JPS63170231A - Production of plate crystal glass - Google Patents

Production of plate crystal glass

Info

Publication number
JPS63170231A
JPS63170231A JP31198286A JP31198286A JPS63170231A JP S63170231 A JPS63170231 A JP S63170231A JP 31198286 A JP31198286 A JP 31198286A JP 31198286 A JP31198286 A JP 31198286A JP S63170231 A JPS63170231 A JP S63170231A
Authority
JP
Japan
Prior art keywords
raw material
softening point
material powder
glass
glassy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31198286A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakagawa
中川 義弘
Yoshito Seto
瀬戸 良登
Akitoshi Okabayashi
昭利 岡林
Hiroyuki Kimura
広之 木村
Takashi Shikata
志方 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP31198286A priority Critical patent/JPS63170231A/en
Publication of JPS63170231A publication Critical patent/JPS63170231A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/04Rolling non-patterned sheets continuously
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/12Rolling glass with enclosures, e.g. wire, bubbles, fibres, particles or asbestos
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To easily obtain the title long and large-sized plate crystal glass having strength, by press-molding the powdery mixture of glass materials in the softening zone of the low-softening point glass with the belts carrying the mixture in between and rolls, and then heat-treating and crystallizing the compact. CONSTITUTION:The powder of glass materials having different softening points is heated to a specified temp. while being held between a couple of conveying belts, hence only the low-softening point glass is softened, and the high-softening point glass is not softened. The half-softened glass material is passed between two rolls along with the belts, and press-molded. The obtained plate compact is heat-treated, and the glass material powder constituting the compact is softened, fused together, densified, and crystallized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築用、装飾用等に適する板状結晶化ガラスの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing plate-shaped crystallized glass suitable for architectural, decorative, etc. purposes.

(従来の技術) 従来の結晶化ガラスの製造は、核形成剤を含むガラス原
料を溶融し、ロール成形やその他各種の成形手段によっ
て成形して後、結晶化熱処理を行い結晶を析出させて結
晶化ガラスとしていた。
(Prior art) Conventional production of crystallized glass involves melting a glass raw material containing a nucleating agent, shaping it by roll forming or various other forming means, and then performing crystallization heat treatment to precipitate crystals. It was made of glass.

又核形成剤を含まないで結晶化ガラスを得る方法として
、ガラス小体を型枠に集積して熱処理することにより、
各小体を融着する一方結晶化する方法(集積法)が「特
公昭55−29018号」公報に開示されている。
In addition, as a method of obtaining crystallized glass without containing a nucleating agent, glass corpuscles are accumulated in a mold and heat treated.
A method (accumulation method) of fusing and crystallizing each small body is disclosed in Japanese Patent Publication No. 55-29018.

更に本発明者らが「特願昭60−284150号」にお
いて開示したところの、ガラス状原料(ガラス)の微細
粉末をプレス成形した圧粉体を、熱処理して軟化融着さ
せ一体緻密化すると共に結晶化を図る方法(プレス法と
称す)がある、上記のプレス法では主として強度の大き
いウオラストナイト晶を析出するような組成のガラス状
原料を用いるのであるが、同組成に適合する組成□範囲
は広い。換言すれば原料として硬用可能なガラスの組成
範囲が広いのである。
Further, as disclosed by the present inventors in "Japanese Patent Application No. 60-284150," a green compact obtained by press-molding fine powder of a glass-like raw material (glass) is heat-treated to soften and fuse to make it integrally densified. There is a method (referred to as the press method) that attempts crystallization with the same composition.The press method described above mainly uses a glassy raw material with a composition that precipitates strong wollastonite crystals. □The range is wide. In other words, the composition range of glass that can be used as a raw material for hardening is wide.

(発明が解決しようとする問題点) 上記従来方法のうち核形成剤を含み、ガラス製品として
成形して後熱処理して結晶化を図る方法は、核形成剤が
原料に比し高価なことが多いという点が問題であり、集
積法はガラス小体の軟化融着の時期に、析出の結晶核の
成長速度が速く既に結晶としての成長時期に入っている
ような組成の場合、結晶化に伴う粘性の増大によって前
記小体の融着一体化が困難になる。つまり使用のガラス
小体の成分組成に制限があり、核形成剤や核形成作用を
有する着色剤を含有する場合も適さないのである。
(Problems to be Solved by the Invention) Among the conventional methods described above, the method in which a nucleating agent is included and the glass product is formed and then heat-treated to achieve crystallization is that the nucleating agent is more expensive than the raw material. The problem with this method is that during the period of softening and fusion of the glass bodies, if the growth rate of precipitated crystal nuclei is fast and the composition has already entered the period of crystal growth, crystallization may occur. The accompanying increase in viscosity makes it difficult to fuse and integrate the bodies. In other words, there are restrictions on the component composition of the glass bodies that can be used, and it is not suitable even if they contain a nucleating agent or a coloring agent that has a nucleating effect.

次の本発明者等による先願発明のプレス法は、ガラス状
原料の微細粉末の圧粉体を熱処理するのであるから、粉
末同士の緻密接触と大きい接触面積のために、軟化点を
や一上回る程度の低温でガラス粉末相互の軟化融着、緻
密化ができるのである。
The following pressing method of the prior invention by the present inventors heat-treats a green compact of fine powder of glassy raw material, so the softening point can be lowered due to the close contact between the powders and the large contact area. Glass powders can be softened, fused together, and densified at temperatures that are even higher than that of conventional glass powders.

つまり前記集積法ではガラス小体が粗粒かつ単なる集積
状態であるため、その軟化融着は実質的に軟化温度を相
当上回る温度で行われ、従つて組成によっては既に結晶
が成長して前述のように融着一体化が困難になるのに対
して、プレス法では軟化温度をや\上回る程度の低温で
融着、緻密化が行われ、結晶の成長は更に昇温させるこ
とによって起こる。このことは核形成剤若しくは抜形8
成作用をもつ着色剤を含む場合も同様であうで、融着、
緻密化の後に結晶化ができるのである。
In other words, in the above-mentioned accumulation method, since the glass bodies are coarse grained and simply in an accumulated state, their softening and fusing is substantially carried out at a temperature considerably higher than the softening temperature, and therefore, depending on the composition, crystals may already have grown, as described above. In contrast, in the press method, fusion and densification are performed at a low temperature slightly above the softening temperature, and crystal growth occurs by further raising the temperature. This means that the nucleating agent or cutting 8
The same is true when it contains a coloring agent that has the effect of creating fusing,
Crystallization can occur after densification.

しかし上記のプレス法は圧粉体が大形、或いは薄板状な
どの場合運搬時や焼結時に損傷し易く、その形状を保持
するためには粘結剤(例えば有機粘結剤のポリビニルア
ルコールや無機粘結剤アルミナセメントなど)を添加す
る必要があり、これら粘結剤は完成時の製品の特性とは
殆んど関係がないばかりか、残留粘結剤が製品特性の低
下を招来することがある。このような場合、焼結に際し
て脱バインダ一工程を組込み積極的に除去する必要があ
るが、脱バインダーは困難な場合が多く生産性の面及び
コスト面で問題である。
However, in the above pressing method, if the green compact is large or thin, it is easily damaged during transportation or sintering, and in order to maintain its shape, a binder (such as organic binder polyvinyl alcohol, etc.) is required. It is necessary to add inorganic binders (such as alumina cement), and not only do these binders have little to do with the properties of the finished product, but residual binders can lead to a decline in product properties. There is. In such cases, it is necessary to incorporate a binder removal step during sintering to actively remove the binder, but removing the binder is often difficult and poses problems in terms of productivity and cost.

又、従来の型枠による圧粉成形体の製造は、板状長尺成
形体の製造に不向きな点も問題であった。
Another problem is that the production of powder compacts using conventional molds is unsuitable for producing long plate-like compacts.

(問題点を解決するための手段) 本発明は、上記先願発明の問題点を解決して板状結晶化
ガラスを製造する目的をもってなされたもので、その特
徴とする手段は 低高軟化点の異−なるガラス状原料粉末の混合物を、一
対の搬送用ベルト間に挟持し、同ベルトと共に、低軟化
点ガラス状原料粉末の軟化点以上かつ高軟化点ガラス状
原料粉末の軟化点以下の成形温度に加熱して、低軟化点
ガラス状原料粉末を軟化させて後、更に挟持のベルトと
共に2個のロ−ル間を通過させ加圧成形して板状成形体
を得、該成形体を熱処理することにより、成形体構成の
ガラス状原料粉末を相互に軟化融着させて緻密化する一
方結晶を析出させるようにした点にある。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the problems of the prior invention described above and producing plate-shaped crystallized glass, and its characteristic means are low and high softening points. A mixture of different glassy raw material powders is sandwiched between a pair of conveyor belts, and together with the conveyor belts, a mixture of different glassy raw material powders with a temperature higher than the softening point of the low softening point glassy raw material powder and lower than the softening point of the high softening point glassy raw material powder is held. After heating to the molding temperature to soften the low softening point glassy raw material powder, it is further passed between two rolls together with a clamping belt to be press-formed to obtain a plate-shaped molded body. By heat-treating, the glassy raw material powders constituting the compact are softened and fused to each other to become denser and to precipitate crystals.

(作 用) 低軟化点の異なるガラス状原料粉末(以下原料粉末と称
す)の混合物を、低軟化点原料粉末の軟化点以上でかつ
高軟化点原料粉末の軟化点以下の成形温度に加熱し、低
軟化点原料粉末を軟化させた後、加熱の混合物を2個の
ロール間を通過させ加圧成形するのであるから、上記軟
化の原料粉末が粘結剤として作用し、未軟化の高軟化点
原料粉末諸共、粉末相互を一体化する。従って従来の非
成分系粘結剤使用に起因する前記諸種の問題点を解消し
ているのである。
(Function) A mixture of glassy raw material powders with different low softening points (hereinafter referred to as raw material powders) is heated to a molding temperature that is above the softening point of the low softening point raw material powder and below the softening point of the high softening point raw material powder. After softening the low-softening point raw material powder, the heated mixture is passed between two rolls and pressure-molded, so the softened raw material powder acts as a binder, and the unsoftened high-softness Point raw material powders and powders are integrated with each other. Therefore, the various problems mentioned above caused by the use of conventional non-component binders are solved.

それに軟化粉末は成形体構成粉末そのものであるから、
添加量の制限される粘結剤と異なり多量であって、加圧
力が比較的小さくとも強度の大きい成形体が得られるの
である。
In addition, since the softened powder is the powder itself that constitutes the compact,
Unlike a binder, which has a limited amount, it can be added in a large amount, and a molded product with high strength can be obtained even if the pressing force is relatively small.

加えて軟化、未軟化の混合粉末の加圧成形であるから、
金粉末が軟化しているもの\成形に比して粉末間に滞留
の空気が逃げ易く、健全な成形体ができるのである。す
なわち軟化粉末が変形して空気を追い出しつ〜粒子間隙
を埋め、未軟化粒子間の細隙は空気通路として作用する
のである。
In addition, since it is pressure molding of softened and unsoftened mixed powder,
Compared to when the gold powder is softened and molded, air trapped between the powder can escape easily, resulting in a healthy molded product. In other words, the softened powder deforms to expel air while filling the gaps between the particles, and the slits between the unsoftened particles act as air passages.

更に成形手段がいわゆるロール成形であるから、加熱混
合粉末の供給が連続的に行え、長尺の板状成形体が容易
に得られ、厚さの変更なども容易である。
Furthermore, since the molding means is so-called roll molding, the heated mixed powder can be continuously supplied, a long plate-shaped molded product can be easily obtained, and the thickness can be easily changed.

又原料粉末の混合物(以下混合粉末と称す)の加熱、ロ
ール成形共、一対の搬送用ベルトに挟持のま\行なうよ
うにしたので、同ベルトは混合粉末面を覆い外気との接
触を阻止すると共に、ベルトのもつ保有熱量が混合粉末
の熱量放散を抑制してその温度低下を防ぎ、優れた熱間
成形効果が得られるのである。
In addition, since the raw material powder mixture (hereinafter referred to as mixed powder) is heated and roll-formed while being held between a pair of conveyor belts, the belts cover the mixed powder surface and prevent contact with the outside air. At the same time, the heat retained by the belt suppresses the heat dissipation of the mixed powder and prevents its temperature from decreasing, resulting in an excellent hot forming effect.

なお上述の混合粉末は、2種の混合粉末とは限らず、2
種以上の場合も含み、このときの成形温度は最も軟化点
の低い原料粉末の軟化点以上でかつ最も軟化点の高い原
料粉末の軟化点以下の温度であって、軟化粉末は1種と
は限らないことを付言する。
Note that the above-mentioned mixed powder is not limited to two types of mixed powder;
In this case, the molding temperature is higher than the softening point of the raw material powder with the lowest softening point and lower than the softening point of the raw material powder with the highest softening point, and the softened powder is one type. I would like to add that there are no limitations.

(実施例) 次に本発明の実施例を第1図〜第2図に基づいて説明す
る。
(Example) Next, an example of the present invention will be described based on FIGS. 1 and 2.

第1図は本発明実施例の立型ロール成形方法1例の説明
図であり、 3a、3bはそれぞれ送りローラ4a+4b 1方向転
換ローラ5a、5b 、 5c、5dに張架され回走自
在とされた無端状の金属製搬送用ベルトで、両者が所定
間隔を保って相対し、一対となって垂直に上方から下方
に移動する搬送区間を有して回走するように設けられて
おり、6a+ sb、 6c+ 6d+ 7a+ 7b
+ 7c+7dはベルト間隔と垂直維持のためのガイド
ローラである。
FIG. 1 is an explanatory diagram of an example of the vertical roll forming method according to the embodiment of the present invention, in which 3a and 3b are respectively stretched over feed rollers 4a+4b and one direction change rollers 5a, 5b, 5c, and 5d so as to be able to rotate freely. 6a+ sb, 6c+ 6d+ 7a+ 7b
+7c+7d are guide rollers for maintaining belt spacing and verticality.

なお図は垂直方向の搬送区間を有する場合を示している
が、適当な傾斜角度の搬送区間を設けることも可能であ
る。
Note that although the figure shows a case where the conveyance section is vertical, it is also possible to provide a conveyance section with an appropriate inclination angle.

ホンパー1に貯えられた混合粉末2は、前記相対して一
対となったベルト3a、3b間へ供給装填され、挟持さ
れて搬送され、加熱装置8a、Bb間を通過して加熱さ
れる。
The mixed powder 2 stored in the omper 1 is loaded between the pair of opposing belts 3a and 3b, is conveyed while being held therebetween, and is heated by passing between the heating devices 8a and Bb.

加熱は電熱、ガスの燃焼など適宜の手段によることが可
能で、加熱温度は低軟化点原料粉末の軟化点以上、高軟
化点原料粉末の軟化点以下の成形温度である。つまり低
軟化点原料粉末が軟化し、高軟化点原料粉末は未軟化の
状態とする。この場合加熱むらなどにより低軟化点原料
粉末の一部が未軟化であっても、軟化粉末の粘結作用に
より必要強さを具備した加圧成形体が得られ\ば差支え
ない、なおホンパー1に貯える混合粉末2を、低軟化点
原料粉末の軟化点以下に予熱しておくことも可能で、こ
れにより成形速度を速めることができる。又ベルト3a
、3bを同様に予熱しておくことも可能である。
Heating can be done by appropriate means such as electric heating or gas combustion, and the heating temperature is a molding temperature that is higher than the softening point of the low softening point raw material powder and lower than the softening point of the high softening point raw material powder. In other words, the low softening point raw material powder is softened, and the high softening point raw material powder is left unsoftened. In this case, even if a part of the low-softening point raw material powder is not softened due to uneven heating, there is no problem as long as a press-molded product with the necessary strength can be obtained due to the caking effect of the softened powder. It is also possible to preheat the mixed powder 2 to be stored at a temperature below the softening point of the low softening point raw material powder, thereby increasing the molding speed. Also belt 3a
, 3b can also be preheated in the same way.

かくて加熱されに混合粉末2aは、ベル)3a、3bに
挟持された状態でロール9a、9b間を通過し加圧成形
されて板状成形体lOとされて、ベル)3a、3bはそ
れぞれの方向転換ローラ5a、5cにより方向を換え回
走する。なおロール9a、9bは予熱しておくことも可
能である。
The heated mixed powder 2a passes between the rolls 9a and 9b while being sandwiched between the bells) 3a and 3b, and is press-formed to form a plate-shaped compact lO, and the bells) 3a and 3b are respectively The direction is changed by the direction change rollers 5a and 5c and the movement is made. Note that the rolls 9a and 9b can also be preheated.

第2図は他の実施例の横型ロール成形方法1例の°説明
図であり、前記立型の場合と同様、3a、3bはそれぞ
れ送りローフ4a+4b 1方向転換ローラ5a。
FIG. 2 is an explanatory view of an example of a horizontal roll forming method according to another embodiment, in which 3a and 3b are feed loafs 4a+4b and direction changing rollers 5a, respectively, as in the case of the vertical roll forming method.

5b、 5c、5dに張架され回走自在とされた無端状
の金属製搬送用ベルトで、両者が所定間隔を以って相対
し、一対となって水平方向に移動する搬送区間を有して
回走するように設けられている。
5b, 5c, and 5d so that they can rotate freely, and have a conveying section in which they face each other at a predetermined interval and move in the horizontal direction as a pair. It is set up so that it can be rotated.

ホンパー1に貯えられた混合粉末2は、前記立型の場合
と同様、相対して一対となったベルト3a+3b間へ供
給装填され、挟持搬送され、加熱装置8a r8b間を
通過して加熱される。
As in the case of the vertical type, the mixed powder 2 stored in the homper 1 is loaded between a pair of opposing belts 3a and 3b, is conveyed in a pinched manner, and is heated by passing through the heating devices 8a and 8b. .

なお混合粉末2、ベルト3a、3bの予熱可能なことは
言うまでもない。
It goes without saying that the mixed powder 2 and belts 3a and 3b can be preheated.

かくて加熱された混合粉末2aは、ベル)3a、3bに
挟持された状態でロール9a、9b間を通過し加圧成形
されて板状成形体10とされて、ベルト3a、3bはそ
れぞれの方向転換ローラ5a、5cにより方向を換え回
走する。なおロール成形に当ってロール9a。
The thus heated mixed powder 2a passes between the rolls 9a and 9b while being held between the bells 3a and 3b, and is press-formed into a plate-shaped compact 10, and the belts 3a and 3b It changes direction and runs around by direction changing rollers 5a and 5c. Note that the roll 9a is used for roll forming.

9bは予熱しておくことも可能である。9b can also be preheated.

以上立型及び横型のロール成形方法の概要について述べ
たが、以下更に詳述する。先ずベル)3a。
The outline of the vertical and horizontal roll forming methods has been described above, and will be described in more detail below. First Bell) 3a.

3bについて説明を加えると、材質は耐熱鋼、ステンレ
ス鋼等の耐熱性材が好ましく、厚さはロール成形時にお
いて粉体への加圧作用が広い範囲に伝わることが必要で
、薄過ぎると以上の効果がなく、又厚遇ぎる場合は回走
に支障を来たし、適当な厚さは0.3〜5fiである。
To explain 3b, the material should preferably be a heat-resistant material such as heat-resistant steel or stainless steel, and the thickness should be such that the pressure applied to the powder can be transmitted over a wide range during roll forming. It has no effect, and if it is too generous, it will hinder running, so the appropriate thickness is 0.3 to 5 fi.

又、ベルトに軟化粉末が焼付、付着するのを防止するた
めに、ベルトの混合粉末挟持面に塗型を塗布することは
有効で、その塗布は第1図、第2図に示したように塗型
塗布装W、11.11を設け、或いは手塗りなどで行な
うことができる。
In addition, in order to prevent the softened powder from baking and adhering to the belt, it is effective to apply a coating to the surface of the belt that holds the mixed powder. The coating can be carried out by providing a mold coating W, 11.11, or by hand coating.

なお図示していないが、ベルト3a、3bが挟持搬送す
る混合粉末ベルト外側にこぼれないように、又ロール成
形時に成形体がベルト(ロール)外側にはみ出さないよ
うに、それぞれ側面ガイドを設けることは云うまでもな
い。
Although not shown, side guides may be provided for each of the belts 3a and 3b to prevent spillage of the mixed powder to the outside of the conveyed belt and to prevent the molded product from protruding to the outside of the belt (roll) during roll forming. Needless to say.

次に混合粉末の加圧成形条件等について述べると、混合
粉末の加熱はロールの強度から700℃以下が望ましく
、従って低軟化点原料粉末も700℃以下の軟化点を有
するような組成のものが望ましい、但し軟化点400℃
以下の原料粉末は結晶化ガラス原料として不適当であり
、好ましい低い軟化点範囲は500〜700℃である。
Next, regarding the pressure molding conditions of the mixed powder, it is desirable to heat the mixed powder to 700°C or less in view of the strength of the rolls. Desirable, but softening point 400℃
The following raw material powders are unsuitable as raw materials for crystallized glass, and the preferable low softening point range is 500 to 700°C.

また加圧圧力は5〜300 kgf/aJがよい、すな
わち5kgf/d以下では熱処理まで及び熱処理時にお
ける形状保持に必要とされる曲げ強さ10kgf/−が
得られず、一方300kgf/cs1以上とすることは
、ロールの強度、ひいては経済面から問題があるからで
ある。
In addition, the pressurizing pressure is preferably 5 to 300 kgf/aJ; that is, if it is less than 5 kgf/d, the bending strength of 10 kgf/- required for shape retention up to and during heat treatment cannot be obtained, whereas if it is more than 300 kgf/cs1, This is because there are problems in terms of the strength of the roll and, ultimately, in terms of economy.

以上のようにして成形された板状成形体は必要寸法とさ
れ(参考:完成品の板状結晶化ガラス製品は、通常、厚
さ8〜50Wa1巾600〜900 M、長さは必要に
応じて600〜2400mとされる)、引続き、若しく
は常温に冷却された後、加熱炉に装入し、高軟化点原料
粉末の軟化点以上の結晶化温度に加熱して、成形体構成
の粉末相互の軟化融着、緻密化及び結晶化を図るのであ
る。
The plate-shaped molded body formed as described above has the required dimensions (Reference: The finished plate-shaped crystallized glass product usually has a thickness of 8 to 50 Wa, a width of 600 to 900 M, and a length as required. 600 to 2,400 m), or after being cooled to room temperature, it is charged into a heating furnace and heated to a crystallization temperature higher than the softening point of the high softening point raw material powder, so that the powders of the molded body are mutually separated. This aims at softening, fusing, densification and crystallization.

ガラス状原料粉末同士の軟化融着界面は結晶核を生じ易
く、上記結晶化処理によって多くの結晶が析出する。
The softened and fused interface between the glassy raw material powders tends to generate crystal nuclei, and many crystals are precipitated by the crystallization treatment described above.

次に本発明方法実施に好適なガラス状原料粉末の成分組
成及び同成分の限定理由を掲げ、該ガラス状原料粉未使
用の具体的実施例について述べる。
Next, the composition of the glassy raw material powder suitable for implementing the method of the present invention and the reasons for limiting the same components will be listed, and specific examples in which the glassy raw material powder is not used will be described.

A)高軟化点ガラス状原料粉末 この原料粉末は成形体の結晶化熱処理において主として
ウオラストナイト晶(CaO・SiO□)を析出し、製
品に強さと硬さを付与するもので着色剤を含む場合は製
品に着色あるいは模様付などを行なうものである。
A) High softening point glassy raw material powder This raw material powder primarily precipitates wollastonite crystals (CaO/SiO□) during the crystallization heat treatment of the compact, giving strength and hardness to the product, and contains a coloring agent. In some cases, the product is colored or patterned.

Sing  : 30〜60%(重量百分率、以下間)
30%未満では結晶化速度が速く、加圧成形体の熱処理
時に粉末相互の融着緻密化が不充分となる。一方60%
を越えると結晶量が減少し、強度、硬さの不足を招来す
る。
Sing: 30-60% (weight percentage, below)
If it is less than 30%, the crystallization rate will be high, and the powders will not be sufficiently fused together and densified during heat treatment of the press-molded product. On the other hand, 60%
Exceeding this decreases the amount of crystals, resulting in a lack of strength and hardness.

/VgOs  :  5〜20% 5%未満では結晶化速度が速く、加圧成形体の熱処理時
に粉末相互の融着緻密化が不充分となる。一方20%を
越えると結晶を均一に析出させることが困難となる。
/VgOs: 5 to 20% If it is less than 5%, the crystallization rate is fast and the powders are not sufficiently fused and densified during heat treatment of the press-molded body. On the other hand, if it exceeds 20%, it becomes difficult to uniformly precipitate crystals.

CaO: 25〜45% 25%未満では結晶の析出量が少なく、また45%を越
えると結晶化速度が速く、加圧成形体の熱処理時に粉末
相互の融着緻密化が不充分となる。
CaO: 25-45% If it is less than 25%, the amount of crystals precipitated will be small, and if it exceeds 45%, the crystallization rate will be high, and the fusion and densification of the powders will be insufficient during heat treatment of the pressed body.

MgO:0.2〜8% 8%以下の添加で、結晶化及び製品強度に影響を及ぼす
ことな(軟化点を低下させる。つまりMgOは高軟化点
ガラス状原料の軟化点調整のために加えられるが、0.
2%以下では上記効果は認められない。
MgO: 0.2-8% Addition of 8% or less does not affect crystallization and product strength (lowers the softening point. In other words, MgO is added to adjust the softening point of high softening point glassy raw materials. However, 0.
The above effect is not observed at 2% or less.

着色剤:0.5〜15% 着色剤としては目的の色調に応じて、Fe、 Mn。Colorant: 0.5-15% As a coloring agent, depending on the desired color tone, Fe or Mn can be used.

Cr、 Co、 Cu+ Ni、 Ti、 V、 Nd
、  の各酸化物を単独もしくは複合して用いるが、0
.5%以下では着色効果が殆んど認められず、一方、1
5%を越えると製品強度を低下させるなどの悪影響を招
来する。
Cr, Co, Cu+ Ni, Ti, V, Nd
, each oxide is used alone or in combination, but 0
.. At 5% or less, almost no coloring effect is observed;
If it exceeds 5%, it will cause adverse effects such as a decrease in product strength.

高軟化点ガラス状原料粉末は、上記着色剤を含まない無
色の原料粉末とすることも、また着色剤を含んだ有色の
原料粉末とすることもできる。
The high softening point glassy raw material powder can be a colorless raw material powder that does not contain the above-mentioned colorant, or it can be a colored raw material powder that contains a colorant.

無色原料粉末の場合は上記SiO□以下MgOまでを、
有色原料粉末の場合は更に着色剤までを必須成分とし、
かついずれの場合もSing、 AfzO++CaOの
合計が85%以上を占めるようにする。これは原料粉末
のガラス材質を適正に保つためであり、このような組成
を有する原料粉末は600℃では殆んど軟化しない。
In the case of colorless raw material powder, the above SiO□ up to MgO,
In the case of colored raw material powder, the coloring agent is also an essential ingredient,
In both cases, the total of Sing and AfzO++CaO should account for 85% or more. This is to keep the glass material of the raw material powder appropriate, and the raw material powder having such a composition hardly softens at 600°C.

なお、高軟化点ガラス状原料粉末を有色原料粉末として
使用する場合、その粒度を200メツシユ以下とし、低
軟化点ガラス状原料粉末も200メツシユ以下として両
者の混合物から結晶化ガラスを製造すると、着色地の結
晶化ガラスが得られ、有色原料粉末を粗粒とし、低軟化
点ガラス状原料粉末を200メツシユ以下とした場合は
、色付の斑模様の製品が得られる。
In addition, when a high softening point glassy raw material powder is used as a colored raw material powder, its particle size is 200 mesh or less, and a low softening point glassy raw material powder is also 200 mesh or less, and when crystallized glass is produced from a mixture of the two, colored If a plain crystallized glass is obtained, the colored raw material powder is made into coarse particles, and the low softening point glassy raw material powder is made into 200 mesh or less, a colored mottled product can be obtained.

B)低軟化点ガラス状原料粉末 この原料粉末は既述のように低い温度で軟化し粘結剤と
して作用し、加圧成形時に高軟化点ガラス状粉末との混
合物を一体化すると共に、成形体の熱処理においては緻
密化及び一部結晶を析出し、製品の強度及び硬さの向上
にも寄与する。
B) Low softening point glassy raw material powder As mentioned above, this raw material powder softens at low temperatures and acts as a binder, unifying the mixture with the high softening point glassy powder during pressure molding and forming. During heat treatment of the product, it is densified and some crystals are precipitated, which also contributes to improving the strength and hardness of the product.

SiO□:55〜75% 55%未満では結晶化が速くなり製品の緻密化に支障を
来たす。また75%以上含有の場合もガラスの粘性が高
くなって緻密化の面で問題を生じる。
SiO□: 55-75% If it is less than 55%, crystallization will be rapid, which will hinder the densification of the product. Moreover, if the content is 75% or more, the viscosity of the glass increases, causing problems in terms of densification.

NtOx  :  15%以下 15%を越えるとガラスの粘性が高くなり、製品の緻密
化が不充分となる。
NtOx: 15% or less If it exceeds 15%, the viscosity of the glass increases and the densification of the product becomes insufficient.

CaO:  5〜15% 5%未満では結晶化が殆んど行われず強度と硬さ不足を
来たす。一方15%を越えるとガラスの粘性が高くなり
、製品の緻密化が不充分となる。
CaO: 5-15% If it is less than 5%, crystallization will hardly occur, resulting in insufficient strength and hardness. On the other hand, if it exceeds 15%, the viscosity of the glass increases and the densification of the product becomes insufficient.

Na2O+K2O: 10〜20% 結晶化を制御する作用を有し、10%以下では結晶化が
速く製品の緻密化が不充分となる。一方20%以上では
結晶化が遅く強度と硬さの不足を招来する。
Na2O+K2O: 10-20% Has the effect of controlling crystallization, and if it is less than 10%, crystallization will be rapid and the product will not be sufficiently densified. On the other hand, if it exceeds 20%, crystallization is slow and results in insufficient strength and hardness.

以上が必須成分であり、上記必須成分の和が90%以上
を占めるように含有させる。これは原料粉末のガラス材
質を適正に保つためである。
The above are essential components, and they are contained so that the sum of the above essential components accounts for 90% or more. This is to keep the glass material of the raw material powder appropriate.

この低軟化点ガラス状原料粉末は前述のように粘結剤と
して作用させるものであるから、軟化点乃至は軟化点を
や\上回る程度の低温で、実質的に軟化融着が行われる
ように、200メツシユ以下の微粉とすることが望まし
い。勿論若干の粗粒が混在しても差支えない。そして上
記組成の低軟化点ガラス状原料粉末は500〜600℃
で充分な軟化状態を示す。
Since this low softening point glassy raw material powder is used as a binder as described above, softening and fusion can be substantially performed at the softening point or at a low temperature slightly above the softening point. , 200 mesh or less fine powder is desirable. Of course, there is no problem even if some coarse particles are mixed. The low softening point glassy raw material powder with the above composition is heated to 500 to 600°C.
indicates a sufficiently softened state.

なお上述のA及びBの原料粉末の混合物による成形体は
800〜1000℃の範囲で結晶化熱処理を行なうこと
ができる。
Note that the molded body made of the mixture of the raw material powders A and B described above can be subjected to crystallization heat treatment in the range of 800 to 1000°C.

次に上記組成範囲のガラス状原料粉末を用いた具体的実
施例を示す。
Next, a specific example using a glassy raw material powder having the above composition range will be shown.

先ず原料粉末の組成は下表に掲げる。但しAは高軟化点
ガラス状原料粉末(有色)、Bが低軟化点ガラス状原料
粉末である。
First, the composition of the raw material powder is listed in the table below. However, A is a high softening point glassy raw material powder (colored), and B is a low softening point glassy raw material powder.

A、Bの各ガラス状原料粉末は、上記それぞれの成分を
含有するように配合した配合原料を融解し、次いでこれ
を水砕してガラス小体としたものを更にボールミルで粉
砕し、原料粉末とした。
Each of the glassy raw material powders A and B is obtained by melting the blended raw materials containing the above-mentioned respective components, and then pulverizing this to form glass bodies, which are further crushed in a ball mill to obtain raw material powders. And so.

粒度その他の製造条件は次の通りである。The particle size and other manufacturing conditions are as follows.

A粉末・−・−20〜50メツシュ粉末:30〜40%
200メツシユ以下粉末:60〜70%B粉末・−・−
・−200メツシュ以下粉末:98%以上混合比−−−
−−−−A : B −1: 1加圧成形−−−−−−
−・横型ロール成形成形体寸法・・−一一一−・・厚さ
25m、巾900 ws混合粉末加熱温度−・−・−5
70℃ ロール及びベルト予熱温度・−・・・−・400〜50
0℃ロール成形圧力−−−−−・−・15  瞳f/c
d敷板への塗型−黒鉛系塗型:厚さ0.2鶴板状成形体
曲げ強さく常温)・−・・15.2  kgf/aJ上
記板状成形体に対して、900℃X 4Hrの結晶化熱
処理を施した結果、主としてウオラストナイト晶を析出
した結晶化ガラスが得られた。次いで該ガラスの表面を
研摩し、所定の寸法に切断して目的の建築部材とした。
A powder ---20~50 mesh powder: 30~40%
Powder of 200 mesh or less: 60-70% B powder ---
・Powder of -200 mesh or less: Mixing ratio of 98% or more---
-----A: B -1: 1 Pressure molding------
-・Horizontal roll molded compact dimensions...--111--Thickness 25m, width 900ws Mixed powder heating temperature--5
70℃ Roll and belt preheating temperature---400~50
0℃ roll forming pressure --------・15 Pupil f/c
d Coating mold for floor plate - graphite coating mold: thickness 0.2 (bending strength of plate-shaped molded product at room temperature) --- 15.2 kgf/aJ For the above plate-shaped molded product, 900°C x 4 hours As a result of the crystallization heat treatment, a crystallized glass in which wollastonite crystals were mainly precipitated was obtained. Next, the surface of the glass was polished and cut into a predetermined size to obtain a desired building member.

(発明の効果) 本発明は以上のとおりであり、加圧成形体の成形を粘結
剤を用いることな(、成形体構成のガラス状原料粉末の
混合粉末のうち、低軟化点粉末の軟化域で、混合粉末を
挟持搬送するベルトと共にロール加圧により行なうよう
にしたので、従来の粘結剤使用に起因する諸種の問題を
解決すると共に、優れた熱間成形効果を有して大形、長
尺の板状成形体を容易に、しかも充分な強度をもたせて
製造することができた。そして同成形体を結晶化熱処理
することにより、ガラスとしての光沢と、セラミックス
としての強度、硬さを合わせもち、更に有色や斑模様を
有する板状結晶化ガラスも容易に製造できるもので、本
発明の工業的価値は著大である。
(Effects of the Invention) The present invention is as described above, and it is possible to mold a press-molded body without using a binder (softening of a low softening point powder among the mixed powder of glassy raw material powder constituting the molded body). In the area, the mixed powder is compressed by rolls together with a belt that pinches and conveys the mixed powder, which solves various problems caused by the conventional use of binders. , it was possible to easily produce a long plate-shaped molded body with sufficient strength.Then, by heat-treating the molded body for crystallization, it achieved the luster of glass, the strength and hardness of ceramics. It is possible to easily produce plate-shaped crystallized glass having both the same properties and coloring and mottled patterns, and the industrial value of the present invention is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の立型ロール成形方法1例の説明
断面図、第2図は本発明実施例の横型ロール成形方法1
例の説明断面図である。 1−・ホッパ、2・−・混合粉末(低へ高軟化点の異な
るガラス状原料粉末の混合物)、2a・−・加熱された
混合粉末、3a、 3b−搬送用ベルト、4a、 4t
r−送りローラ、5a、 5b、 5c、 5d−−−
一方向転換ローラ、6a+6b、 6c、 6d、 7
a、 7b、 7c、 7d=−ガイドローラ、8as
8b・−加熱装置、9a、9b −ロール、1(1−=
板状成形体、11・−・塗型塗布装置。 特許 出 願人  久保田鉄工株式会社第1図 第2図 文
FIG. 1 is an explanatory sectional view of one example of the vertical roll forming method according to the embodiment of the present invention, and FIG. 2 is an explanatory sectional view of one example of the horizontal roll forming method according to the embodiment of the present invention.
It is an explanatory sectional view of an example. 1--Hopper, 2--Mixed powder (mixture of glassy raw material powders with different softening points from low to high), 2a--Heated mixed powder, 3a, 3b-Transport belt, 4a, 4t
r-Feed roller, 5a, 5b, 5c, 5d---
One direction change roller, 6a+6b, 6c, 6d, 7
a, 7b, 7c, 7d=-guide roller, 8as
8b - heating device, 9a, 9b - roll, 1 (1-=
Plate-shaped molded body, 11.--Paint coating device. Patent Applicant Kubota Iron Works Co., Ltd. Figure 1 Figure 2 Text

Claims (3)

【特許請求の範囲】[Claims] (1)低高軟化点の異なるガラス状原料粉末の混合物を
、一対の搬送用ベルト間に挟持し、同ベルトと共に、低
軟化点ガラス状原料粉末の軟化点以上かつ高軟化点ガラ
ス状原料粉末の軟化点以下の成形温度に加熱して、低軟
化点ガラス状原料粉末を軟化させて後、更に挟持のベル
トと共に2個のロール間を通過させ加圧成形して板状成
形体構成を得、該成形体を熱処理することにより、成形
体構成のガラス状原料粉末を相互に軟化融着させて緻密
化する一方、結晶を析出させることを特徴とする板状結
晶化ガラスの製造方法。
(1) A mixture of glassy raw material powders with different softening points (low and high softening points) is sandwiched between a pair of conveyor belts, and together with the belts, a mixture of glassy raw material powders with a softening point higher than the softening point of the low softening point glassy raw material powder and a high softening point After softening the low softening point glassy raw material powder by heating it to a molding temperature below the softening point of . A method for producing plate-shaped crystallized glass, characterized in that the glass-like raw material powders constituting the molded body are softened and fused to each other and densified by heat-treating the molded body, while crystals are precipitated.
(2)高軟化点ガラス状原料粉末が重量百分率で、Si
O_2:30〜60%、Al_2O_3:5〜20%、
CaO:25〜45%、MgO:0.2〜8%を必須成
分とし、かつSiO_2、Al_2O_3及びCaOの
合計が85%以上であるように含有するガラス状原料粉
末であり、 低軟化点ガラス状原料粉末が重量百分率で、SiO_2
:55〜75%、Al_2O_3:15%以下、CaO
:5〜15%、Na_2O+K_2O:10〜20%を
必須成分とし、かつSiO_2、Al_2O_3、Ca
O及びNa_2O+K_2Oの合計が90%以上である
ように含有するガラス状原料粉末なることを特徴とする
特許請求の範囲第1項に記載の板状結晶化ガラスの製造
方法。
(2) The weight percentage of high softening point glassy raw material powder is Si
O_2: 30-60%, Al_2O_3: 5-20%,
A glassy raw material powder containing CaO: 25 to 45% and MgO: 0.2 to 8% as essential components, and containing SiO_2, Al_2O_3, and CaO in a total of 85% or more, and is low softening point glassy. The weight percentage of the raw material powder is SiO_2
: 55-75%, Al_2O_3: 15% or less, CaO
: 5-15%, Na_2O+K_2O: 10-20% as essential components, and SiO_2, Al_2O_3, Ca
2. The method for producing plate-shaped crystallized glass according to claim 1, wherein the glass-like raw material powder contains O and Na_2O+K_2O in a total amount of 90% or more.
(3)高軟化点ガラス状原料粉末が重量百分率で、Si
O_2:30〜60%、Al_2O_3:5〜20%、
CaO:25〜45%、MgO:0.2〜8%着色剤:
0.5〜15% を必須成分とし、かつSiO_2、Al_2O_3及び
CaOの合計が85%以上であるように含有するガラス
状原料粉末であり、 低軟化点ガラス状原料粉末が重量百分率で、SiO_2
:55〜75%、Al_2O_3:15%以下、CaO
:5〜15%、Na_2O+K_2O:10〜20%を
必須成分とし、かつSiO_2、Al_2O_3、Ca
O及びNa_2O+K_2Oの合計が90%以上である
ように含有するガラス状原料粉末となることを特徴とす
る特許請求の範囲第1項に記載の板状結晶化ガラスの製
造方法。
(3) The weight percentage of high softening point glassy raw material powder is Si
O_2: 30-60%, Al_2O_3: 5-20%,
CaO: 25-45%, MgO: 0.2-8% Colorant:
It is a glassy raw material powder containing SiO_2, Al_2O_3 and CaO in a total of 85% or more, with a weight percentage of low softening point glassy raw material powder and SiO_2 as an essential component.
: 55-75%, Al_2O_3: 15% or less, CaO
: 5-15%, Na_2O+K_2O: 10-20% as essential components, and SiO_2, Al_2O_3, Ca
The method for producing plate-shaped crystallized glass according to claim 1, wherein the glass-like raw material powder contains O and Na_2O+K_2O in a total amount of 90% or more.
JP31198286A 1986-12-29 1986-12-29 Production of plate crystal glass Pending JPS63170231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31198286A JPS63170231A (en) 1986-12-29 1986-12-29 Production of plate crystal glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31198286A JPS63170231A (en) 1986-12-29 1986-12-29 Production of plate crystal glass

Publications (1)

Publication Number Publication Date
JPS63170231A true JPS63170231A (en) 1988-07-14

Family

ID=18023775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31198286A Pending JPS63170231A (en) 1986-12-29 1986-12-29 Production of plate crystal glass

Country Status (1)

Country Link
JP (1) JPS63170231A (en)

Similar Documents

Publication Publication Date Title
US3955989A (en) Crystallized glass article having a surface pattern
JP2010503601A (en) Manufacturing method of glass ceramic material in thin plate shape, thin plate including them and method of using them
KR100812257B1 (en) A method of embossed carving etching plate glass and equipment for thereof
JPS63170231A (en) Production of plate crystal glass
JPS63170230A (en) Production of plate crystal glass
JPS63156024A (en) Production of glass ceramic article
JPS6224365B2 (en)
KR970004970B1 (en) Crystallized glass articles having an irregular rough surface pattern and a method for producing the same
JPS62162631A (en) Production of crystallized glass having colored pattern
JPS63144134A (en) Production of glass ceramic article
JPH0193441A (en) Production of crystallized glass building material
JPH0292841A (en) Crystallized glass material having black mottled pattern and production thereof
JPH02120254A (en) Crystallized glass material and production thereof
JPS6317239A (en) Production of crystallized glass with color pattern
JPS63144142A (en) Crystallized glass and production thereof
DE19721571C2 (en) Process for the production of microspheres
JPS6374936A (en) Crystallized glass and production thereof
CN108059349A (en) A kind of emerald devitrified glass and preparation method thereof
JPS6117442A (en) Crystallized glass and its production
JPS6337933A (en) Manufacture of ceramic foam
JPS63129025A (en) Production of glass ceramic article
JPH01119544A (en) Production of crystallized glass building material
JPH09100152A (en) Production of colored ceramic tile
JPH0218338A (en) Crystallized glass material and its production
JPH0575702B2 (en)