallized glass and production thereof
JPS63144142A (en) Crystallized glass and production thereof
CN107365082A (en) Devitrified glass stone material with surface flash effect and preparation method thereof
JPH0575701B2 (en)
JPS63170230A (en) Production of plate crystal glass
JPH0575702B2 (en)
CN107902907A (en) Red microcrystalline glass and preparation method thereof
JPS63144143A (en) Crystallized glass building material having colored pattern
JPH02120254A (en) Crystallized glass material and production thereof
JPS62143842A (en) Crystallized glass and production thereof
JP2001518440A (en) Manufacture of ceramic tiles from industrial waste
JPH0416421B2 (en)
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JP2780995B2 (en) Artificial stone using blast furnace slag as raw material and method for producing the same
JPS6340737A (en) Production of high-strength crystallized glass
JPH0565452B2 (en)