JPS63144134A - Production of glass ceramic article - Google Patents

Production of glass ceramic article

Info

Publication number
JPS63144134A
JPS63144134A JP29120086A JP29120086A JPS63144134A JP S63144134 A JPS63144134 A JP S63144134A JP 29120086 A JP29120086 A JP 29120086A JP 29120086 A JP29120086 A JP 29120086A JP S63144134 A JPS63144134 A JP S63144134A
Authority
JP
Japan
Prior art keywords
raw material
softening point
mold
powder
glassy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29120086A
Other languages
Japanese (ja)
Other versions
JPH0436098B2 (en
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP29120086A priority Critical patent/JPS63144134A/en
Publication of JPS63144134A publication Critical patent/JPS63144134A/en
Publication of JPH0436098B2 publication Critical patent/JPH0436098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the titled article having high strength without necessitating a binder, by mixing glass powder having low softening point with glass powder having high softening point, compression-molding the mixture in a mold at a temperature to soften the former glass powder but to keep the latter glass powder from softening and heat-treating the formed product. CONSTITUTION:Glassy raw material powder having low softening point is mixed with glassy raw material powder having high softening point. The mixture is charged into a mold, heated at a temperature above the softening point of the glassy raw material powder having low softening point and below the softening point of the glassy raw material powder having high softening point and the mixture is compression-molded in a state containing the glassy raw material powder having low softening point in softened state and the glassy raw material powder having high softening point in unsoftened state. The obtained formed article is heat-treated to density the texture of the article by softening and fusing the particles of the glassy raw material powder constituting the formed article and the article is crystallized to obtain the objective glass ceramic article.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラスセラミックス製品の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing glass-ceramic products.

(従来の技術) 従来の一般的なガラスセラミックス製品の製法は、核形
成剤を含むガラス原料を溶融し、各種の成形手段によっ
て成形して後、結晶化熱処理を行って結晶を析出させ、
ガラスセラミックス製品としていた。
(Prior Art) The conventional general manufacturing method for glass-ceramic products involves melting a glass raw material containing a nucleating agent, shaping it by various shaping means, and then performing a crystallization heat treatment to precipitate crystals.
It was a glass ceramic product.

又核形成剤を含まないでガラスセラミックスを得る方法
として、溶融状態のガラスを水冷等で破砕して得たガラ
ス小体を、型枠に集積して熱処理することにより、各ガ
ラス小体を融着する一方結晶化する方法(集積法と称す
)が「特公昭55−29018号公報」に開示されてい
る。
In addition, as a method for obtaining glass ceramics without using a nucleating agent, glass particles obtained by crushing molten glass by water cooling or the like are collected in a mold and heat-treated to melt each glass particle. A method of depositing and crystallizing (referred to as an accumulation method) is disclosed in Japanese Patent Publication No. 55-29018.

更に本発明者等が「特願昭60−284150号」にお
いて開示したところの、特定組成(主としてウオラスト
ナイト晶生成組成)のガラス状原料を微粉化し、該微粉
の圧粉成形体を熱処理することにより、粉末粒子を相互
に軟化融着させて一体化及び緻密化する一方、結晶化を
図って主としてウオラストナイト結晶を析出させる方法
がある。
Further, as disclosed by the present inventors in "Japanese Patent Application No. 60-284150," a glassy raw material having a specific composition (mainly a composition for forming wollastonite crystals) is pulverized, and a green compact of the pulverized powder is heat-treated. Accordingly, there is a method in which powder particles are softened and fused to each other to be integrated and densified, while crystallization is attempted to mainly precipitate wollastonite crystals.

(発明が解決しようとする問題点) 上記従来方法のうち核形成剤を含み、ガラス製品として
成形して後熱処理して結晶化を図る方法は、核形成剤が
原料に比し高価なことが多いという点が問題であり、集
積法はガラス小体の軟化融着の時期に、析出の結晶核の
成長速度が速(既に結晶としての成長時期に入っている
ような組成の場合、結晶化に伴う粘性の増大によって前
記小体の融着一体化が困難になる。つまり使用のガラス
小体の成分組成に制限があり、核形成剤や核形成作用を
有する着色剤を含有する場合も適さないのである。
(Problems to be Solved by the Invention) Among the conventional methods described above, the method in which a nucleating agent is included and the glass product is formed and then heat-treated to achieve crystallization is that the nucleating agent is more expensive than the raw material. The problem with the accumulation method is that during the period of softening and fusion of the glass bodies, the growth rate of precipitated crystal nuclei is fast (in the case of a composition that has already entered the period of crystal growth, crystallization may occur). The increase in viscosity associated with this makes it difficult to fuse and integrate the glass bodies.In other words, there are restrictions on the component composition of the glass bodies that can be used, and it is not suitable if the glass bodies contain a nucleating agent or a coloring agent that has a nucleating effect. There isn't.

次の本発明者等による先願発明のガラス状原料の微粉化
と該微粉を圧粉成形体として熱処理する方法は、微粉同
士の接触による接触面積の拡大と、緻密接触によって軟
化点をや\上回る程度の低温でガラス粒子間の軟化融着
及び緻密化ができるのである。すなわち集積法における
ガラス小体の軟化融着が、粗粒かつ単なる集積状態であ
るために軟化温度を相当上回る温度でなければ実現しな
いのに対して、上記先願発明では上述のように軟化点を
や\上回る程度の低温で行われ、従って軟化融着及び緻
密化の後に更に昇温して結晶化が行える。このことは核
形成剤又は核形成作用を有する着色剤を含む場合も同様
である。
The following method of pulverizing a glassy raw material and heat-treating the vitreous raw material as a green compact according to the prior invention by the present inventors is to increase the contact area through contact between the fine powders and to lower the softening point through close contact. Softening, fusion, and densification between glass particles can be achieved at temperatures exceeding that of the glass particles. In other words, the softening and fusing of the glass bodies in the accumulation method cannot be achieved unless the temperature is considerably higher than the softening temperature because the glass bodies are coarse particles and in a mere accumulation state, whereas in the prior invention, as described above, the softening point is Therefore, after softening, melting, and densification, the temperature can be further raised to effect crystallization. This also applies when a nucleating agent or a coloring agent having a nucleating effect is included.

上記圧粉成形体の成形には粘結剤を添加すると成形の容
易及び成形体(しら地)の強度を向上して、運搬時や焼
結時の損傷防止に有効である。
Addition of a binder to the molding of the compacted product facilitates molding and improves the strength of the compact (white base), which is effective in preventing damage during transportation and sintering.

特に損傷しやすい大形品の製造にはその添加が必要であ
るが、これらの粘結剤は完成時の製品の特性とは殆ど関
係なく、むしろ残留粘結剤が製品特性を低下させるよう
なことがあり、このような場合は焼結に際して脱バイン
ダ一工程を組込み、積極的に除去する必要がある。しか
し脱バインダ一手段は困難な場合が多く種々の考案がな
されているがこれによるコスト上昇は問題である。
Their addition is necessary, especially in the manufacture of large products that are easily damaged, but these binders have little to do with the properties of the finished product, rather the residual binder may reduce the properties of the product. In such cases, it is necessary to incorporate a binder removal step during sintering to actively remove the binder. However, it is often difficult to find a way to remove the binder, and various ideas have been devised, but the resulting increase in costs is a problem.

又粘結剤そのものによるコスト高、粘結剤を均一に混練
する装置によるコスト高等も問題である。
Another problem is the high cost due to the binder itself and the high cost due to the equipment for uniformly kneading the binder.

粘結剤にはPVA (ポリビニルアルコール)が多用さ
れ、他にモンモリロナイト系、アルミナセメント系等も
使用されるが、以上のような問題点に鑑み、粘結剤を使
用せずかつしら地の強度を向上させる手段の開発が強く
希求されてきたのであり、本発明はその希求に応えてな
されたものである。
PVA (polyvinyl alcohol) is often used as a binder, and other types such as montmorillonite and alumina cement are also used. There has been a strong desire to develop a means to improve this, and the present invention has been made in response to that desire.

(問題点を解決するための手段) 前記希求に応えてなされた本発明の特徴とする手段は、
低高軟化点の異なるガラス状原料粉末の混合物を、金型
中に投入しその後、低軟化点ガラス状原料粉末の軟化点
以上でかつ高軟化点ガラス状原料粉末の軟化点以下の成
形温度に加熱し、前者の原料粉末が軟化し後者の粉末が
未軟化の状態において該混合物を加圧成形して成形体を
得、次いで該成形体を熱処理することによって、成形体
構成のガラス状原料粉末相互を軟化融着させ緻密化する
一方、結晶を析出させるようにした点にある。
(Means for solving the problems) The features of the present invention, which have been made in response to the above-mentioned desire, are as follows:
A mixture of glassy raw material powders with different softening points (low and high softening points) is put into a mold, and then heated to a molding temperature that is higher than the softening point of the low softening point glassy raw material powder and lower than the softening point of the high softening point glassy raw material powder. By heating and press-molding the mixture in a state where the former raw material powder is softened and the latter powder is not softened to obtain a molded body, and then heat-treated the molded body, a glassy raw material powder having a molded body structure is obtained. The point is that they are softened and fused together to become densified, and at the same time, crystals are precipitated.

(作 用) 低高軟化点の異なるガラス状原料粉末の混合物を、低軟
化点原料粉末の軟化点以上、高軟化点原料粉末の軟化点
以下の成形温度に加熱して、前者が軟化、後者が未軟化
の状態で加圧成形するのであるから、軟化粉末が粘結剤
として作用し粉末相互を一体化する。従って従来の非成
分系粘結剤使用に起因する前記諸種の問題点を解消して
いるのである。
(Function) A mixture of glassy raw material powders with different softening points is heated to a molding temperature that is above the softening point of the low softening point raw material powder and below the softening point of the high softening point raw material powder, so that the former softens and the latter softens. Since the powder is press-molded in an unsoftened state, the softened powder acts as a binder and integrates the powders. Therefore, the various problems mentioned above caused by the use of conventional non-component binders are solved.

それに軟化粉末は成形体構成粒子そのものであるから、
添加量の抑制を受ける粘結剤と異なって多量であり、従
って加圧力が比較的小さくとも強度の大きい成形体(し
ら地)を構成する。
In addition, since the softened powder is the particle itself that constitutes the compact,
Unlike a binder, which is subject to restrictions on the amount added, it is present in a large amount, and therefore forms a molded article (white ground) with high strength even if the pressing force is relatively small.

又、軟化、未軟化の混合粉末の加圧成形であるから、軟
化粒子が変形しつ\粉末間隙を埋めていく、つまり空気
追出し作用をするのであり、一方未軟化粒子間の細隙は
空気通路を形成して、空気が逃げやすく、健全なしら地
が出来るのである。
In addition, since the pressure molding is a mixture of softened and unsoftened powder, the softened particles deform and fill the gaps between the powders, in other words, they act to expel air, while the slits between the unsoftened particles are filled with air. This creates a path for air to escape easily, creating a healthy sloping ground.

若し全粉末が軟化状態で加圧成形される場合は、粉末間
に滞留の空気は閉じ込められやす(、後の結晶化のため
の昇温時に閉じ込められた空気が膨張し、しら地の膨張
、あるいは割れなどを生起しやすいのである。
If all the powder is pressed and molded in a softened state, the air stagnant between the powders is likely to be trapped (the trapped air expands when the temperature is raised later for crystallization, causing the expansion of the soil). Otherwise, cracks are likely to occur.

以上に加えて、原料の混合粉末のいずれもが未軟化状態
で金型中に投入されるのであるから、粘性物質の投入と
異なり投入が容易となる。
In addition to the above, since all of the mixed powders of the raw materials are charged into the mold in an unsoftened state, charging is easy, unlike charging a viscous substance.

(実施例) 以下実施例と共に本発明を詳述する。(Example) The present invention will be described in detail below along with Examples.

先ず原料粉末から述べると、溶融ガラスの水砕等、ガラ
スを適宜方法で小体とし、これを更に粉末として用いる
のであり、このように既にガラスとなっているものが原
料であるという意味でガラス状原料と称しているのであ
る。
First, let's talk about raw material powder. Glass is made into small particles by an appropriate method such as pulverization of molten glass, and then used as a powder. It is called a shaped raw material.

ところで低軟化点原料には軟化点400〜800℃のガ
ラス状原料が望ましく、高軟化点原料としては低軟化点
原料より少なくとも100℃高い軟化点を有するものが
望ましいのである。
By the way, the low softening point raw material is preferably a glassy raw material with a softening point of 400 to 800°C, and the high softening point raw material is preferably one having a softening point at least 100°C higher than the low softening point raw material.

すなわち400℃以下で軟化のガラス(ガラス状原料)
は一般に低融点ガラスと呼ばれ、ガラスセラミックス建
材の原料としては適さず、又800℃以上で軟化のガラ
ス状原料は、加圧成形に際して成形枠(金型等)の強度
面で問題を残すのであり、より好ましくは軟化点500
〜700℃のガラス状原料である。
In other words, glass that softens below 400℃ (glass-like raw material)
Generally called low melting point glass, it is not suitable as a raw material for glass-ceramic building materials, and glassy raw materials that soften at temperatures above 800°C pose problems in terms of the strength of the forming frame (mold, etc.) during pressure forming. Yes, more preferably a softening point of 500
It is a glassy raw material with a temperature of ~700°C.

一方高軟化点ガラス状原料に低軟化点原料より少な(と
も100℃高い軟化点を有するものが望ましいとしてい
るのは、加熱に若干のむらがあってもなお両者の粉末の
軟化、未軟化の差を保持できるようにするためであり、
低軟化点から高軟化点への昇温の時間経過における脱気
も望める。
On the other hand, the reason why it is desirable that the high softening point glassy raw material has a softening point lower (both 100 degrees Celsius higher) than the low softening point raw material is that even if the heating is slightly uneven, there is still a difference in the softening and non-softening of the two powders. This is to be able to hold the
Deaeration can also be expected over time as the temperature increases from a low softening point to a high softening point.

第1図〜第3図は本発明に係る金型成形を説明するため
の断面図であり、平板状製品の製造用金型例で示してい
る。
FIGS. 1 to 3 are cross-sectional views for explaining mold forming according to the present invention, and are shown as examples of molds for manufacturing flat products.

これらの図において金型lは上型2、横型3及び下型4
より成り、同金型1内にガラス状原料粉末の混合物6 
(以下原料混合粉末と称す)が投入されている。
In these figures, the mold l is an upper mold 2, a horizontal mold 3, and a lower mold 4.
A mixture 6 of glassy raw material powder is placed in the same mold 1.
(hereinafter referred to as raw material mixed powder) is added.

上記金型1内の原料混合粉末の成形温度への加熱は、 ■ 金型1と共に内存の原料混合粉末6を成形温度に加
熱する。このために例えば均熱炉を用いる。
The heating of the raw material mixed powder in the mold 1 to the molding temperature is as follows: (1) The raw material mixed powder 6 existing inside the mold 1 is heated to the molding temperature. For this purpose, for example, a soaking oven is used.

■ 金型1を予熱しておき、この金型1の保有する熱エ
ネルギによって投入された原料混合粉末6を成形温度に
加熱する。従って金型は成形温度若しくはそれをや\上
回る温度に加熱すればよく、その加熱は例えば均熱炉、
或いは内部に電熱線などの発熱装置をもつ金型1による
ことができる。
(2) The mold 1 is preheated, and the raw material mixed powder 6 introduced into the mold 1 is heated to the molding temperature by the thermal energy possessed by the mold 1. Therefore, the mold only needs to be heated to the molding temperature or slightly above it, and this heating can be done, for example, in a soaking oven or
Alternatively, the mold 1 may have a heat generating device such as a heating wire inside.

■ 金型1に原料混合粉末6を投入し、その表面のみを
成形温度に加熱する。
(2) The raw material mixed powder 6 is put into the mold 1, and only the surface thereof is heated to the molding temperature.

この加熱は例えば電熱輻射などによることができる。This heating can be done, for example, by electrothermal radiation.

かくて金型1中で成形温度に加熱された原料混合粉末6
は、上型2、下型4の間で加圧成形される。第1図は金
型1が補強部5を有する場合で、上記■の場合に適する
。なお均熱炉等での金型加熱にはこの補強部5は加熱の
必要はない。
The raw material mixed powder 6 thus heated to the molding temperature in the mold 1
is pressure-molded between an upper mold 2 and a lower mold 4. FIG. 1 shows a case where the mold 1 has a reinforcing portion 5, which is suitable for the case (2) above. Note that this reinforcing portion 5 does not need to be heated when the mold is heated in a soaking furnace or the like.

上記■の場合は、原料混合粉末6の予熱金型1と接する
部分は最もよく加熱され、遠ざがるに従って加熱状態は
劣るようになるが、第2図の原料混合粉末6における斜
線部分のような金型近傍の原料混合粉末は、十分強力な
成形体素地となり、成形体全体の形状を支障なく保つ。
In the case of (2) above, the part of the raw material mixed powder 6 in contact with the preheating mold 1 is heated best, and the heating condition becomes worse as it gets further away, but the hatched part of the raw material mixed powder 6 in FIG. The mixed raw material powder near the mold becomes a sufficiently strong base for the molded body, and maintains the shape of the entire molded body without any problems.

なお上記斜線部分は上型2を予熱していない場合であり
、上型2の予熱により上面部近傍のより強力化を図るこ
とも可能である。
Note that the shaded area above is the case where the upper mold 2 is not preheated, and by preheating the upper mold 2, it is also possible to increase the strength near the upper surface part.

なお金型1を成形温度に予熱する場合成形温度範囲の上
辺を選ぶことは好ましい。
When preheating the mold 1 to the molding temperature, it is preferable to select the upper side of the molding temperature range.

■の場合も金型内の原料混合粉末の表面加熱であり、第
3図の原料混合粉末6に付した斜線部分で示すような表
面近傍の粉末が十分強力な成形体素地となり成形体全体
の形状を支障なく保つのである。この場合も■の場合と
同様成形温度範囲の上辺に加熱することは好ましい。
In the case of (2), the surface of the raw material mixed powder in the mold is heated, and the powder near the surface, as shown by the hatched area of the raw material mixed powder 6 in Figure 3, becomes a sufficiently strong molded body base, and the entire molded body is heated. It maintains its shape without any problems. In this case as well, it is preferable to heat to the upper end of the molding temperature range, as in case (2).

なお上記■■■のいずれの場合も原料混合粉末を、低軟
化点ガラス状原料粉末の軟化点以下に予熱しておくと金
型内での加熱が容易となる。又■■の場合は更に金型を
上記同様の温度に加熱しておくことも可能である。
In any of the above cases, heating in the mold becomes easier if the raw material mixed powder is preheated to a temperature below the softening point of the low softening point glassy raw material powder. In the case of ■■, it is also possible to further heat the mold to the same temperature as above.

かくて加熱後の原料混合粉末の加圧成形は、成形温度で
かつ不活性雰囲気の環境下で行うのが望ましいが、大気
中、常温でも大きな問題はない。
Thus, it is preferable to press and mold the raw material mixed powder after heating in an inert atmosphere at the molding temperature, but there are no major problems in the atmosphere or at room temperature.

すなわち前記粉末は殆んど酸化を起さず、又加熱粉末を
常温中に置いてもその温度降下の程度は僅かであるから
であり、その温度降下を例示すれば、金型と共に600
℃に加熱した粉末を、金型もろ共30℃の環境下に置い
て30秒後の粉末の平均温度低下は30℃以下である。
In other words, the powder hardly oxidizes, and even if the heated powder is placed at room temperature, the temperature drop is small.
The average temperature drop of the powder after 30 seconds after heating the powder to 30° C. together with the mold is 30° C. or less.

金型にはガラス状原料粉末の粘着防止に塗型(ジルコン
サンド、黒鉛等)の塗布、セラミックシードの貼布、セ
ラミックスコーテング等の処理を施すことが望ましい。
It is desirable that the mold be treated with coating (zircon sand, graphite, etc.), application of ceramic seeds, ceramic coating, etc. to prevent adhesion of the glassy raw material powder.

成形圧力については、熱処理までの形状保持を可能とす
る強さとしての曲げ強さ10 kg f / crA以
上を付与するために5 kg f / cr1以上、金
型強度、経済上から300kgf/ad以下が適切であ
る。
Regarding the molding pressure, it is 5 kgf/cr1 or more to give a bending strength of 10 kgf/crA or more, which is the strength that allows shape retention until heat treatment, and 300 kgf/ad or less from the viewpoint of mold strength and economy. is appropriate.

次に本発明に好適なガラス状原料を例示する。Next, examples of glassy raw materials suitable for the present invention are illustrated.

A、 第1ガラス状原料組成(低軟化点原料)SiO□
 =55〜75%、 1vto3:15%以下CaO:
5〜15%、Na、 + K2O: 10〜20%、以
上を必須成分として、かつSiO□+AJz03 +N
azO+ KzO> 90%(重量百分率、以下同じ)
B、第2ガラス状原料組成(高軟化点原料)SiOz 
: 40〜60%、 N2O3= 5〜20%CaO:
25〜45%、以上を必須成分として、かつ 5i02
 + N z03 + CaO> 85%。
A. First glassy raw material composition (low softening point raw material) SiO□
=55-75%, 1vto3: 15% or less CaO:
5-15%, Na, + K2O: 10-20% or more as essential components, and SiO + AJz03 +N
azO+ KzO> 90% (weight percentage, same below)
B. Second glassy raw material composition (high softening point raw material) SiOz
: 40-60%, N2O3 = 5-20%CaO:
25-45% or more as essential ingredients, and 5i02
+Nz03+CaO>85%.

なおこの第2ガラス状原料組成に0.5〜15%の着色
剤を含有させることによって、ガラスセラミックス製品
を色付若しくは色模様付製品とすることが可能である。
By adding 0.5 to 15% of a coloring agent to the second glassy raw material composition, it is possible to make the glass ceramic product colored or colored or patterned.

なお上記成分組成は低高軟化点の差が少なくとも100
℃はあり、それぞれのガラス状原料粉末単独よりも両者
が融合した成分組成の方が結晶化しやすい。換言すれば
融合以前においては結晶化しに(いように配慮された成
分組成であり、従って両者粉末を成形体とし十分緻密化
して後結晶化が行えるのである。
The above component composition has a difference in softening point between low and high softening points of at least 100
℃, and a component composition in which both glassy raw material powders are fused is easier to crystallize than each glassy raw material powder alone. In other words, the composition of the ingredients has been carefully considered to ensure that they will not crystallize before fusion, and therefore both powders can be made into a compact and sufficiently densified for post-crystallization.

ガラス状原料の製造はそれぞれ所定の化学組成を有する
ように調整した原料を溶融して後、これを水砕などの方
法で急冷破砕してガラス状小体とする。勿論所定化学組
成を有して既にガラス状になっているものを適宜の手段
で小体としてもよい。
Glassy raw materials are manufactured by melting raw materials adjusted to have predetermined chemical compositions, and then rapidly cooling and crushing them by a method such as water pulverization to form glassy bodies. Of course, a substance having a predetermined chemical composition and already in the form of glass may be made into a small body by an appropriate means.

このようにして得られたガラス状小体を、たとえばボー
ルミルなどにより更に粉砕するのであり、このときの粒
度は微細な程粉末の融着一体化、緻密化が軟化点をや\
上回る程度の低温で行われるのであり、混合粉末中20
0メソシユ以下の微粒子が少なくとも50%は含まれて
いることが望ましい。
The glassy particles obtained in this way are further pulverized using, for example, a ball mill, and the finer the particle size, the more the powder is fused and densified, and the softening point is lowered.
It is carried out at a low temperature that exceeds 20% in the mixed powder.
It is desirable that at least 50% of the particles be 0 mesiosium or less.

一方10メソシュ以上の粗粒の存在は製品内部に気泡を
含有しやすく避けるべきである。
On the other hand, the presence of coarse particles of 10 mesh or more should be avoided as they tend to contain air bubbles inside the product.

なお高軟化点のガラス状原料が着色剤を含む有色原料の
場合、同原料粉末を10〜200メツシユの粒子とし、
低軟化点の無色ガラス状原料粉末を200メツシユ以下
の微粉として混合すると、完成品を色模様(斑模様)付
製品とすることができる。又両者共200メツシュ以下
の微粉とすれば一様な地色を呈して単なる色付製品とな
る。
In addition, when the glassy raw material with a high softening point is a colored raw material containing a colorant, the raw material powder is made into particles of 10 to 200 mesh,
When colorless glassy raw material powder with a low softening point is mixed as a fine powder of 200 mesh or less, the finished product can be made into a product with a colored pattern (mottled pattern). If both are made into fine powders of 200 mesh or less, a uniform ground color will be exhibited and the product will simply be a colored product.

以上のようにして得られたガラス状原料粉末を混合し、
該混合物を加熱し加圧成形体とすることについては既に
述べたとおりであり、次に該成形体の熱処理について述
べる。
The glassy raw material powder obtained as above is mixed,
The process of heating the mixture to form a press-molded body has already been described, and next, the heat treatment of the molded body will be described.

加圧成形体の熱処理のための加熱は、成形温度まで急速
昇温して差支えなく、次いで結晶化温度に昇温しで同温
度を保つ。又成形後引続いて結晶化温度に昇温してもよ
い。
Heating for heat treatment of the press-molded product may be done by rapidly increasing the temperature to the molding temperature, then increasing the temperature to the crystallization temperature and maintaining the same temperature. Further, the temperature may be raised to the crystallization temperature successively after molding.

成形温度は既述のように2種のガラス状原料粉末のうち
1種が軟化し、他が未軟化状態を保つ温度、すなわち低
温軟化粉末の軟化点をや一上回る温度であり、結晶化温
度は上記の高温軟化粉末の軟化点を上回りかつ結晶の成
長速度の大きい温度域である。
As mentioned above, the molding temperature is the temperature at which one of the two types of glassy raw material powder softens while the other remains unsoftened, that is, the temperature slightly above the softening point of the low-temperature softening powder, and the crystallization temperature. is a temperature range exceeding the softening point of the above-mentioned high-temperature softening powder and in which the crystal growth rate is high.

加圧成形体を成形温度に加熱した時点では低温軟化粉末
は軟化(再軟化)しており、結晶化温度に保持した状態
では、高温軟化粉末も軟化して粉末粒子相互の軟化融着
、緻密化、すなわち焼結と結晶化が進むのである。結晶
化処理の後は徐冷する。
When the compact is heated to the molding temperature, the low-temperature softened powder is softened (re-softened), and when maintained at the crystallization temperature, the high-temperature softened powder also softens, resulting in soft fusion and densification of the powder particles. oxidation, that is, sintering and crystallization. After the crystallization treatment, it is slowly cooled.

前記例示の第1及び第2ガラス状原料の粉末による場合
は成形温度は400℃〜800℃であり、結晶化温度は
800℃〜1000℃である。
In the case of using powders of the first and second glassy raw materials as exemplified above, the molding temperature is 400°C to 800°C, and the crystallization temperature is 800°C to 1000°C.

第4図は、前記第1及び第2ガラス状原料の粉末による
圧縮成形体の成形を、従来の手法すなわち粘結剤(PV
A溶液を用いた)と共に混練して後、圧縮成形枠を用い
る加圧成形で行い、同成形体を熱処理した熱処理曲線(
実線)と前記本発明の熱処理の熱処理曲線(破線)を比
較して示すものである。
FIG. 4 shows a conventional method of forming a compression molded body using powders of the first and second glassy raw materials, that is, a binder (PV
After kneading with solution A), the molded body was subjected to pressure molding using a compression molding frame, and the same molded body was heat-treated.
3 shows a comparison between the heat treatment curve (solid line) and the heat treatment curve (broken line) of the heat treatment of the present invention.

同図において(a1区間は従来手法による圧縮成形体の
乾燥を含む昇温区間、(b)区間は脱バインダー処理区
間 (300℃〜400℃)、0点は本発明に係る加圧
成形温度(400℃〜800℃) 、+d1区間は焼結
・結晶化区間(800℃〜1OOO℃) 、(e)区間
は徐冷区間である。
In the same figure, (section a1 is the temperature increase section including drying of the compression molded product by the conventional method, section (b) is the debinding section (300°C to 400°C), and 0 point is the pressure molding temperature according to the present invention ( 400° C. to 800° C.), the +d1 section is the sintering/crystallization section (800° C. to 100° C.), and the (e) section is the slow cooling section.

(a)区間の脱水、(b1区間の脱バインダーの2工程
は急速に処理するとしら地に悪影響を及ぼし、ひいては
熱処理後の製品の物性を劣化させるもので短縮すること
ができず、(a)〜(e)の全区間では100時間以上
を要していた。
(a) The two steps of dehydration in section (b1) and debinding in section b1 cannot be shortened because rapid processing will have a negative effect on the plain fabric and will eventually deteriorate the physical properties of the product after heat treatment. The entire section from (e) to (e) required more than 100 hours.

しかるに本発明の製造方法では(al、(′b)区間の
工程が不要であり、熱処理時間も約30時間と上記の1
/3以下に短縮されている。
However, the manufacturing method of the present invention does not require the step in the (al, ('b) section), and the heat treatment time is about 30 hours, which is longer than the above-mentioned step 1.
/3 or less.

次に本発明の具体的実施例について説明する。Next, specific examples of the present invention will be described.

〔実施例1.〕 ガラス状原料は下記第1表に示す組成を有するものであ
り、それぞれの成分を含有するように配合した配合原料
を融解し、次いでこれを水砕してガラス状小体としたも
のを更にボールミルで粉砕した。
[Example 1. ] The glassy raw material has the composition shown in Table 1 below, and the raw material blended so as to contain each component is melted, and then this is pulverized to form glassy corpuscles, which are then further processed. Grind with a ball mill.

a、化学組成 第1表 □ Aは低軟化点ガラス状原料、 Bは高軟化点ガラス状原料、 FeO−・着色剤、 単位は重量%。a. Chemical composition Table 1 □ A is a low softening point glassy raw material, B is a high softening point glassy raw material; FeO-・Coloring agent, unit is weight %.

(第2、第3表においても同じ) b、ガラス状原料粉末粒度 A:200メツシユ以下・・−98%以上(wt、%以
下間) B:20〜50メツシユ・・−30〜40%200メツ
シュ以下−50〜60% C1粉末混合比・・−・・−・−A:B=1;1d、成
形体寸法−−−−−−300x300 X25 (*m
)e、原料混合粉末の予熱温度−・−−一一一−・−・
300 ”Cr、金型予熱温度−−−−−−−−−−−
400’C(この金型に上記粉末を投入し、金型もろと
もに加熱) g、加圧力・−・−−−−−−−50kg f / c
rih、雰囲気−・−−−−一・−大気中 i、金型塗型−−−−−−−−−−・−黒鉛系塗型、0
.2 w厚j、金型+原料混合粉末の加熱温度・−・−
・−−−−−−580℃以上の条件で加圧成形した成形
体を室温にまで徐冷し密度、曲げ強さを測定した結果は
次のとおりである。
(The same applies to Tables 2 and 3) b. Glassy raw material powder particle size A: 200 mesh or less... -98% or more (wt, % or less) B: 20 to 50 mesh... -30 to 40% 200 Less than mesh -50 to 60% C1 powder mixing ratio - A: B = 1; 1 d, compact size - 300 x 300 x 25 (*m
)e, Preheating temperature of raw material mixed powder---111---
300" Cr, mold preheating temperature---------
400'C (Pour the above powder into this mold and heat it together with the mold) g, Pressure force ------50kg f/c
rih, Atmosphere-----1--Atmospheric i, Mold coating mold--Graphite coating mold, 0
.. 2 w thickness j, heating temperature of mold + raw material mixed powder・−・−
-------The molded body that was pressure-molded under conditions of 580°C or higher was gradually cooled to room temperature, and the density and bending strength were measured.The results are as follows.

見掛密度−4,71g/cm” 曲げ強さ−53,Okgf/ci 本成形体を900℃X 4hrの熱処理をした結果、ウ
オラストナイト晶を主体として析出したガラスセラミッ
クス製品が得られた。材質特性値は見掛密度−2,33
g/cmコ 曲げ強さ・−・519  眩f/d 吸水率−・・−0,32% この値は建材品として満足できる値である。
Apparent density - 4.71 g/cm'' Bending strength - 53, Okgf/ci As a result of heat treating this molded body at 900°C for 4 hours, a glass ceramic product in which wollastonite crystals were precipitated as a main component was obtained. Material property value is apparent density -2,33
g/cm Bending strength - 519 Glare f/d Water absorption rate - 0.32% This value is satisfactory as a building material.

〔実施例2.〕 実施例工と同様にして各ガラス状原料粉末を得た。[Example 2. ] Glassy raw material powders were obtained in the same manner as in the examples.

a、化学組成 第2表 す、ガラス状原料粉末粒度 A:200メツシュ以下−・−98%以上B:20〜5
oメツシュ川30〜40%200メツシュ以下−50〜
60% C0粉末混合比・・−・川・−A:B=11d、成形体
寸法−’−’−−−300x300 X25 (am)
e、原料混合粉末の予熱温度−・・曲〜・40’Cf、
金型予熱温度・・曲−・−・650 ’C(この金型に
より投入された上記混合粉末を加熱、上型は40℃) g、加圧カー・−・川−・−30kgf/csAh、雰
囲気・−・−−−−−・−常温大気中i、金型塗型−・
・−・−黒鉛系塗型、0.2 tm厚j、原料混合粉末
投入後、加圧成形開始までの経過時間−・−−−−−・
25秒 以上の条件で加圧成形した成形体を室温に徐冷し密度、
曲げ強さを測定した。 (下面近傍)見掛密度・−・1
.62  g/cm”曲げ強さ・・−14、5kg f
 / cA以上の成形体を、900℃X 4hrの熱処
理をした結果、ウオラストナイト晶を主体として析出し
たガラスセラミックス製品が得られた。材質特性値は、 見掛密度−・−2,36g/am’ 曲げ強さ−605kgf/cul 吸水率・・−・−0,18% この値は建材として満足できる値である。
a. Chemical composition No. 2, glassy raw material powder particle size A: 200 mesh or less - -98% or more B: 20-5
o Metshu River 30-40% 200 meshes or less -50~
60% C0 powder mixing ratio... River -A:B=11d, compact size -'-'---300x300 X25 (am)
e, Preheating temperature of raw material mixed powder -... 40'Cf,
Mold preheating temperature: Curve: 650'C (The above mixed powder charged into the mold is heated, the upper mold is 40°C) g, Pressure car: River: -30kgf/csAh, Atmosphere - - - - - - In the air at room temperature, mold coating - -
・−・−Graphite coating mold, 0.2 tm thickness j, elapsed time from adding raw material mixed powder to starting pressure molding−・−−−−−・
The compact is pressure-molded for 25 seconds or more and then slowly cooled to room temperature to determine the density,
Bending strength was measured. (Near the bottom surface) Apparent density - 1
.. 62 g/cm" Bending strength...-14, 5 kg f
/ cA or more was heat-treated at 900° C. for 4 hours, resulting in a glass ceramic product in which wollastonite crystals were precipitated as a main component. The material characteristic values are: Apparent density: -2,36 g/am' Bending strength: -605 kgf/cul Water absorption: -0,18% These values are satisfactory as a building material.

〔実施例3.〕 実施例1と同様にして各ガラス状原料粉末を得た。[Example 3. ] Each glassy raw material powder was obtained in the same manner as in Example 1.

次       葉 a、化学組成 第3表 す、ガラス状原料粉末粒度 A : 200メツシユ以下・・−98%以上B;20
〜50メツシュー・・・・30〜40%200メツシユ
以下・−・50〜60%C9粉末混合比・・・−・−・
・−・A:B=1 : 1d、成形体寸法−・・・−・
−−−−−300X300 X25 (1m)e、原料
混合粉末の予熱温度・−・−・−・・−400℃f、金
型予熱温度・・−・・−・・・・300℃(この金型に
上記粉末を投入後、その表面のみを加熱) g、加圧カー・−−−−−−−−30kg f / c
nlh、雰囲気・−・−・−常温大気中 i、金型塗型−・・−・・黒鉛系塗型、0.2龍厚j、
金型に原料混合粉末投入後、加熱表面温度・・−一・−
650℃ に、加熱方式・−・−電熱輻射 以上の条件で加圧成形した成形体を室温に徐冷し、密度
、曲げ強さを測定した。 (上面近傍)見掛密度−=4
.81 8/am3 曲げ強さ−62,5kgf/aA 以上の成形体を、900℃X 4hrで熱処理すると、
ウオラストナイト品を主体とする結晶が析出したガラス
セラミックス製品が得られた。その材質特性値は、 見掛密度−2,32g/ cs ’ 曲げ強さ−530kg f / co!吸水率−・−・
−・・0.18  % この値は建材品として満足できる値である。
Next Leaf A, chemical composition No. 3, glassy raw material powder particle size A: 200 mesh or less...-98% or more B; 20
~50 meshes...30-40%200 meshes or less--50-60%C9 powder mixing ratio...--
・-・A:B=1: 1d, molded object dimensions--・・
------300X300 After putting the above powder into the mold, heat only the surface) g, Pressure car ----30kg f/c
nlh, Atmosphere - - - In the air at room temperature i, Mold coating - - Graphite coating, 0.2 dragon thickness j,
After putting the raw mixed powder into the mold, the heating surface temperature...--1--
The molded body was pressure-molded at 650° C. under conditions of heating method: electric heat radiation or higher, and then slowly cooled to room temperature, and its density and bending strength were measured. (Near the top surface) Apparent density -=4
.. 81 8/am3 When a molded product with a bending strength of -62.5 kgf/aA or more is heat-treated at 900°C for 4 hours,
A glass ceramic product in which crystals mainly composed of wollastonite were precipitated was obtained. Its material properties are: Apparent density - 2,32g/cs' Bending strength - 530kg f/co! Water absorption rate-・-・
-...0.18% This value is satisfactory as a building material.

(発明の効果) 本発明は以上のとおりであり、加圧成形体(しら地)の
成形は粘結剤を用いることでなく、軟化点の異なるガラ
ス状原料粉末の混合物を未軟化の状態で金型に投入する
手段により、投入容易しかも金型が広い平板状の場合で
も均一厚さとすることが容易であり、加圧成形温度を低
軟化点ガラス状原料粉末の軟化点以上、衛軟化点ガラス
状原料粉末の軟化点以下としたことにより、粘結剤を用
いることなく健全な形成体(しら地)を得ることができ
、従来の非成分系粘結剤使用に伴う諸種の問題点を解消
することができた。以上により製品品質も向上し、高強
度の建築外、内装材、装飾品等に適するガラスセラミッ
クス製品を提供し得るようにした本発明の工業的価値は
著大である。
(Effects of the Invention) The present invention is as described above, and the press-molded product (shiraji) is formed by using a mixture of glassy raw material powders with different softening points in an unsoftened state, instead of using a binder. Depending on the means of charging into the mold, it is easy to charge the mold, and even when the mold is wide and flat, it is easy to achieve a uniform thickness. By setting the temperature below the softening point of the glassy raw material powder, it is possible to obtain a healthy formed body (seraji) without using a binder, and eliminates various problems associated with the use of conventional non-component binders. I was able to resolve it. As a result of the above, the product quality is improved, and the industrial value of the present invention is significant, as it is possible to provide a glass ceramic product with high strength and suitable for use in outside buildings, interior materials, decorations, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明に係る金型成形を説明するため
の断面図。第4図は本発明に係る加圧成形体及び従来手
段による加圧成形体の熱処理曲線である。 1−・−金型、2−上型、3−横型、4・−下型、5−
・−補強部、6−・ガラス状原料粉末混合物(原料混合
粉末)。 特 許 出 願 人  久保田鉄工株式会社第2図 第3Lj 第4図
FIGS. 1 to 3 are cross-sectional views for explaining mold forming according to the present invention. FIG. 4 shows heat treatment curves of the press-molded article according to the present invention and the press-molded article produced by conventional means. 1--mold, 2-upper mold, 3-horizontal mold, 4--lower mold, 5-
- Reinforcement part, 6- Glassy raw material powder mixture (raw material mixed powder). Patent Applicant Kubota Iron Works Co., Ltd. Figure 2 Figure 3Lj Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)低高軟化点の異なるガラス状原料粉末の混合物を
、金型中に投入しその後、低軟化点ガラス状原料粉末の
軟化点以上でかつ高軟化点ガラス状原料粉末の軟化点以
下の成形温度に加熱し、前者の原料粉末が軟化し後者粉
末が未軟化の状態において該混合物を加圧成形して成形
体を得、次いで該成形体を熱処理することによって、成
形体構成のガラス状原料粉末相互を軟化融着させ緻密化
する一方、結晶を析出させるようにしたことを特徴とす
るガラスセラミックス製品の製造方法。
(1) A mixture of glassy raw material powders with different softening points (low and high softening points) is put into a mold, and then a mixture of glassy raw material powders with different softening points (low and high softening points) is poured into a mold, and then the mixture is heated to a temperature higher than the softening point of the low softening point glassy raw material powder and lower than the softening point of the high softening point glassy raw material powder. The mixture is heated to a molding temperature, and the mixture is pressure-molded in a state where the former raw material powder is softened and the latter powder is not softened to obtain a molded body, and then the molded body is heat-treated to form a glass-like molded body. A method for manufacturing a glass ceramic product, characterized in that raw material powders are softened and fused together to make them densified, and at the same time, to precipitate crystals.
(2)ガラス状原料粉末の混合物を金型中に投入し、そ
の後金型と共に前記粉末の混合物を成形温度に加熱する
ことを特徴とする特許請求の範囲第1項に記載のガラス
セラミックス製品の製造方法。
(2) A glass-ceramic product according to claim 1, characterized in that a mixture of glassy raw material powder is put into a mold, and then the powder mixture is heated together with the mold to a molding temperature. Production method.
(3)ガラス状原料粉末の混合物を、加熱した金型中に
投入することによって成形温度に加熱することを特徴と
する特許請求の範囲第1項に記載のガラスセラミックス
製品の製造方法。
(3) The method for manufacturing a glass-ceramic product according to claim 1, characterized in that the mixture of glassy raw material powders is heated to a molding temperature by being charged into a heated mold.
(4)ガラス状原料粉末の混合物を金型中に投入し、そ
の後、前記粉末の混合物の表面のみを成形温度に加熱す
ることを特徴とする特許請求の範囲第1項に記載のガラ
スセラミックス製品の製造方法。
(4) A glass-ceramic product according to claim 1, characterized in that a mixture of glassy raw material powders is put into a mold, and then only the surface of the powder mixture is heated to a molding temperature. manufacturing method.
JP29120086A 1986-12-06 1986-12-06 Production of glass ceramic article Granted JPS63144134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29120086A JPS63144134A (en) 1986-12-06 1986-12-06 Production of glass ceramic article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29120086A JPS63144134A (en) 1986-12-06 1986-12-06 Production of glass ceramic article

Publications (2)

Publication Number Publication Date
JPS63144134A true JPS63144134A (en) 1988-06-16
JPH0436098B2 JPH0436098B2 (en) 1992-06-15

Family

ID=17765753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29120086A Granted JPS63144134A (en) 1986-12-06 1986-12-06 Production of glass ceramic article

Country Status (1)

Country Link
JP (1) JPS63144134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053545A (en) * 2006-08-25 2008-03-06 Nichia Chem Ind Ltd Light emitting device, and its manufacturing method
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP2011210852A (en) * 2010-03-29 2011-10-20 Sumita Optical Glass Inc Method for manufacturing light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291203A (en) * 1985-06-20 1986-12-22 Bridgestone Corp Tread pattern preventing from sinking of stone
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291203A (en) * 1985-06-20 1986-12-22 Bridgestone Corp Tread pattern preventing from sinking of stone
JPS63129025A (en) * 1986-11-17 1988-06-01 Kubota Ltd Production of glass ceramic article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053545A (en) * 2006-08-25 2008-03-06 Nichia Chem Ind Ltd Light emitting device, and its manufacturing method
JP2008060428A (en) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd Light emitting device and its manufacturing method
JP4650378B2 (en) * 2006-08-31 2011-03-16 日亜化学工業株式会社 Method for manufacturing light emitting device
JP2011210852A (en) * 2010-03-29 2011-10-20 Sumita Optical Glass Inc Method for manufacturing light emitting device

Also Published As

Publication number Publication date
JPH0436098B2 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
JP2015536297A (en) Method for producing three-dimensional glass-ceramic article
US3592619A (en) High-silica glass foam method
JPS63144134A (en) Production of glass ceramic article
JPH0444622B2 (en)
US2890126A (en) Cellulated silica and the production thereof
CN114656248A (en) Sintering preparation method of silicon-based ceramic core with high strength and mechanical properties
JP3746581B2 (en) Ceramic clay and molded body using the same
JPS6224365B2 (en)
JPS63129025A (en) Production of glass ceramic article
JPS63144142A (en) Crystallized glass and production thereof
JPS63170230A (en) Production of plate crystal glass
JPH0575701B2 (en)
JPH02120254A (en) Crystallized glass material and production thereof
JPS6374936A (en) Crystallized glass and production thereof
JPH0575702B2 (en)
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPH02124728A (en) Crystallized-glass building material and its production
JPS63144143A (en) Crystallized glass building material having colored pattern
JPH0218338A (en) Crystallized glass material and its production
JPS62143842A (en) Crystallized glass and production thereof
JPH068190B2 (en) Crystallized glass material and manufacturing method thereof
JPS58176140A (en) Molded article of sintered and crystallized glass and its preparation
JPH046659B2 (en)
US587809A (en) Lotjis antoine garchey
JPS6317239A (en) Production of crystallized glass with color pattern