JPH0416421B2 - - Google Patents

Info

Publication number
JPH0416421B2
JPH0416421B2 JP16064086A JP16064086A JPH0416421B2 JP H0416421 B2 JPH0416421 B2 JP H0416421B2 JP 16064086 A JP16064086 A JP 16064086A JP 16064086 A JP16064086 A JP 16064086A JP H0416421 B2 JPH0416421 B2 JP H0416421B2
Authority
JP
Japan
Prior art keywords
raw material
colored
glass
particles
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16064086A
Other languages
Japanese (ja)
Other versions
JPS6317239A (en
Inventor
Yoshihiro Nakagawa
Yoshito Seto
Akitoshi Okabayashi
Hiroyuki Kimura
Hiroshi Ryumon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16064086A priority Critical patent/JPS6317239A/en
Publication of JPS6317239A publication Critical patent/JPS6317239A/en
Publication of JPH0416421B2 publication Critical patent/JPH0416421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は色模様を有する結晶化ガラスの製造方
法に関する。 <従来の技術> 従来の結晶化ガラスは一般に核形成剤を含むガ
ラス原料を溶融し、各種手段による成形後、結晶
化熱処理を施し結晶を析出させる方法で製造され
ており、結晶の析出により白色を呈している。着
色の結晶化ガラスとするには上記製造原料に着色
剤を加えることによつて可能である。 他に結晶化ガラスを得る方法としては、溶融し
たガラスを水冷等により破砕しガラス小体として
後、これを型枠に集積して熱処理することによ
り、各ガラス小体を融着一体化する一方結晶化す
る方法(以下集積法と称す)が「特開昭48−
78217」に開示されており、同方法による結晶化
ガラスは不均一な結晶の成長による模様の現われ
た白色で、前記原料のガラス小体に着色剤含有の
ガラスを用いることによつて有色の結晶化ガラス
とすることができる。 <発明が解決しようとする問題点> 一般にガラスは強度的に問題のある材質でその
向上は常に希求されているところであり、また装
飾材、建築材等における多様化は色付きガラスに
おいても均一な着色でなく変化のあるガラス、例
えば斑模様を呈するようなガラスの出現が期待さ
れ、こう言つた観点からすれば前記核形成剤及び
ガラス着色剤を含むガラス原料を溶融、成形して
後結晶化熱処理により結晶化ガラスとする方法
は、均一な着色であると共に原料に比し核形成剤
が高価な場合のあることが問題である。 次の集積法の場合は既述のように不均一な結晶
の成長による模様化は行われるものゝ、集積のガ
ラス小体を加熱して行つた場合、結晶の析出する
温度で各ガラス小体が互いに融着一体化できるよ
うな充分低い粘性をもつものでなければ適さな
い。というように原料ガラス制限があり、従つて
核形成剤や核形成剤として作用する着色剤、例え
ばFeS+MnS、FeO+Fe2O3などを含むガラス小
体を使用することができないのである。 つまり結晶核の発生及びその成長が比較的低温
で行われるような場合、ガラス小体の軟化融着の
時期には既に多くの結晶が成長しており、そのた
めに粘度を増して一体化できず、更に温度を上げ
て一体化を図ろうとすれば、逆に結晶が破壊若し
くは転移して結晶化ガラスにならないのである。 なおこの集積法では、核形成剤として作用しな
い着色剤を用いた原料に依る場合も色が鮮明に出
ないという問題点や、更に製品内部に比較的大き
な気泡(径0.5mm程度)を含むという問題点も有
しているのである。 <問題点を解決するための手段> 本発明は以上のような問題点を解決して斑状の
色模様付結晶化ガラスの提供を可能としたもので
あり、その実現のために 重量百分率で、SiO2:40〜50%、Al2O3:5〜
20%、CaO:30〜40%、着色剤:0.5〜15%を必
須成分として、かつSiO2+Al2O3+CaO>85%を
含有するガラス状原料を粉砕して成る10mesh以
下でかつ10〜200mesh粒子が20%以上を占める粉
体と、SiO2:55〜75%、Al2O3:15%以下、
CaO:5〜15%、Na2O+K2O:10〜20%を必須
成分とし、かつSiO2+Al2O3+CaO+Na2A+
K2O>90%を含有するガラス状原料を粉砕して成
る200mesh以下の粒子が90%以上を占める粉体と
を混合し、該混合粉体を加圧又は振動成形により
真密度の50%以上の成形体として後、熱処理して
成形体構成粒子を軟化融着させて一体化及び緻密
化する一方結晶化を図つて主としてウオラストナ
イト結晶を析出させるようにしたのである。 <実施例> つまり上述の手段は 有色のガラス状原料(以下有色原料と称す)と無
色のガラス状原料(以下無色原料と称す)の各粉
末の混合体を熱処理して融着一体化する一方結晶
化を図る方法であり、次のような3ポイントを有
している。 有色及び無色原料の組成は有色原料の方が無
色原料より高い軟化点(差は400℃以下が望ま
しい)を有するようにすると共に、各原料単独
よりも両者が融着一体化したときの方が結晶化
しやすいような組成とする。 すなわち組成面から、有色、無色原料粉末の
融着一体化の後に結晶化が進むようにしている
のである。 有色、無色原料粉末の混合体を微細粉末によ
る緻密成形体として成形し、熱処理することに
よつて低温で粉末粒子の融着一体化、緻密化を
可能としているのである。 従来の集積法では単に集積のガラス小体を加
熱するのであり、ガラス小体が軟化点に達して
も容易に一体化しない。先ずガラス小体の鋭角
部等から軟化しはじめ、小体のほヾ全体が軟化
し実質的に融着一体化が起こるためには小体間
の隙間の関係もあつて軟化点以上の相当高温に
まで加熱しなければならないのである。若し軟
化点をやゝ上回る程度の低温で融着一体化を図
ろうとすれば、非常な長時間を要するか、或い
は実現が困難である。 ところが上述のように微粉末の緻密成形体で
は、各粉末粒子が質量に比して広い面積で緻密
に接触しており、軟化点に達する各粒子は容易
に軟化すると共に融着一体化も軟化点をあまり
上回らない低温で起こり緻密化も容易に進行す
るのである。すなわち粒子の面からも結晶化の
前に一体緻密化が行えるようにしているのであ
る。 有色原料粉末の粒度を無色原料粉末粒度より
粗くすることにより斑模様を出現させるように
している。 若し有色、無色原料とも200mesh以下の微粉
末とすれば、両者の混合によつてあたかも均一
な色基地となつて、有色、無色原料粉末を別々
に調整している意味がなくなるのである。 以下成分の限定理由から詳述する。 先ず有色及び無色原料の主成分を表示すると下
記第1表のとおりである。
<Industrial Application Field> The present invention relates to a method for manufacturing crystallized glass having a color pattern. <Conventional technology> Conventional crystallized glass is generally manufactured by melting a glass raw material containing a nucleating agent, shaping it by various means, and then subjecting it to crystallization heat treatment to precipitate crystals. It shows. Colored crystallized glass can be produced by adding a coloring agent to the above raw materials. Another method for obtaining crystallized glass is to crush molten glass by water cooling, etc. to form glass bodies, and then accumulate the glass bodies in a mold and heat treat them to fuse and integrate each glass body. The crystallization method (hereinafter referred to as the accumulation method) was developed in ``Japanese Patent Application Laid-Open No. 1973-
78217, and the crystallized glass produced by this method is white with patterns due to non-uniform crystal growth, and colored crystals are produced by using glass containing a colorant in the glass bodies of the raw material. It can be made of glass. <Problems to be solved by the invention> In general, glass is a material that has problems with its strength, and improvements in its strength are always sought after.Also, the diversification of decorative materials, construction materials, etc. has led to the need for uniform coloring even in colored glass. It is expected that a glass with a change in shape, for example a glass with a mottled pattern, will appear.From this perspective, it is possible to melt and shape the glass raw material containing the nucleating agent and the glass coloring agent, and then heat-process it for crystallization. The problem with this method of producing crystallized glass is that it requires uniform coloring and that the nucleating agent may be more expensive than the raw materials. In the case of the following accumulation method, patterns are created by the non-uniform growth of crystals as mentioned above.If the accumulation is carried out by heating the glass bodies, each glass body is heated at the temperature at which the crystals precipitate. It is not suitable unless it has a sufficiently low viscosity that it can fuse and integrate with each other. As such, there are limitations on the raw material glass, and therefore glass bodies containing a nucleating agent or a coloring agent that acts as a nucleating agent, such as FeS+MnS, FeO+Fe 2 O 3 , etc., cannot be used. In other words, when the generation and growth of crystal nuclei occurs at relatively low temperatures, many crystals have already grown by the time the glass bodies soften and fuse, which increases their viscosity and prevents them from being integrated. If an attempt is made to further increase the temperature to achieve integration, the crystals will instead break or transform and will not become crystallized glass. In addition, this accumulation method has the problem that the color does not come out clearly even if the raw material uses a coloring agent that does not act as a nucleating agent, and that the product contains relatively large bubbles (about 0.5 mm in diameter). It also has its problems. <Means for solving the problems> The present invention solves the above problems and makes it possible to provide a crystallized glass with a mottled color pattern. SiO2 : 40 ~ 50%, Al2O3 : 5~
20%, CaO: 30~40%, colorant: 0.5 ~ 15 % as essential components, and 10 mesh or less and 10 ~ Powder in which 200mesh particles account for 20 % or more, SiO2 : 55-75%, Al2O3 : 15% or less,
CaO: 5-15%, Na 2 O + K 2 O: 10-20% as essential components, and SiO 2 + Al 2 O 3 + CaO + Na 2 A +
A powder made by pulverizing a glassy raw material containing K 2 O > 90%, in which 90% or more of the particles are 200 mesh or less, is mixed, and the mixed powder is compressed or vibrated to 50% of its true density. After the above-mentioned molded body was formed, it was heat-treated to soften and fuse the particles constituting the molded body to integrate and densify it, while crystallizing it so that mainly wollastonite crystals were precipitated. <Example> In other words, the above-mentioned means heat-treats a mixture of powders of a colored glassy raw material (hereinafter referred to as colored raw material) and a colorless glassy raw material (hereinafter referred to as colorless raw material) to fuse and integrate them. This is a method for crystallization, and has the following three points. The composition of the colored and colorless raw materials should be such that the colored raw materials have a higher softening point than the colorless raw materials (the difference is preferably 400°C or less), and when both raw materials are fused and integrated, the softening point is better than when each raw material is used alone. The composition should be such that it is easy to crystallize. In other words, from the viewpoint of composition, crystallization proceeds after the colored and colorless raw material powders are fused and integrated. By molding a mixture of colored and colorless raw material powders into a dense molded body of fine powder and heat-treating it, it is possible to fuse and integrate the powder particles and make them denser at low temperatures. Conventional stacking methods simply heat the glass bodies of the stack, and do not easily integrate even when the glass bodies reach their softening point. First, the glass corpuscles begin to soften from the sharp corners, and in order for most of the glass corpuscles to soften and to essentially fuse and integrate, the glass corpuscles must be heated to a considerably high temperature above the softening point due to the relationship between the gaps between the corpuscles. It must be heated to . If it is attempted to fuse and integrate the materials at a low temperature slightly above the softening point, it will take a very long time or is difficult to achieve. However, as mentioned above, in a dense compact of fine powder, each powder particle is in close contact over a large area compared to its mass, and each particle that reaches the softening point easily softens, and the fusion and integration also soften. This occurs at a low temperature not much higher than the point, and densification easily progresses. In other words, from the aspect of particles, it is possible to perform integral densification before crystallization. By making the particle size of the colored raw material powder coarser than that of the colorless raw material powder, a mottled pattern appears. If both the colored and colorless raw materials are made into fine powders of 200 mesh or less, the mixture of the two forms a uniform color base, and there is no point in adjusting the colored and colorless raw material powders separately. The reasons for limiting the ingredients will be explained in detail below. First, the main components of colored and colorless raw materials are shown in Table 1 below.

【表】 上記組成のうち着色剤を除いて顕著な差はCaO
及びNa2A+K2Oである。つまり無色原料の
Na2A+K2Oに替えて有色原料ではCaOを増加し
ており、これによつて有色原料が無色原料より高
い軟化点を示すようになるのである。 なお有色及び無色原料粉末の混合成形体におい
ては両者が相接している部分ばかりでなく、有色
粒子同士、無色粒子同士の部分もありその組成
は、特に両者が融着一体化したときにおいて結晶
化しやすい組成となるように配分すると共に、上
記各部の物性及び熱処理時の緻密成形体の形状保
持、一体緻密化への影響等を配慮したものであ
り、無色原料の限定理由から述べると、 SiO2:55〜75% SiO2はガラスの骨格を形成する成分であり、
無色原料は本発明による結晶化ガラスの基地を構
成するものであることから55%を下限とした。又
75%を越えるとガラスの粘性が高くなつて粒子の
融着緻密化が遅くなるのである。 Al2O3:15%以下 Al2O3は軟化点上昇効果を有する成分で、有色
原料より軟化点を低く抑制するためには15%以下
とする必要がある。 CaO:5〜15% 5%以下ではウオラストナイト、アノルサイト
などの結晶の析出が難しくなる。又15%以上とす
ると軟化点が上昇すると共に無色原料単独での結
晶化が容易となる。すなわち有色、無色原料粉末
の一体緻密化の前に無色原料における結晶化によ
つて粘性増大の怖れを生じるのである。 Na2O+K2O:10〜20% 有色原料より低い軟化点とするためには10%は
必要であり、又20%以上は熱処理時に成形体の形
状保持が難かしくなる。 なお上記必須成分の合計を90%以上としたのは
製品の物性を適正に保つためである。 次に、有色原料の成分限定について述べる。 SiO2:40〜50% 40%以下は熱処理中の成形体の形状保持が難し
く、一方50%以上は他の成分の含有量と相埃つて
ガラスの粘性が高くなり粒子の融着緻密化が遅く
なる。 Al2O3:5〜20% 高い軟化点を保持するためには少くとも5%は
必要であるが20%以上とするとガラスの粘性が高
くなり、粒子の融着緻密化が遅くなる。 CaO:30〜40% 無色原料より高い軟化点を有するようにするた
めには少くとも30%は必要であるが、40%を越え
ると耐水性、耐酸性などの物性の低下を招く。 着色剤:0.5〜15% 着色剤としてはCoO、FeS+MnS、FeO+
Fe2O3、Cr2O3、NiO、CuO、MnO2などがあり、
着色効果からは少なくとも0.5%は必要であるが、
15%以上とするとガラスとしての物性に悪影響を
及ぼす。 なお上記着色剤を除く他の必須成分の合計量を
85%以上と限定しているのは、上述と同様に着色
剤及び必須外成分で15%を超えるようになると物
性に悪影響を及ぼすためである。 次に原料粉末の粒度及び緻密成形について述べ
る。 無色及び有色原料は前記成分の原料をそれぞれ
所定の組成になるように調整融解し、これを水砕
などの方法で急冷破砕してガラス状の小体とす
る。勿論特定範囲の成分組成を有して既にガラス
状になつているものを適宜の手段で破砕し小体と
してもよい。 このようにして得られたガラス小体をたとえば
ボールミルなどにより更に粉砕するのであり、こ
のとき無色原料は200mesh以下の微粒子とする。
但し200mesh以上のものが10%以下で含まれてい
ても差支えない。 有色原料は10mesh以下で、10〜200meshの粉
末が20%以上を占める粉体とするのである。 10meshより粗い粒子の存在は製品内部に気泡
を生じ易く、強度低下にもつながるものであり、
10〜200meshの粒子を必ず含むようにしているの
は既に触れたように斑模様を出現させるためで、
同粒子を20%以上と限定したのは、20%以下の場
合、有色及び無色原料粉末を混合焼結した製品に
おいて斑模様の分布が過疎となり実質的に斑模様
の体裁をなさないからである。 かくして得られた無色及び有色原料の粉末は混
合して後、成形枠に入れ加圧又は振動成形により
成形する。この場合200mesh以下の微粉末を多く
含む緻密成形体の方が、低温での粉末粒子の融着
一体化及び緻密化をより容易とするものである
が、斑模様を多く出現させるためには10〜
200meshの有色原料粒子を多くする必要がある。
従つて粒度バランスをとる必要があるが、本発明
においては有色、無色原料粉末の成分組成におい
て、両者の融着一体化後に結晶化が容易となるよ
うに配慮がなされていることから、200mesh以下
の微粒子が50%程度含まれておれば低温での融着
一体化及び緻密化が行なえ、結晶化はその後の昇
温で行なうことができる。 成形体密度を真密度の50%以上とした限定も、
低温での粒子の一体緻密化の確実化と、焼結時の
成形体の収縮量の抑制のためである。 真密度の50%以上の緻密成形体の成形は、加圧
による場合は混合粉末を圧縮成形枠に入れ加圧す
る。圧力は20Kgf/cm2以上が適当である。 振動成形による場合は振動成形枠に入れ30〜
180Hzの振動を与えて緻密充填を行なう。これは
30Hz以下では緻密充填効果が少なく、180Hz以上
では細粒、粗粒の分離効果がでるためである。又
次に述べるように粘結剤を用いる場合、混練のた
めに添加した水分が、上記振動数で適度に成形体
上に浮かび分離される効果がある。 なお振動成形は成形枠が大型になつても、即ち
成形体が大型になつても特に振動装置を大型とす
る必要の点で有利な成形方法である。 ガラス状原料粉末の混合に際してはポリビニル
アルコール(P.V.A)溶液などの粘結剤の少量添
加は成形を容易にする上で有効である。 粘結剤を適切に選ぶことによつて成形を容易に
するのみならず、緻密成形体(しら地)の運搬時
の損傷防止や、焼結時における収縮に耐え得る強
さをしら地に付与することができる。 たとえばモンモリロナイト系粘結剤(モンモリ
ロナイトを主成分とし、SiO2:60〜80%、
Al2O3:5〜20%含有)やアルミナセメント系粘
結剤(Al2O3:45〜80%、CaO:18〜40%、
SiO2:1〜5%含有)がその好例であり、添加
量はしら地の必要とする強さ、即ち運搬時の損傷
を防止並びに焼結時の収縮に耐え得るために、具
備すべき強さとして設定しているところの7Kg
f/cm2以上の曲げ強さが得られ、かつガラスの成
分系に実質的影響を与えない量が適切である。 具体的には、モンモリロナイト系及びアルミナ
セメント系共、重量百分率で5%以下の添加でよ
く、モンモリロナイト系では、モンモリロナイト
2%+P.V.A.3%以下のように一部P.V.A.と代替
してもよい。 かゝる粘結剤は適度の水と共にガラス状原料の
混合粉末に添加され、よく混練されて後、成形枠
を用いて前記のように加圧又は振動成形によつ
て、真密度の50%以上の緻密成形体とされる。 上述のようにして得られた緻密成形体の熱処理
は第1図の熱処理曲線に示すように、粒子の一体
緻密化のための低温処理(第1段処理a−a区
間)と、それに続いて結晶化のための高温処理
(第2段処理b−b区間)を行うのである。 第2図は緻密成形体加熱における「結晶成長速
度−温度」曲線で、S.P.が軟化点、M.P.が融点
であり、前記低温処理は軟化点以上で結晶の成長
速度が速くなる温度以下で行うのである。 この低温処理においては主として無色原料粉末
の軟化融着による粒子の一体化及び緻密化が起つ
ており、処理温度が低温であること、加えて各単
独原料粉末組成は結晶化抑制型としていることな
どから成分に核形成剤を含んでいても、集積法に
おけるような弊害は起らず、むしろ後の熱処理に
おいて結晶化を容易にする。 第1段の低温処理後引き続いて、第2図におけ
る結晶の成長速度の速くなる温度域に昇温して第
2段の高温処理を行う。この時点では無色及び有
色原料粒子の一体緻密化、有色原料粒子同士の一
体緻密化も既に進み、結晶化も行われるのである
が、特に無色及び有色原料粒子の融着界面では、
両者の一体化に伴つて結晶化の容易な組成となる
ことから結晶の析出、成長が盛んである。 なお熱処理温度を高温とし過ぎると成形体の形
状保持が困難となり注意を要する。 以上のようにして得られる色模様付結晶化ガラ
スは、着色の斑模様を分布したものであり、斑模
様も有色原料粒子の粒度、量、混合比等によつて
細かい斑点模様、塊状斑模様等の模様の形態、分
布の疎密、斑模様の濃淡等を種々変化させること
ができる。 無色原料による基地部分は熱処理による結晶化
で白色を呈するが、有色原料の200mesh以下の微
粒子を調整混合することによつて着色地のように
することも出来、更に複数色の着色原料粉末を用
いることで斑模様に色彩的変化を与えることも可
能である。 次に本発明の具体的実施例を示す。 実施例に供した有色及び無色原料は第2表のよ
うな組成を有するものであり、それぞれの成分を
配合した配合原料を1500℃で融解し、次いでこれ
を水中に投入してそれぞれ有色及び無色のガラス
状小体を得た。なお有色原料は上記のように1500
℃で融解し水砕しているためFeO/Fe2O3比が高
く従つて水砕原料は黒色を呈している。(FeO+
Fe2O3は着色剤で核形成剤としても作用する)。
[Table] Among the above compositions, the notable difference except for the colorant is CaO.
and Na2A + K2O . In other words, colorless raw material
CaO is increased in the colored raw material instead of Na 2 A + K 2 O, and this causes the colored raw material to exhibit a higher softening point than the colorless raw material. In addition, in a mixed molded product of colored and colorless raw material powders, there are not only parts where the two are in contact with each other, but also parts where colored particles are together and colorless particles are together, and the composition thereof is particularly when the two are fused and integrated. In addition to taking into account the physical properties of each part mentioned above, the shape retention of the dense molded product during heat treatment, and the effect on integral densification, etc., the reason for the limitation on colorless raw materials is as follows: 2 : 55-75% SiO2 is a component that forms the skeleton of glass,
Since the colorless raw material constitutes the base of the crystallized glass according to the present invention, the lower limit was set at 55%. or
If it exceeds 75%, the viscosity of the glass increases and the fusion and densification of particles becomes slow. Al 2 O 3 : 15% or less Al 2 O 3 is a component that has the effect of raising the softening point, and in order to suppress the softening point to a lower level than the colored raw material, it needs to be 15% or less. CaO: 5-15% If it is less than 5%, it becomes difficult to precipitate crystals such as wollastonite and anorsite. Moreover, when it is 15% or more, the softening point increases and crystallization of the colorless raw material alone becomes easy. That is, before the colored and colorless raw material powders are densified together, the crystallization of the colorless raw material may increase the viscosity. Na 2 O + K 2 O: 10 to 20% 10% is necessary in order to have a softening point lower than that of the colored raw material, and if it exceeds 20%, it becomes difficult to maintain the shape of the molded product during heat treatment. The reason why the total of the above essential components is 90% or more is to maintain the appropriate physical properties of the product. Next, we will discuss limiting the components of colored raw materials. SiO 2 : 40-50% If it is less than 40%, it is difficult to maintain the shape of the molded product during heat treatment, while if it is more than 50%, the viscosity of the glass increases due to the content of other components and dust, and the particles become fused and densified. Become slow. Al 2 O 3 : 5 to 20% At least 5% is necessary to maintain a high softening point, but if it exceeds 20%, the viscosity of the glass increases and the fusion and densification of particles becomes slow. CaO: 30-40% At least 30% is necessary to have a higher softening point than the colorless raw material, but if it exceeds 40%, physical properties such as water resistance and acid resistance will deteriorate. Colorant: 0.5-15% Colorants include CoO, FeS+MnS, FeO+
Fe 2 O 3 , Cr 2 O 3 , NiO, CuO, MnO 2 etc.
At least 0.5% is necessary for coloring effect, but
If it exceeds 15%, it will adversely affect the physical properties of the glass. In addition, the total amount of other essential ingredients excluding the above coloring agent is
The reason why it is limited to 85% or more is because, as mentioned above, if the colorant and non-essential components exceed 15%, physical properties will be adversely affected. Next, the particle size of the raw material powder and dense compaction will be described. Colorless and colored raw materials are obtained by adjusting and melting the raw materials for each of the above-mentioned components so as to have a predetermined composition, and then rapidly cooling and crushing this by a method such as water pulverization to form glass-like particles. Of course, a material having a specific range of component composition and already in the form of glass may be crushed by an appropriate means to form small bodies. The glass bodies thus obtained are further pulverized using, for example, a ball mill, and at this time the colorless raw material is made into fine particles of 200 mesh or less.
However, there is no problem even if it contains less than 10% of 200mesh or more. The colored raw material should be a powder of 10 mesh or less, with 10 to 200 mesh powder accounting for 20% or more. The presence of particles coarser than 10mesh tends to cause air bubbles inside the product, leading to a decrease in strength.
The reason why we always make sure to include particles of 10 to 200 mesh is to create a mottled pattern, as mentioned above.
The reason why the content of the same particles is limited to 20% or more is because if the content is less than 20%, the distribution of the mottled pattern will become too sparse in products made by mixing and sintering colored and colorless raw material powders, and there will be no actual appearance of mottled patterns. . The thus obtained colorless and colored raw material powders are mixed and then placed in a molding frame and molded by pressure or vibration molding. In this case, a dense compact containing a large amount of fine powder of 200 mesh or less will facilitate the fusion and integration of powder particles at low temperatures and densification, but in order to make many mottled patterns appear, ~
It is necessary to increase the number of 200mesh colored raw material particles.
Therefore, it is necessary to balance the particle size, but in the present invention, consideration has been given to the composition of the colored and colorless raw material powders so that crystallization will be easy after they are fused and integrated, so the particle size should be 200 mesh or less. If about 50% of the particles are contained, fusion and integration and densification can be performed at low temperatures, and crystallization can be performed by raising the temperature thereafter. There is also a limitation that the density of the compact is 50% or more of the true density.
This is to ensure the integral densification of particles at low temperatures and to suppress the amount of shrinkage of the compact during sintering. When molding a dense compact with a true density of 50% or more, pressurize the mixed powder by placing it in a compression molding frame. A suitable pressure is 20 kgf/cm 2 or more. When using vibration molding, place it in a vibration molding frame for 30~
Dense packing is performed by applying 180Hz vibration. this is
This is because the dense packing effect is small below 30 Hz, and the effect of separating fine and coarse particles appears above 180 Hz. Furthermore, as described below, when a binder is used, there is an effect that water added for kneading is appropriately floated on the molded body at the above-mentioned vibration frequency and separated. Note that vibration molding is an advantageous molding method even when the molding frame becomes large, that is, even when the molded product becomes large, especially in that it is necessary to use a large vibrating device. When mixing glassy raw material powders, it is effective to add a small amount of a binder such as a polyvinyl alcohol (PVA) solution to facilitate molding. Appropriate selection of the binder not only makes molding easier, but also prevents damage to the dense molded body (shiraji) during transportation and gives the shiraji the strength to withstand shrinkage during sintering. can do. For example, montmorillonite binder (mainly composed of montmorillonite, SiO2 : 60-80%,
Al 2 O 3 : 5-20%) and alumina cement binder (Al 2 O 3 : 45-80%, CaO: 18-40%,
A good example of this is SiO 2 (containing 1 to 5%), and the amount added depends on the strength required by Shiraji, that is, the strength it needs to have in order to prevent damage during transportation and withstand shrinkage during sintering. 7Kg which is set as
An appropriate amount is such that a bending strength of f/cm 2 or more can be obtained and that does not substantially affect the component system of the glass. Specifically, for both the montmorillonite type and the alumina cement type, it is sufficient to add up to 5% by weight, and for the montmorillonite type, it may be partially replaced with PVA, such as 2% montmorillonite + 3% P.VA or less. Such a binder is added to a mixed powder of glassy raw materials together with an appropriate amount of water, and after being thoroughly kneaded, it is compressed or vibration-molded using a molding frame as described above to reduce the true density to 50% of the true density. The above dense molded body is obtained. As shown in the heat treatment curve of FIG. 1, the heat treatment of the dense compact obtained as described above includes low temperature treatment (first stage treatment section a-a) for integral densification of particles, followed by A high-temperature treatment (second stage treatment section b-b) for crystallization is performed. Figure 2 shows the "crystal growth rate-temperature" curve in heating a dense compact, where SP is the softening point and MP is the melting point. be. In this low-temperature treatment, the unification and densification of particles mainly occur through softening and fusion of the colorless raw material powder, and the processing temperature is low, and in addition, the composition of each individual raw material powder is of a type that suppresses crystallization. Even if a nucleating agent is included in the component, it does not cause the same disadvantages as in the accumulation method, but rather facilitates crystallization in the subsequent heat treatment. After the first-stage low-temperature treatment, the temperature is raised to a temperature range in which the crystal growth rate increases as shown in FIG. 2, and a second-stage high-temperature treatment is performed. At this point, the integral densification of colorless and colored raw material particles and the integral densification of colored raw material particles have already progressed, and crystallization has also taken place, but especially at the fused interface of colorless and colored raw material particles,
As the two are integrated, the composition becomes easy to crystallize, so crystal precipitation and growth are active. Note that if the heat treatment temperature is set too high, it will be difficult to maintain the shape of the molded product, so care must be taken. The colored patterned crystallized glass obtained in the above manner has a distributed colored mottled pattern, and the mottled pattern may be a fine spotted pattern or a blocky mottled pattern depending on the particle size, amount, mixing ratio, etc. of the colored raw material particles. The shape of the pattern, the density of the distribution, the density of the mottled pattern, etc. can be varied in various ways. The base part made of colorless raw materials becomes white due to crystallization during heat treatment, but it can also be made to look like a colored base by adjusting and mixing fine particles of 200 mesh or less of colored raw materials, and further using colored raw material powders of multiple colors. By doing so, it is also possible to give a color change to the mottled pattern. Next, specific examples of the present invention will be shown. The colored and colorless raw materials used in the examples had the compositions shown in Table 2.The raw materials containing each component were melted at 1500°C, and then poured into water to form colored and colorless raw materials, respectively. vitreous bodies were obtained. Colored raw materials are 1500 as mentioned above.
Because it is melted and granulated at ℃, the FeO/Fe 2 O 3 ratio is high, and the granulated raw material has a black color. (FeO+
Fe 2 O 3 is a coloring agent and also acts as a nucleating agent).

【表】 前記ガラス小体をボールミルによつて粉砕し、
篩い分けにより次のような粒度の粉体とした。 有色原料粉末……10〜200mesh 無色原料粉末……200mesh以下 以上の原料粉末を1:1の割合で混合し、下記
のように各種の緻密成形体とした。 緻密成形体の寸法はいずれも100×100×25(mm)
である。 上記原料粉末に粘結剤として少量のP.V.A.
溶液を加えよく混練して後、30Kgf/cm2の圧力
による加圧成形を行つた。 上記原料粉末に粘結剤として3%のモンモリ
ロナイト系粘結剤を、15%の水と共に添加して
よく混練して後、30Kgf/cm2の圧力による加圧
成形を行つた。しら地の曲げ強さは10Kgf/cm2
であつた。 上記原料粉末に粘結剤として3%のアルミナ
セメント系粘結剤を、15%の水と共に添加して
よく混練して後、30Kgf/cm2の圧力による加圧
成形を行つた。しら地の曲げ強さは11Kgf/cm2
であつた。 上記原料粉末に粘結剤として3%のモンモリ
ロナイト系粘結剤を、15%の水と共に添加して
よく混練して後、60Hzの振動を与えて振動成形
を行つた。しら地の曲げ強さは11Kgf/cm2であ
つた。 上記のしら地の熱処理はいずれも、150℃/h
の昇温速度で750℃に昇温し、同温度で30分間保
持し、次いで900℃で3時間保持して行つたとこ
ろ、ウオラストナイト結晶が析出した。 製品の曲げ強さはいずれも630Kgf/cm2であつ
た。 第3図は上記実施例の熱処理曲線である。 なお上記熱処理で900℃の保持時間を長くする
とFeOがFe2O3に変化してゆくため、色調は次第
に黄色味を帯びてゆく。 第4図は上記実施例のしら地による色模様付
結晶化ガラスの模様状態を示す図であり、〜
の場合も略同様であつた。 <発明の効果> 以上のように本発明の方法は有色及び無色原料
の成分組成の調整に加えてガラス状原料の微細化
とそれを緻密成形体とすることによつて、粉末粒
子の一体緻密化を低温で行えるようにし、従つて
集積法におけるような結晶成長に伴う粘性増大の
障害もなく、広い範囲の組成のガラスにおいて容
易に結晶化ができるのであり、着色模様も着色及
び無色ガラス粉末の混合に依るために、既述のよ
うに極めて変化に富む模様を出現させることがで
きるのである。 加えて形状においても粉末の型枠成形であるか
ら容易に所望形状とすることが可能で、表面に凹
凸をつけるなども容易である。又適切な粘結剤の
使用によつてしら地強度を高め、取扱いを容易と
すると共に経済性を向上させることができる。 更には製品内部に大きな気泡を含ましめない方
法であり、このことは強度的にも大きな利点であ
る。 このように多くの利点を有して、優れた装飾
材、建築材としての色模様付結晶化ガラスを提供
し得るようにした本発明の工業的価値は著大であ
る。
[Table] The glass corpuscles were crushed by a ball mill,
A powder having the following particle size was obtained by sieving. Colored raw material powder: 10 to 200 mesh Colorless raw material powder: 200 mesh or less The above raw material powders were mixed at a ratio of 1:1 to form various dense compacts as shown below. The dimensions of each dense molded body are 100 x 100 x 25 (mm)
It is. A small amount of PVA as a binder in the above raw material powder
After adding the solution and thoroughly kneading, pressure molding was performed at a pressure of 30 Kgf/cm 2 . 3% of a montmorillonite binder was added as a binder to the raw material powder, together with 15% of water, and after thorough kneading, pressure molding was performed at a pressure of 30 Kgf/cm 2 . The bending strength of Shiraji is 10Kgf/cm 2
It was hot. A 3% alumina cement binder was added as a binder to the raw material powder, together with 15% water, and after thorough kneading, pressure molding was performed at a pressure of 30 Kgf/cm 2 . The bending strength of Shiraji is 11Kgf/cm 2
It was hot. 3% of a montmorillonite-based binder was added as a binder to the raw material powder, together with 15% of water, and after thorough kneading, vibration molding was performed by applying vibrations of 60 Hz. The bending strength of the plain ground was 11 kgf/cm 2 . The above heat treatment of Shiraji was done at 150℃/h.
When the temperature was raised to 750°C at a heating rate of 200°C, held at the same temperature for 30 minutes, and then held at 900°C for 3 hours, wollastonite crystals were precipitated. The bending strength of each product was 630 Kgf/cm 2 . FIG. 3 is a heat treatment curve for the above example. Note that when the holding time at 900°C is prolonged in the above heat treatment, FeO changes to Fe 2 O 3 , so the color tone gradually becomes yellowish. FIG. 4 is a diagram showing the pattern state of the colored patterned crystallized glass of the above-mentioned example, and ~
The case was almost the same. <Effects of the Invention> As described above, the method of the present invention not only adjusts the component composition of colored and colorless raw materials, but also refines the glassy raw material and makes it into a dense compact, thereby achieving integral densification of powder particles. Therefore, glass with a wide range of compositions can be easily crystallized without the problem of increased viscosity caused by crystal growth as in the case of the integrated method, and the colored pattern can also be made from colored and colorless glass powder. As mentioned above, it is possible to create extremely varied patterns as described above. In addition, since the powder is molded into a mold, it can be easily formed into a desired shape, and it is also easy to create irregularities on the surface. In addition, by using an appropriate binder, the strength of the base can be increased, handling becomes easier, and economical efficiency can be improved. Furthermore, it is a method that does not contain large air bubbles inside the product, which is a great advantage in terms of strength. The industrial value of the present invention, which has many advantages as described above and can provide colored patterned crystallized glass as an excellent decorative material and building material, is enormous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガラス状原料粉末の緻密
成形体の熱処理曲線、第2図は同緻密成形体加熱
における、結晶成長速度−温度曲線、第3図は本
発明実施例の熱処理曲線、第4図は本発明実施例
による色模様付結晶化ガラスの模様状態を示す図
である。
FIG. 1 is a heat treatment curve of a dense compact of glassy raw material powder according to the present invention, FIG. 2 is a crystal growth rate-temperature curve during heating of the dense compact, and FIG. 3 is a heat treatment curve of an example of the present invention. FIG. 4 is a diagram showing the pattern state of the colored patterned crystallized glass according to the embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量百分率で、SiO2:40〜50%、Al2O3:5
〜20%、CaO:30〜40%、着色剤:0.5〜15%を
必須成分として、かつSiO2+Al2O3+CaO>85%
を含有するガラス状原料を粉砕して成る10mesh
以下でかつ10〜200mesh粒子が20%以上を占める
粉体と、SiO2:55〜75%、Al2O3:15%以下、
CaO:5〜15%、Na2O+K2O:10〜20%を必須
成分とし、かつSiO2+Al2O3+CaO+Na2O+
K2O>90%を含有するガラス状原料を粉砕して成
る200mesh以下の粒子が90%以上を占める粉体と
を混合し、該混合粉体を加圧又は振動成形により
真密度の50%以上の成形体として後、熱処理して
成形体構成粒子を軟化融着させて一体化及び緻密
化する一方結晶化を図つて主としてウオラストナ
イト結晶を析出させるようにした事を特徴とする
色模様付結晶化ガラスの製造方法。
1 Weight percentage: SiO 2 : 40-50%, Al 2 O 3 : 5
~20%, CaO: 30-40%, colorant: 0.5-15% as essential components, and SiO 2 + Al 2 O 3 + CaO > 85%
10mesh made by crushing glassy raw material containing
Powder with the following and 10 to 200 mesh particles occupying 20% or more, SiO 2 : 55 to 75%, Al 2 O 3 : 15% or less,
CaO: 5 to 15%, Na 2 O + K 2 O: 10 to 20% as essential components, and SiO 2 + Al 2 O 3 + CaO + Na 2 O +
A powder made by pulverizing a glassy raw material containing K 2 O > 90%, in which 90% or more of the particles are 200 mesh or less, is mixed, and the mixed powder is compressed or vibrated to 50% of its true density. A color pattern characterized by the above molded body being heat-treated to soften and fuse the particles constituting the molded body to integrate and densify it, while crystallizing it to precipitate mainly wollastonite crystals. A method for producing crystallized glass.
JP16064086A 1986-07-08 1986-07-08 Production of crystallized glass with color pattern Granted JPS6317239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16064086A JPS6317239A (en) 1986-07-08 1986-07-08 Production of crystallized glass with color pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16064086A JPS6317239A (en) 1986-07-08 1986-07-08 Production of crystallized glass with color pattern

Publications (2)

Publication Number Publication Date
JPS6317239A JPS6317239A (en) 1988-01-25
JPH0416421B2 true JPH0416421B2 (en) 1992-03-24

Family

ID=15719301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16064086A Granted JPS6317239A (en) 1986-07-08 1986-07-08 Production of crystallized glass with color pattern

Country Status (1)

Country Link
JP (1) JPS6317239A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641380B2 (en) * 1989-08-11 1994-06-01 東京都 Method for producing β-wollastonite crystallized glass
DE4324492C2 (en) * 1993-07-21 1995-11-16 Swarovski & Co Use of a glass composition based on silica and calcium oxide for the production of gemstones

Also Published As

Publication number Publication date
JPS6317239A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
US4755489A (en) Reinforced calcium aluminosilicate glass-ceramics
JP4785221B2 (en) Glass ceramics and manufacturing method thereof
JPH0416421B2 (en)
JPS6317238A (en) Production of crystallized glass
JPH0444622B2 (en)
JPH0575702B2 (en)
JPH0575701B2 (en)
JPS63144142A (en) Crystallized glass and production thereof
JPS63129025A (en) Production of glass ceramic article
US4292080A (en) Cesium-stuffed cordierite ceramics
JPS6374936A (en) Crystallized glass and production thereof
JPH01252551A (en) Production of crystallized glass containing dot pattern
JP2860692B2 (en) Method for producing porous product by cristobalite
JPS62235230A (en) Production of crystallized glass with colored pattern
JPS62235229A (en) Production of crystallized glass
JPH0436098B2 (en)
JPS6340737A (en) Production of high-strength crystallized glass
JPS62143842A (en) Crystallized glass and production thereof
JPH0193440A (en) Production of crystallized glass having color pattern
JP2800134B2 (en) Manufacturing method of porous ceramics
JPS63144130A (en) Production of patterned crystallized glass building material
JPH0987004A (en) Production of clay for porcelain and production of porcelain
JPH04305030A (en) Production of foamed-glass formed body
JPH01138155A (en) Production of crystallized glass product
JPH0193441A (en) Production of crystallized glass building material