JPH068190B2 - Crystallized glass material and manufacturing method thereof - Google Patents

Crystallized glass material and manufacturing method thereof

Info

Publication number
JPH068190B2
JPH068190B2 JP63166339A JP16633988A JPH068190B2 JP H068190 B2 JPH068190 B2 JP H068190B2 JP 63166339 A JP63166339 A JP 63166339A JP 16633988 A JP16633988 A JP 16633988A JP H068190 B2 JPH068190 B2 JP H068190B2
Authority
JP
Japan
Prior art keywords
softening point
glass powder
powder
glass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63166339A
Other languages
Japanese (ja)
Other versions
JPH0218337A (en
Inventor
義弘 中川
良登 瀬戸
昭利 岡林
広之 木村
敬 志方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63166339A priority Critical patent/JPH068190B2/en
Publication of JPH0218337A publication Critical patent/JPH0218337A/en
Publication of JPH068190B2 publication Critical patent/JPH068190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、建材や壁材等として使用される結晶化ガラス
材及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a crystallized glass material used as a building material, a wall material, and the like, and a method for producing the same.

(従来の技術) 従来、結晶化ガラス材の好適な製造方法として、特開昭
48−78217号公報に開示されているように、特定組成の
ガラス紛粒体を耐火性成形型に集積し、成形型ごとガラ
ス軟化点より高温に加熱し、ガラス紛粒体を軟化させて
融着すると共に結晶化する方法(以下、集積法とい
う。)がある。
(Prior Art) Conventionally, as a preferable method for producing a crystallized glass material, Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Publication No. 48-78217, glass powder particles having a specific composition are accumulated in a refractory mold, and each mold is heated to a temperature higher than the glass softening point to soften the glass powder particles and melt them. There is a method of depositing and crystallizing (hereinafter referred to as an integration method).

この方法によると、基地形成用のガラス紛粒体に適宜の
着色成分を含んだ模様形成用のガラス紛粒体を添加し
て、これを集積し、熱処理することにより、任意の色模
様を有する結晶化ガラス材が容易に得られるという利点
がある。
According to this method, a glass powder for pattern formation containing an appropriate coloring component is added to the glass powder for base formation, and the powder is accumulated and heat-treated to have an arbitrary color pattern. There is an advantage that a crystallized glass material can be easily obtained.

(発明が解決しようとする課題) しかしながら、集積法によると、熱処理に際し、ガラス
紛粒体がほぼ同時に軟化融着するため、紛粒体の間に存
在した空気は軟化融着体中に閉じ込められ、気泡となっ
て残留する。この気泡は、紛粒体の粒子が小さいほど発
生量が多く、また相互に凝集して多きな気孔となる。
(Problems to be Solved by the Invention) However, according to the integration method, during the heat treatment, the glass particles are softened and fused almost at the same time, so that the air present between the particles is trapped in the softened fused body. , Remain as bubbles. The smaller the particles of the powdery particles are, the larger the amount of the air bubbles is generated, and the air bubbles are agglomerated with each other to form many pores.

軟化溶融体中の気泡や気孔は、熱処理中に膨張するた
め、結晶化ガラス材に膨れや割れを発生させる要因とな
る。また、結晶化ガラス材は、通常その表面を平滑に研
摩して板材として使用することが多いため、ガラス材中
に気泡や気孔が多数存在すると、研摩後の表面に気泡や
気孔に起因した凹みが多数露呈し、製品欠陥となる。ま
た、気泡や気孔は、部材に作用する応力を負担すること
ができず、強度の低下の要因となる。
The bubbles and pores in the softened melt expand during the heat treatment, which causes swelling and cracks in the crystallized glass material. In addition, since crystallized glass materials are often used as plate materials by smoothing the surface, if glass cells have many air bubbles or pores, the surface after polishing will be dented due to air bubbles or pores. Are exposed, resulting in product defects. Further, the bubbles and pores cannot bear the stress acting on the member, which causes a decrease in strength.

また、集積法は、ガラス紛粒体の集積体を軟化すると共
に結晶化するものであるから、熱処理時に集積体の軟化
による形崩れを防止しなければならず、このため成形型
ごと熱処理に供しなければならない。すなわち、ガラス
紛粒体の集積から熱処理完了まで成形型単位で取り扱わ
なければならず、取り扱いが煩雑であり、生産性に劣
る。また、高価な耐熱性成形型を多数準備しなければな
らず設備コストが高くなる。
In addition, since the integration method softens and crystallizes the aggregate of glass powder particles, it is necessary to prevent the shape of the aggregate from being deformed due to the softening of the aggregate during heat treatment. There must be. That is, from the accumulation of the glass powder particles to the completion of the heat treatment, it must be handled in units of molds, the handling is complicated, and the productivity is poor. In addition, a large number of expensive heat-resistant molding dies must be prepared, which increases equipment costs.

本発明はかかる問題点に鑑みなされたもので、色模様を
容易に付けられ、かつ気泡の含有を可及的に抑制するこ
とができる結晶化ガラス材および成形型ごとの取り扱い
が不要な同ガラス材の製造方法の提供を目的とする。
The present invention has been made in view of the above problems, and a colored glass material that can be easily provided with a color pattern and that can suppress the inclusion of bubbles as much as possible, and the same glass that does not require handling for each molding die. An object of the present invention is to provide a method for manufacturing a material.

(課題を解決するための手段) 上記目的を達成するためになされた本発明の結晶化ガラ
ス材は、低軟化点ガラス粉末と高軟化点ガラス粉末とが
低軟化点ガラス粉末の軟化融着後に融着一体化し、結晶
化してなる結晶化ガラス材であって、前記低軟化点ガラ
ス粉末は主成分が重量%で SiO2:65〜80%、 CaO:5〜10% Na2O+K2O:10〜20%、MgO:2〜8% であり、 前記高軟化点ガラス粉末は主成分が重量%で SiO2:65〜80%、 Al2O3:25%以下 Na2O+K2O:5〜15% である高軟化点融着性ガラス粉末とアルミナ粉末とから
なることを発明の構成とするものである。
(Means for Solving the Problems) The crystallized glass material of the present invention made to achieve the above-mentioned object is a low softening point glass powder and a high softening point glass powder after softening and fusion of the low softening point glass powder. A crystallized glass material obtained by fusion-integration and crystallization, wherein the low-softening point glass powder is mainly composed of wt% SiO 2 : 65-80%, CaO: 5-10% Na 2 O + K 2 O: 10 to 20%, MgO: 2 to 8%, and the main component of the high softening point glass powder is wt% SiO 2 : 65 to 80%, Al 2 O 3 : 25% or less Na 2 O + K 2 O: 5 The composition of the present invention is composed of ˜15% glass powder having a high softening point fusion bonding property and alumina powder.

また、その好適な製造方法として、主成分が重量%で、 SiO2 :65〜80%、 CaO:5〜10% Na2O+K2O:10〜20%、MgO:2〜8% である低軟化点ガラス粉末と、主成分が重量%で SiO2:65〜80%、 Al2O3:25%以下 Na2O+K2O:5〜15% である高軟化点融着性ガラス粉末とアルミナ粉末とから
なる高軟化点ガラス粉末との混合粉末を低軟化点ガラス
粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化開
始温度以下の温度で加圧成形し、高軟化点ガラス粉末の
回りに低軟化点ガラス粉末を軟化付着ないし融着させた
ガラス粉末成形体を得、該成形体を低軟化点ガラス粉末
の結晶化開始温度以上でかつ高軟化点融着性ガラス粉末
の軟化点以下の温度に加熱して結晶化することを発明の
構成とするものである。
Further, as a preferable production method, the main component is by weight%, SiO 2: 65~80%, CaO: 5~10% Na 2 O + K 2 O: 10~20%, MgO: Low is 2% to 8% softening point and the glass powder, SiO main component in weight% 2: 65~80%, Al 2 O 3: 25% or less Na 2 O + K 2 O: high softening point fusible glass powder and the alumina is 5-15% Powder mixed with a high softening point glass powder consisting of powder is pressure-molded at a temperature not lower than the softening point of the low softening point glass powder and lower than the crystallization start temperature of the low softening point glass powder, and the high softening point glass powder A glass powder compact is obtained by softening, adhering or fusing a low softening point glass powder around, and the compact is a softening point of the glass powder having a low softening point or higher than the crystallization start temperature of the fusible glass powder. The invention is constituted by heating to the following temperature for crystallization.

(作用) 本発明の結晶ガラス材は、低軟化点ガラス粉末と高軟化
点ガラス粉末とが低軟化点ガラス粉末の軟化融着後に融
着一体化し、結晶化したものであるから、低軟化点ガラ
ス粉末同士の軟化融着時に、ガラス粉末の間に存在した
空気は未軟化状態の高軟化点ガラス粉末の粒子表面に沿
ってガラス粉末の外部へ排出される。このため、両ガラ
ス粉末の融着体中には気泡が残留し難く、その結果、本
発明の結晶化ガラス材中には、気泡や気孔が可及的に排
除されたものとなる。
(Operation) Since the crystalline glass material of the present invention is a low-softening point glass powder and a high-softening point glass powder, which are crystallized by fusion-melting and integrating the low-softening point glass powder after softening and fusion. During the softening and fusion of the glass powders, the air present between the glass powders is discharged to the outside of the glass powders along the particle surface of the unsoftened high-softening point glass powders. Therefore, bubbles are unlikely to remain in the fused body of both glass powders, and as a result, bubbles and pores are eliminated as much as possible in the crystallized glass material of the present invention.

本発明で使用する低軟化点ガラス粉末は通常のソーダ石
灰ガラスの組成であり、一方、高軟化点ガラス粉末の主
体となる高軟化点融着性ガラス粉末は、SiO2含有量を低
軟化点ガラス粉末と同範囲としたものであるので、低軟
化点ガラス粉末の軟化点以上でかつ同粉末の結晶化開始
温度以下の温度でも軟化融着した低軟化点ガラス粉末か
ら未軟化状態の高軟化点融着性ガラス粉末へNaやK等の
網目修飾イオンの拡散移行か起こり易い。その結果、高
軟化融着性ガラス粉末の成分拡散域は軟化温度が降下
し、軟化融着した低軟化点ガラス粉末と高軟化点ガラス
粉末とは融着一体化し易い。
The low softening point glass powder used in the present invention is a composition of ordinary soda lime glass, on the other hand, the high softening point fusible glass powder, which is the main component of the high softening point glass powder, has a low softening point of SiO 2 content. Since it is in the same range as the glass powder, it is softened even at a temperature above the softening point of the low-softening point glass powder and below the crystallization start temperature of the low-softening point glass powder. Diffusion transfer of network-modifying ions such as Na and K to the point-melting glass powder easily occurs. As a result, the softening temperature is lowered in the component diffusion region of the high-softening fusible glass powder, and the low-softening point glass powder and the high-softening point glass powder that have been softened and fused are easily fused and integrated.

前記低軟化点および高軟化点融着性ガラス粉末の主成分
限定理由を下記に記す。単位は重量%である。
The reasons for limiting the main components of the low softening point and high softening point fusible glass powders are described below. The unit is% by weight.

A.低軟化点ガラス粉末 SiO2:65〜80% 65%未満ではSiO2結晶は析出し難く、一方80%を越え
ると軟化点が高くなり、熱処理において高温加熱が必要
となり、製造上好ましくない。
A. Low softening point glass powder SiO 2: SiO 2 crystal is less than 65% to 80% 65% hardly precipitated, whereas exceeding the softening point is increased to 80%, requires a high temperature heat in the heat treatment, the production is not preferable.

CaO:5〜10% 5%未満では軟化点が高くなり、一方10%を越えるとSi
O2結晶が析出しにくくなる。
CaO: 5-10% If it is less than 5%, the softening point becomes high, while if it exceeds 10%, it becomes Si.
O 2 crystals are less likely to precipitate.

Na2O+K2O:10〜20% 10%未満では軟化点が高くなり、一方20%を越えるとSi
O2結晶が析出しにくくなる。
Na 2 O + K 2 O: 10-20% If the content is less than 10%, the softening point becomes high, while if it exceeds 20%, Si
O 2 crystals are less likely to precipitate.

MgO:2〜8% 2%未満ではSiO2結晶の成長が速くなり過ぎ、十分な軟
化融着による緻密化が行われる前に結晶化が開始するこ
とになる。一方8%を越えるとSiO2結晶が析出しにくく
なる。
MgO: 2 to 8% If less than 2%, the growth of SiO 2 crystals will be too fast, and crystallization will start before sufficient densification by softening fusion. On the other hand, if it exceeds 8%, it becomes difficult to deposit SiO 2 crystals.

B.高軟化点融着性ガラス粉末 SiO2:65〜80% 65%未満ではSiO2結晶は析出し難く、一方80%を越え
ると軟化点が高くなり過ぎ、低軟化点ガラス粉末との成
分の拡散が起こりにくくなる。
B. High softening point fusible glass powder SiO 2 : 65-80% If less than 65%, SiO 2 crystals are hard to precipitate, while if it exceeds 80%, the softening point becomes too high and the components diffuse with the low softening point glass powder. Is less likely to occur.

Al2O3:25%以下 Al2O3はガラス軟化点を上昇させる作用をなすが、25%
を越えるとSiO2結晶が析出しにくくなる。
Al 2 O 3 : 25% or less Al 2 O 3 acts to raise the glass softening point, but 25%
If it exceeds, it becomes difficult to deposit SiO 2 crystals.

Na2O+K2O:5〜15% 5%未満では軟化点が高くなり過ぎ、低軟化点ガラス粉
末との成分の拡散が起こりにくくなる。一方、15%を越
えると軟化点が低くなり過ぎ、軟化温度が低軟化点ガラ
ス紛枚の結晶化開始温度以下になるおそれが出てくる。
Na 2 O + K 2 O: too high softening point is less than 5-15% 5%, diffusion of components of the low-softening point glass powder is less likely to occur. On the other hand, if it exceeds 15%, the softening point becomes too low, and the softening temperature may become lower than the crystallization start temperature of the low softening point glass powder.

低軟化点および高軟化点融着性ガラス粉末の主成分は以
上の通りであるが、その他、着色剤や物性調整のためガ
ラス工業分野で通常添加される成分の含有が許容され
る。
The main components of the low softening point and high softening point fusible glass powders are as described above, but in addition, it is acceptable to include a coloring agent and a component that is usually added in the glass industry field for adjusting physical properties.

高軟化点ガラス粉末には、アルミナ粉末が含まれる。ア
ルミナ粉末はその粉末粒界で軟化状態の低軟化点ガラス
粉末との間で成分の拡散が生じて融着し、結晶化(Na2O
・Al2O3・2SiO2晶による結晶化)して強固に結合する
ことができ、かつ線膨張率が低軟化点ガラス粉末に比べ
て10%以上低いため、結晶化後の冷却過程で、結晶化ガ
ラス材に圧縮応力を残留させることができ、結晶化ガラ
ス材を強化することができる。また、結晶化ガラス材自
体の熱膨張率を低下させることができるため、耐熱衝撃
性に優れたものとなる。尚、アルミナ粉末は、結晶化ガ
ラス材の光沢を劣化させるため、低軟化点ガラス粉末と
高軟化点ガラス粉末との全量に対して10重量%以下に止
めておくのがよい。もっとも、圧縮残留応力による有効
な強化作用を得るには1重量%以上添加することが望ま
しい。
The high softening point glass powder includes alumina powder. Alumina powder is crystallized (Na 2 O 2) due to the diffusion of components between the alumina powder and the low softening point glass powder in the softened state at the grain boundaries.
・ Al 2 O 3・ 2SiO 2 crystallizes) to form a strong bond, and the coefficient of linear expansion is 10% or more lower than that of the low softening point glass powder. Therefore, during the cooling process after crystallization, Compressive stress can remain in the crystallized glass material, and the crystallized glass material can be strengthened. In addition, since the coefficient of thermal expansion of the crystallized glass material itself can be reduced, the thermal shock resistance becomes excellent. Since the alumina powder deteriorates the gloss of the crystallized glass material, it is preferable to keep the content of the low-softening point glass powder and the high-softening point glass powder at 10% by weight or less based on the total amount. However, in order to obtain an effective strengthening effect due to the compressive residual stress, it is desirable to add 1% by weight or more.

また、本発明の製造方法によれば、前記高軟化点ガラス
粉末と低軟化点ガラス粉末との混合粉末を低軟化点ガラ
ス粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化
開始温度以下の温度で加圧するので、低軟化点ガラス粉
末は高軟化点ガラス粉末に隣接した状態で、軟化融着す
ると共に高軟化点ガラス粉末に付着する。この際、ガラ
ス粉末の間に存在した空気は、未軟化状態の高軟化点ガ
ラス粉末の表面を伝わって外部に排出される。また、加
熱温度が前記温度範囲で比較的高い場合、低軟化点ガラ
ス粉末の軟化融着部分と該部分が付着した高軟化点ガラ
ス粉末表面との間で成分の拡散、、移行が生じ、成分拡
散域が軟化して高軟化点ガラス粉末と前記低軟化点ガラ
ス粉末の軟化融着部分とが融着する。
Further, according to the production method of the present invention, the mixed powder of the high softening point glass powder and the low softening point glass powder is equal to or higher than the softening point of the low softening point glass powder and is equal to or lower than the crystallization start temperature of the low softening point glass powder. Since the pressure is applied at the temperature of 1, the low softening point glass powder is softened and fused while being adjacent to the high softening point glass powder, and adheres to the high softening point glass powder. At this time, the air existing between the glass powders is discharged to the outside through the surface of the unsoftened high-softening point glass powder. Further, when the heating temperature is relatively high in the temperature range, diffusion of components between the softening fusion portion of the low softening point glass powder and the surface of the high softening point glass powder to which the portion adheres, migration occurs, and the component The diffusion region is softened and the high softening point glass powder and the softening fusion-bonded portion of the low softening point glass powder are fused.

このようにして低軟化点ガラス粉末と高軟化点ガラス粉
末との混合粉末は付着ないし融着一体化し、緻密なガラ
ス粉末成形体となる。このガラス粉末成形体は取扱い上
必要とされる十分な強度を有し、単独で取扱うことがで
きる。
In this way, the mixed powder of the low softening point glass powder and the high softening point glass powder is adhered or fused and integrated to form a dense glass powder compact. This glass powder compact has a sufficient strength required for handling and can be handled alone.

次に、ガラス粉末成形体を低軟化点ガラス粉末の結晶化
開始温度以上でかつ高軟化点融着性ガラス粉末の軟化点
以下の温度に加熱するので、昇温過程で低軟化点ガラス
粉末と高軟化点融着性ガラス粉末との融着が進行し、軟
化融着部分が拡大する。また、内部が未軟化状態の高軟
化点融着性ガラス粉末およびアルミナ粉末が骨材として
の役目を果たし、成形体の形状を保持した状態で、低軟
化点ガラス粉末同士の軟化融着した部分及び高軟化点ガ
ラス粉末との成分拡散域の軟化融着部分に結晶が析出
し、成長する。
Next, since the glass powder compact is heated to a temperature equal to or higher than the crystallization start temperature of the low softening point glass powder and equal to or lower than the softening point of the high softening point fusible glass powder, the low softening point glass powder is used in the temperature rising process. The fusion with the high softening point fusion-bondable glass powder proceeds, and the softened fusion portion expands. Further, the high softening point fusible glass powder and alumina powder in the unsoftened state serve as an aggregate, and the softened and fused portions of the low softening point glass powders are held in a state where the shape of the molded body is maintained. Also, crystals precipitate and grow in the softening fusion-bonded portion in the component diffusion region with the high softening point glass powder.

従って、ガラス粉末成形体を混合粉末の加圧成形に要し
た成形型ごと結晶化熱処理に供する必要はなく、ガラス
粉末成形体を単独で取り扱うことができ、作業が容易で
生産性に優れる。また、高価な耐熱性成形型を多数準備
する必要がない。
Therefore, it is not necessary to subject the glass powder molded body to the crystallization heat treatment together with the mold required for the pressure molding of the mixed powder, and the glass powder molded body can be handled alone, and the work is easy and the productivity is excellent. Further, it is not necessary to prepare a large number of expensive heat resistant molds.

結晶化熱処理後、常温まで冷却されるが、この間、アル
ミナ粉末部分は基地に比べて熱膨張率が小さいので、結
晶化ガラスに圧縮応力が残留し、材質が強化される。
After the crystallization heat treatment, it is cooled to room temperature. During this time, since the alumina powder portion has a smaller coefficient of thermal expansion than the matrix, compressive stress remains in the crystallized glass and the material is strengthened.

(実施例) 以下、本発明の結晶化ガラス材をその製造方法と共に説
明する。
(Example) Below, the crystallized glass material of this invention is demonstrated with the manufacturing method.

まず、本発明において使用するガラス粉末について説明
する。
First, the glass powder used in the present invention will be described.

低軟化点ガラス粉末および高軟化点融着性ガラス粉末の
主成分については既述の通りであるが、後者はそのガラ
ス軟化点が800℃程度以上となるように成分を調整する
ことが望ましい。低軟化点ガラス粉末は、通常のソーダ
石灰ガラスの組成であり、軟化点が600〜750℃、結晶化
開始温度が800℃程度以下だからである。
The main components of the low softening point glass powder and the high softening point fusible glass powder are as described above, but it is desirable to adjust the components of the latter so that the glass softening point thereof is about 800 ° C. or higher. This is because the low softening point glass powder has a composition of ordinary soda lime glass and has a softening point of 600 to 750 ° C and a crystallization start temperature of about 800 ° C or less.

尚、ガラス粉末は、所期組成のガラスを溶製し、これを
水砕し、更に粉砕することによって得られるが、低軟化
点ガラス粉末原料としてはソーダ石灰ガラスのカレット
(屑ガラス)を利用すればよく、また、高軟化点融着性
ガラス粉末についても、パーライト(真珠岩)を粉砕し
たものを使用することができる。パーライトはAl2O3
十数%含有しており、軟化点が900℃程度以上あるう
え、骨材等として市場に多量に供給され、入手が容易で
あり、経済性に優れる。
The glass powder can be obtained by melting glass having the desired composition, water-crushing it, and further crushing it. As the low softening point glass powder raw material, cullet (scrap glass) of soda-lime glass is used. The high softening point fusible glass powder may be crushed perlite (pearlite). Perlite contains more than 10% of Al 2 O 3 , has a softening point of about 900 ° C. or more, is supplied to the market in large amounts as aggregates, etc., is easily available, and is excellent in economic efficiency.

尚、天然に産出するパーライトは、層状構造をしてお
り、人工的に製造されたガラスとは成分が同一でも性質
が若干異なるが、本発明において、ガラスという場合は
かかるものも含む。パーライトは層間に3〜5%の水分
を含んでいるが熱処理時に脱水される。また、同成分の
人工ガラスに比べて軟化点が高くなっている。
It should be noted that naturally occurring perlite has a layered structure, and although it has the same components as those of artificially manufactured glass, the properties are slightly different, but in the present invention, such a glass is included. Perlite contains 3-5% of water between layers, but is dehydrated during heat treatment. In addition, the softening point is higher than that of artificial glass of the same component.

低軟化点および高軟化点ガラス粉末の粒度は、粒度が小
さいほど、またその量が多いほど低軟化点ガラス粉末同
士の軟化融着が容易となり、また高軟化点ガラス粉末と
の融着が容易となり、ひいてはガラス粉末成形体の緻密
化および結晶化が促進される。このため、ガラス粉末の
粒度は、200メッシュ以下の粉末を80%以上(好ましく
は90%以上)占めるようにしておくことが望ましい。
尚、アルミナ粉末は、粒度が粗くなると光沢が悪くなる
ため細かいほどよいが、細かくなるほど価格も高くなる
ので、通常0.5〜20μmのものが使用される。
Regarding the particle size of the low softening point and high softening point glass powders, the smaller the particle size and the larger the amount thereof, the easier the softening and fusion of the low softening point glass powders, and the easier the fusion with the high softening point glass powders. As a result, densification and crystallization of the glass powder molded body are promoted. Therefore, it is desirable that the particle size of the glass powder is such that the powder having a particle size of 200 mesh or less occupies 80% or more (preferably 90% or more).
It should be noted that the finer the alumina powder is, the finer the grain size becomes, so that the gloss becomes worse, but the finer the price, the higher the price becomes.

前記低軟化点ガラス粉末とアルミナ粉末を含む高軟化点
ガラス粉末との混合粉末における両粉末の配合割合は、
前記低軟化点ガラス粉末が20〜90重量%となるようにす
ることが望ましい。20%未満では高軟化点ガラス粉末と
の軟化融着不足、ガラス粉末成形体の緻密化不足を招来
する。また結晶量が不足し、強度が低下する。一方、90
%を越えると熱処理時のガラス粉末成形体の形状保持が
不十分となり、また該成形体中の気泡の排出作用が不足
する。
The mixing ratio of both powders in the mixed powder of the low softening point glass powder and the high softening point glass powder containing the alumina powder is:
It is desirable that the low softening point glass powder is 20 to 90% by weight. If it is less than 20%, the softening fusion with the high softening point glass powder is insufficient and the glass powder compact is insufficiently densified. In addition, the amount of crystals is insufficient and the strength is reduced. On the other hand, 90
When it exceeds%, the shape retention of the glass powder compact during heat treatment becomes insufficient, and the function of discharging bubbles in the compact is insufficient.

低軟化点ガラス粉末および、又は高軟化点融着性ガラス
粉末の一部又は全部には着色成分の含有を除いて同成分
の着色ガラス粉末を使用することができる。かかる低軟
化点着色ガラス粉末と高軟化点着色ガラス粉末との混合
粉末(以下、着色混合粉末という。)を使用することに
より、又その複数種の組み合せて使用することにより、
種々の着色結晶化ガラス材や色模様付の結晶化ガラス材
を得ることができる。
It is possible to use the colored glass powder having the same softening point glass powder and / or the high softening point fusible glass powder having the same components except for the content of the coloring component. By using a mixed powder of such a low softening point colored glass powder and a high softening point colored glass powder (hereinafter referred to as a colored mixed powder), or by using a combination of a plurality of types thereof,
Various colored crystallized glass materials and colored crystallized glass materials can be obtained.

尚、着色成分を含有しない低軟化点ガラス粉末と中軟化
点ガラス粉末との混合粉末に金属酸化物の着色剤(通
常、200メッシュ以下の微粉が使用される。)を添加混
合した添加混合粉末を使用することによっても、着色結
晶化ガラス材の製造が可能である。着色剤は、結晶化ガ
ラス材に要求される物性(特に強度)を低下させない範
囲で添加されるが、その添加量の一例を下記に示す。添
加量は添加混合粉末に対するものであり、単位は重量%
である。
An additive mixed powder obtained by adding and mixing a colorant of metal oxide (usually a fine powder of 200 mesh or less) to a mixed powder of a low softening point glass powder and a medium softening point glass powder containing no coloring component. It is also possible to produce a colored crystallized glass material by using. The colorant is added in a range that does not deteriorate the physical properties (particularly strength) required for the crystallized glass material, and an example of the addition amount is shown below. The addition amount is based on the added mixed powder, the unit is% by weight
Is.

Cr2O3、CuO、MnO2 …1%以下 CoO …3%以下 FeO、Fe3O4、Fe2O3…10%以下 また、斑点状の着色模様を形成するには、4〜100メッ
シュの粗粒の低軟化点および、又は高軟化点融着性ガラ
ス粉末を使用すればよい。尚、粗粒の着色ガラス粉末の
使用量は、既述の通り、ガラス粉末は200メッシュ以下
の粉末を80%以上占めるようにすることが望ましいた
め、粉末全量に対し20%以下に止めておくことが好まし
い。
Cr 2 O 3 , CuO, MnO 2 ... 1% or less CoO ... 3% or less FeO, Fe 3 O 4 , Fe 2 O 3 ... 10% or less In addition, in order to form a spotted colored pattern, 4 to 100 mesh The coarse-grained low softening point and / or high softening point fusible glass powder may be used. As described above, the amount of coarse colored glass powder used is preferably such that the glass powder occupies 80% or more of the powder of 200 mesh or less, so the total amount of the powder is kept to 20% or less. It is preferable.

本発明の結晶化ガラス材を製造するには、以上説明した
混合粉末(以下、混合粉末という場合は着色混合粉末、
添加混合粉末を含む。)によって、まずガラス粉末成形
体を成形する。
In order to produce the crystallized glass material of the present invention, the mixed powder described above (hereinafter, when referred to as mixed powder, colored mixed powder,
Includes additive powder mix. First, a glass powder molded body is molded by (1).

ガラス粉末成形体の成形方法としては、例えば第1図に
示すように、成形型1(金型)に混合粉末2 を入れた後、
上型3 を嵌入し、常温で加圧成形する方法(常温加圧成
形法)、該混合粉末2 を低軟化点ガラス粉末の軟化点以
上でかつ同粉末の結晶化開始温度以下の温度(以下、緻
密化温度という。)で加熱すると共に加圧成形する方法
(高温加圧成形法)がある。ガラス粉末成形体は成形
後、成形型から取り出され、熱処理炉に装入され、後述
の熱処理に供される。尚、成形後、成形型に入れたまま
熱処理を行うこともできるが、取り扱いが煩雑となり、
成形型も耐熱性の良好なものが必要となる。
As a method for molding a glass powder molded body, for example, as shown in FIG. 1, after the mixed powder 2 is put into a molding die 1 (mold),
A method in which the upper mold 3 is fitted and pressure-molded at room temperature (normal-temperature pressure molding method), the mixed powder 2 is heated to a temperature above the softening point of the low softening point glass powder and below the crystallization start temperature of the powder (hereinafter , Densification temperature) and pressure molding (high temperature pressure molding method). After the glass powder compact is molded, it is taken out of the mold, placed in a heat treatment furnace, and subjected to the heat treatment described later. After molding, it is possible to perform heat treatment while still in the mold, but the handling becomes complicated,
A mold with good heat resistance is also required.

常温加圧成形法による場合、通常、粉末同士が接触する
程度(相対密度で50%以上が望ましい。)に加圧され、
また取扱い上の強度(曲げ強度10kgf/cm2以上が望まし
い。)の確保や成形性の向上のため、混合粉末にバイン
ダが数%添加混合される。大形の成形体を得る場合は、
強度確保のためバインダの添加は必須となる。バインダ
として有機系のもの、例えばポリビニルアルコール(P
VA)が通常使用される。
In the case of the cold-pressing method, the powder is usually pressed to such an extent that the powder particles come into contact with each other (relative density is preferably 50% or more),
Further, in order to secure handling strength (bending strength of 10 kgf / cm 2 or more is desirable) and improve moldability, a few percent of a binder is added to the mixed powder and mixed. If you want to get a large molded body,
The addition of a binder is indispensable to secure the strength. An organic binder such as polyvinyl alcohol (P
VA) is normally used.

常温で加圧成形されたガラス粉末成形体は、第2図中の
実線で示すような熱処理に供される。a区間はバインダ
中の水分、有機溶媒を排除するための乾燥区間である。
b区間は脱バインダ区間であり、300〜400%に保持する
ことによって、バインダの高分子成分を分解し、ガス化
して成形体外へ排出する。成形体中にバインダが残留す
ると、爾後の熱処理区間で膨れや割れが発生したり、製
品物性を低下させるため、バインダは積極的に除去する
必要がある。c区間は緻密化区間であり、緻密化温度
(通常、600〜800℃)で低軟化点ガラス粉末同士が軟化
融着すると共に高軟化点ガラス粉末に付着ないし融着
し、更に昇温に伴って融着が進行する。同図ではcは連
続的な昇温状態として示されているが、緻密化温度範囲
のある温度で保持して十分に軟化融着させた後、次の区
間へ移行してもよい。d区間は結晶化区間であり、低軟
化点ガラス粉末の結晶化開始温度以上でかつ高軟化点融
着性ガラス粉末の軟化点以下の温度(以下、結晶化温度
という。通常800〜1000℃)で保持して、軟化融着部分
の結晶化を図る。尚、高軟化点融着性ガラス粉末の軟化
点以上の温度で結晶化してもよいが、この場合は、形崩
れ防止のために、ガラス粉末成形体を成形型ごとに熱処
理する必要がある。e区間は徐冷区間である。
The glass powder compact molded at normal temperature is subjected to heat treatment as shown by the solid line in FIG. The section a is a drying section for removing water and organic solvent in the binder.
The section b is a binder removal section, and by maintaining it at 300 to 400%, the polymer component of the binder is decomposed, gasified and discharged to the outside of the molded body. If the binder remains in the molded body, swelling or cracking occurs in the heat treatment section after the molding, or the physical properties of the product are deteriorated. Therefore, the binder needs to be actively removed. The section c is a densification section, and at the densification temperature (usually 600 to 800 ° C.), the low softening point glass powders are softened and fused, and also adhered or fused to the high softening point glass powder, and further increased in temperature. Fusion progresses. In the figure, c is shown as a continuous temperature rising state, but it may be moved to the next section after being held at a certain temperature within the densification temperature range and sufficiently softened and fused. Section d is a crystallization section, which is a temperature above the crystallization start temperature of the low softening point glass powder and below the softening point of the high softening point fusible glass powder (hereinafter referred to as crystallization temperature, usually 800 to 1000 ° C.). Hold at to crystallize the softened and fused portion. It should be noted that crystallization may be performed at a temperature equal to or higher than the softening point of the high softening point fusible glass powder, but in this case, the glass powder molded body must be heat-treated for each molding die in order to prevent the shape from being deformed. Section e is a slow cooling section.

高温加圧成形法によれば緻密化温度で成形型内のガラス
粉末を加圧するので、バインダを一切使用することな
く、低軟化点ガラス粉末同士が軟化融着すると共に高軟
化点ガラス粉末に付着ないし融着し、単独で取り扱い可
能な相対密度50%以上、曲げ強度10kgf/cm2以上のガラ
ス粉末成形体が容易に得られる。この場合、加圧成形温
度に急速加熱すればよく、成形時間もごく短時間で(数
分程度)でよい。
According to the high-temperature pressure molding method, the glass powder in the mold is pressed at the densification temperature, so that the low softening point glass powders soften and adhere to each other and adhere to the high softening point glass powder without using any binder. A glass powder compact having a relative density of 50% or more and a bending strength of 10 kgf / cm 2 or more that can be handled by fusion and can be handled alone can be easily obtained. In this case, rapid heating to the pressure molding temperature may be performed, and molding time may be very short (about several minutes).

加圧成形後、ガラス粉末成形体は、成形型から取り出さ
れ、熱処理炉に速やかに装入されるが、一旦、常温まで
冷却した場合は第2図中の破線で示すように、c区間の
緻密化温度に急速加熱して以後の熱処理を行うことがで
き、常温加圧成形法において必要とされるa〜b区間の
加熱を省略することができる。a〜b区間は通常長時間
を要するため、高温加圧成形法は、生産性に極めて優れ
る。例えば、700cm角、20〜30mm厚の板状結晶化ガラス
材を得るのにa〜b区間は70〜80時間必要であり、たと
えガラス粉末成形体を熱処理前に予め乾燥しておいたと
しても、脱バインダのため40〜50時間の加熱を要する。
After the pressure molding, the glass powder molded body is taken out of the molding die and immediately charged into the heat treatment furnace. However, when the glass powder molded body is once cooled to room temperature, as shown by the broken line in FIG. The subsequent heat treatment can be performed by rapidly heating to the densification temperature, and the heating in the section a to b, which is required in the normal temperature pressure molding method, can be omitted. Since the section a-b usually takes a long time, the high-temperature pressure molding method is extremely excellent in productivity. For example, in order to obtain a plate-shaped crystallized glass material having a size of 700 cm square and a thickness of 20 to 30 mm, section a to b requires 70 to 80 hours, and even if the glass powder compact is dried in advance before heat treatment. , It takes 40 to 50 hours to remove the binder.

高温加圧成形法において、混合粉末の加熱成形方法とし
ては、常温の成形型に常温の混合粉末を入れ、成形型ご
と所期の温度に加熱した後、5kgf/cm2以上の圧力で加
圧成形する方法が一般的である。この場合、通常、成形
型に備えられたヒータにより、あるいは成形型ごと加熱
炉に入れて加熱される。この他、種々の加熱成形方法を
採ることができる。例えば、 所定温度に加熱された混合粉末を常温の成形型に入
れて加圧成形する方法 所定温度に加熱した成形型に常温の混合粉末を入
れ、成形型の保有する熱によって加熱すると共に加圧成
形する方法 常温の成形型に常温の混合粉末を入れ、その表面の
みを電熱輻射、赤外線放射、バーナによる直接加熱など
によって所定温度に加熱し加圧成形する方法 がある。また、一対の熱ロールによって常温の混合粉末
を所定温度に加熱すると共に加圧成形することも可能で
ある。尚、ここに常温とは低軟化点ガラス粉末の軟化温
度未満の温度で予熱された状態を含む。
In the high-temperature pressure molding method, the mixed powder can be heat-molded by placing the room-temperature mixed powder in a mold at room temperature, heating the mold to the desired temperature, and then applying a pressure of 5 kgf / cm 2 or more. A molding method is generally used. In this case, the heating is usually performed by a heater provided in the molding die or by putting the molding die together in a heating furnace. In addition to this, various heat molding methods can be adopted. For example, a method in which a mixed powder heated to a predetermined temperature is put into a molding die at room temperature and pressure-molded. A mixed powder at room temperature is put into a molding die heated to a predetermined temperature, and the mixture is heated and pressed by the heat held by the molding die. Molding method There is a method in which a powder mixture at room temperature is put in a mold at room temperature, and only the surface thereof is heated to a predetermined temperature by electrothermal radiation, infrared radiation, direct heating by a burner, and the like, and pressure molding is performed. Further, it is also possible to heat the mixed powder at room temperature to a predetermined temperature with a pair of hot rolls and to perform pressure molding. Here, the normal temperature includes a state of being preheated at a temperature lower than the softening temperature of the low softening point glass powder.

成形型には、低軟化点ガラス粉末の粘着防止のため、ジ
ルコンサンド、黒鉛等の塗型剤やセラミック粉末等をコ
ーティングしたり、セラミックシートを被着するなどの
処理を施しておくことが望ましい。
In order to prevent the low softening point glass powder from sticking, it is desirable that the molding die be subjected to a treatment such as a coating agent such as zircon sand or graphite, a ceramic powder, or a ceramic sheet. .

次に具体的実施例について説明する。Next, specific examples will be described.

(1) 第1表に示した組成、粒度の各種ガラス粉末を調
整した。尚、低軟化点ガラス粉末原料としてカレット、
高軟化点融着性ガラス粉末原料としてパーライトを利用
した。
(1) Various glass powders having the compositions and particle sizes shown in Table 1 were prepared. Incidentally, cullet as a low softening point glass powder raw material,
Perlite was used as a raw material for the glass powder having a high softening point fusion property.

(注)A…低軟化点ガラス粉末 B…高軟化点融着性ガラス粉末 (2) 第1表AおよびBのガラス粉末を第2表の配合に
よって混合粉末を調整し、同表の高温加圧成形条件によ
って1050×1050mm(厚さ20〜25mm)の板状ガラス粉末成
形体を製造した。同表中、No.1は比較例、No.2は実施
例である。また、使用したアルミナ(Al2O3)の純度は99.
7%、平均粒径は1.8μmであった。
(Note) A ... Low softening point glass powder B ... High softening point fusible glass powder (2) A mixed powder was prepared by mixing the glass powders of A and B in Table 1 with the compound in Table 2 and applying a high temperature of the same table. A plate-shaped glass powder compact having a size of 1050 × 1050 mm (thickness 20 to 25 mm) was manufactured according to the pressure molding conditions. In the table, No. 1 is a comparative example and No. 2 is an example. The purity of the used alumina (Al 2 O 3 ) is 99.
7% and the average particle size was 1.8 μm.

(3) 高温加圧成形後、No.1およびNo.2のガラス粉末
成形体を成形用金型から取り出して600℃に保持した加
熱炉に挿入し均熱した後、30℃/Hrで900℃に昇温し、
4時間保持して結晶化を図った後、徐冷した。
(3) After high-temperature pressure molding, take out the No. 1 and No. 2 glass powder compacts from the molding die, insert them into a heating furnace kept at 600 ° C, and soak them, then at 30 ° C / Hr 900 Up to ℃,
After being kept for 4 hours for crystallization, it was gradually cooled.

(4) 得られた結晶化ガラス材の機械的性質を第3表に
示す。
(4) Table 3 shows the mechanical properties of the obtained crystallized glass material.

第3表によると、実施例に係るNo.2は比較例に係るNo.
1に対して著しい曲げ強度の向上が認められた。また、
線膨張率もNo.2の方がNo.1よりも小さいことが確かめ
られた。このため、実施例の結晶化ガラス材は熱衝撃に
対して強いことが知られる。尚、100〜200℃で線膨張率
が大きくなっているのは、SiO2結晶の変態に伴ない、体
積膨張が生じているからである。また、No.1およびNo.
2とも、組織中には肉眼で観察される気孔、気泡は皆無
であった。
According to Table 3, No. 2 according to the example is No. 2 according to the comparative example.
A remarkable improvement in bending strength was observed in comparison with No. 1. Also,
It was confirmed that the linear expansion coefficient of No. 2 was smaller than that of No. 1. Therefore, the crystallized glass materials of the examples are known to be strong against thermal shock. The reason why the linear expansion coefficient increases at 100 to 200 ° C. is that the volume expansion occurs due to the transformation of the SiO 2 crystal. Also, No. 1 and No.
In both cases, there were no pores or bubbles observed in the tissue with the naked eye.

(5) また、特性X線による粉末X線回折によって結晶
化ガラス材に析出した結晶を同定したところ、No.1はS
iO2晶のみであったが、No.2はSiO2晶のほかNa2O・Al2O
3・2SiO2晶も認められた。
(5) In addition, when the crystals deposited on the crystallized glass material were identified by powder X-ray diffraction using characteristic X-rays, No. 1 was S
Only iO 2 crystal was present, but No. 2 is SiO 2 crystal and Na 2 O ・ Al 2 O
3 · 2SiO 2 crystal was also observed.

(発明の効果) 以上説明した通り、本発明の結晶化ガラス材は、低軟化
点ガラス粉末と高軟化点ガラス粉末とが低軟化点ガラス
粉末の軟化融着後に融着一体化し、結晶化したものであ
るから、低軟化点ガラス粉末同士の軟化融着時にガラス
粉末の間に存在した空気は未軟化状態の高軟化点ガラス
粉末表面に沿って外部に排出され、組織中に気孔や気泡
がほとんど存在しないものとなる。
(Effects of the Invention) As described above, the crystallized glass material of the present invention is crystallized by fusion-bonding the low softening point glass powder and the high softening point glass powder after softening and fusion of the low softening point glass powder. Therefore, the air present between the glass powders during softening and fusion of the low softening point glass powders is discharged to the outside along the high softening point glass powder surface in the unsoftened state, and pores and bubbles in the tissue are generated. It will be almost nonexistent.

また、本発明において使用する特定組成の低軟化点およ
び高軟化点融着性ガラス粉末は入手も容易であり、軟化
温度差を確保し易いうえ、相互に融着し易く、生産性、
経済性に優れる。また、所期の着色ガラス粉末や着色剤
を使用することにより、任意の色模様を有する結晶化ガ
ラス材が容易に得られる。
Further, the low softening point and the high softening point fusible glass powder of the specific composition used in the present invention are easily available, and it is easy to secure the softening temperature difference, and easily fused with each other, productivity,
Excellent economy. In addition, a crystallized glass material having an arbitrary color pattern can be easily obtained by using a desired colored glass powder or a coloring agent.

更に、高軟化点ガラス粉末にはアルミナ粉末が添加され
ているから、ガラス粉末との結晶化により結合が強化さ
れると共に結晶化ガラス材に圧縮応力を残留させること
ができ、強度の向上を図ることができ、熱膨張率の低下
と相まって耐熱衝撃性の向上を図ることができる。
Furthermore, since the alumina powder is added to the high softening point glass powder, the bond is strengthened by crystallization with the glass powder and the compressive stress can be left in the crystallized glass material, and the strength is improved. It is possible to improve the thermal shock resistance in combination with the decrease in the coefficient of thermal expansion.

一方、本発明の製造方法によれば、バインダを一切使用
することなく、単独で取り扱いの可能な強度の大きい粉
末成形体を容易に得ることができるので、熱処理に際し
て長時間の加熱を要する脱バインダが不要となり生産性
に極めて優れる。しかも、ガラス粉末成形体の結晶化を
高軟化点融着性ガラス粉末の軟化以下の温度で行うの
で、内部が未軟化の高軟化点融着性ガラス粉末およびア
ルミナ粉末が骨材として機能し、高温の結晶化熱処理に
際しても成形体の形状が保持され形崩れが生じない。こ
のため、成形型ごと熱処理に供する必要がなく、生産性
の向上、設備コストの低減を図ることができる。
On the other hand, according to the production method of the present invention, it is possible to easily obtain a powder compact having high strength that can be handled alone without using any binder, and therefore, the binder removal process that requires a long heating time during the heat treatment. Is unnecessary and is extremely excellent in productivity. Moreover, since the crystallization of the glass powder molded body is performed at a temperature equal to or lower than the softening point of the high softening point fusible glass powder, the inner portion of the unsoftened high softening point fusible glass powder and the alumina powder function as an aggregate. The shape of the compact is maintained even during high-temperature crystallization heat treatment, and the shape does not collapse. Therefore, it is not necessary to subject the molding die to heat treatment, and productivity can be improved and equipment cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図はガラス粉末成形体の成形要領を示す成形型の断
面図、第2図は本発明の結晶化ガラス材の熱処理の一例
を示す熱処理線図である。
FIG. 1 is a cross-sectional view of a molding die showing a molding procedure of a glass powder compact, and FIG. 2 is a heat treatment diagram showing an example of heat treatment of a crystallized glass material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 広之 兵庫県尼崎市西向島町64番地 久保田鉄工 株式会社尼崎工場内 (72)発明者 志方 敬 兵庫県尼崎市西向島町64番地 久保田鉄工 株式会社尼崎工場内 (56)参考文献 特開 昭63−144142(JP,A) 特開 昭63−17238(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Kimura 64, Nishimukaishima-cho, Amagasaki City, Hyogo Prefecture Kubota Iron Works Co., Ltd. Amagasaki Plant (72) Kei Shikata, 64, Nishimukaijima-cho, Amagasaki City, Hyogo Prefecture Kubota Iron Works Co., Ltd. Amagasaki Plant (56) Reference JP-A 63-144142 (JP, A) JP-A 63-17238 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】低軟化点ガラス粉末と高軟化点ガラス粉末
とが低軟化点ガラス粉末の軟化融着後に融着一体化し、
結晶化してなる結晶化ガラス材であって、 前記低軟化点ガラス粉末は主成分が重量%で SiO2:65〜80%、 CaO:5〜10% Na2O+K2O:10〜20%、MgO:2〜8% であり、 前記高軟化点ガラス粉末は主成分が重量%で SiO:65〜80%、 Al2O3:25%以下 Na2O+K2O:5〜15% である高軟化点融着性ガラス粉末とアルミナ粉末とから
なることを特徴とする結晶化ガラス材。
1. A low softening point glass powder and a high softening point glass powder are fused and integrated after softening and fusion of the low softening point glass powder,
A crystallized glass material obtained by crystallization, wherein the low softening point glass powder is mainly composed of weight% SiO 2 : 65 to 80%, CaO: 5 to 10% Na 2 O + K 2 O: 10 to 20%, MgO: 2 to 8% said high softening point glass powder of SiO main component in weight% 2: 65~80%, Al 2 O 3: 25% or less Na 2 O + K 2 O: a 5-15% A crystallized glass material comprising a glass powder having a high softening point fusion bonding property and an alumina powder.
【請求項2】主成分が重量%で、 SiO2:65〜80%、 CaO:5〜10% Na2O+K2O:10〜20%、MgO:2〜8% である低軟化点ガラス粉末と、主成分が重量%で SiO:65〜80%、 Al2O3:25%以下 Na2O+K2O:5〜15% である高軟化点融着性ガラス粉末とアルミナ粉末とから
なる高軟化点ガラス粉末との混合粉末を低軟化点ガラス
粉末の軟化点以上でかつ低軟化点ガラス粉末の結晶化開
始温度以下の温度で加圧形成し、高軟化点ガラス粉末の
回りに低軟化点ガラス粉末を軟化付着ないし付着させた
ガラス粉末成形体を得、該成形体を低軟化点ガラス粉末
の結晶化開始温度以上でかつ高軟化点溶着性ガラス粉末
の軟化点以下の温度に加熱して結晶化することを特徴と
する結晶化ガラス材の製造方法。
2. A main component in weight%, SiO 2: 65~80%, CaO: 5~10% Na 2 O + K 2 O: 10~20%, MgO: low softening point glass powder is 2% to 8% consisting of a high softening point fusible glass powder and the alumina powder is 5-15%: If a main component SiO 2 by weight%: 65~80%, Al 2 O 3: 25% or less Na 2 O + K 2 O The mixed powder with the high softening point glass powder is pressure-formed at a temperature not lower than the softening point of the low softening point glass powder and lower than the crystallization start temperature of the low softening point glass powder, and low softening is performed around the high softening point glass powder. A glass powder compact is obtained by softening and adhering the point glass powder, and the compact is heated to a temperature not lower than the crystallization start temperature of the low softening point glass powder and not higher than the softening point of the high softening point fusible glass powder. A method for producing a crystallized glass material, which comprises crystallizing by crystallization.
JP63166339A 1988-07-04 1988-07-04 Crystallized glass material and manufacturing method thereof Expired - Lifetime JPH068190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63166339A JPH068190B2 (en) 1988-07-04 1988-07-04 Crystallized glass material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63166339A JPH068190B2 (en) 1988-07-04 1988-07-04 Crystallized glass material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0218337A JPH0218337A (en) 1990-01-22
JPH068190B2 true JPH068190B2 (en) 1994-02-02

Family

ID=15829535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63166339A Expired - Lifetime JPH068190B2 (en) 1988-07-04 1988-07-04 Crystallized glass material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH068190B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317238A (en) * 1986-07-05 1988-01-25 Kubota Ltd Production of crystallized glass
JPS63144142A (en) * 1986-12-06 1988-06-16 Kubota Ltd Crystallized glass and production thereof
JPS63248199A (en) * 1987-04-03 1988-10-14 富士通株式会社 Multilayer interconnection circuit board
US4764195A (en) * 1987-05-20 1988-08-16 Corning Glass Works Method of forming reinforced glass composites

Also Published As

Publication number Publication date
JPH0218337A (en) 1990-01-22

Similar Documents

Publication Publication Date Title
EP0615959B1 (en) Fire-resistant or refractory brick for use as tin bath bottom block
CN111918934A (en) Chemical method for reducing scale generation in hot rolling
US4552915A (en) Low-temperature sintered porcelain composition suitable for forming
US3825468A (en) Sintered ceramic
JPH068190B2 (en) Crystallized glass material and manufacturing method thereof
JPH068191B2 (en) Crystallized glass material having black spot pattern and method for producing the same
JPH02120254A (en) Crystallized glass material and production thereof
US3486872A (en) Method for producing a crystallized sintered glass article with a nonporous surface
JPS63156024A (en) Production of glass ceramic article
CN113480180A (en) Preparation method of foamed microcrystalline board
JPH0436098B2 (en)
JPH0218338A (en) Crystallized glass material and its production
JP3968539B2 (en) Crystallized glass article and method for producing the same
JP5578068B2 (en) Method for producing crystallized glass article
JPH0751448B2 (en) Crystallized glass building material and manufacturing method thereof
JPS6317238A (en) Production of crystallized glass
JPH0623059B2 (en) Method for manufacturing glass ceramic products
JPS63170230A (en) Production of plate crystal glass
JPH0688807B2 (en) Glassy sintered body and manufacturing method thereof
JPS62162631A (en) Production of crystallized glass having colored pattern
JPS63144142A (en) Crystallized glass and production thereof
JPH0575702B2 (en)
KR950006206B1 (en) Process for the preparation of multiple foamed glass
JPH01115848A (en) Production of glass ceramic
JPH0193441A (en) Production of crystallized glass building material