JPS63134662A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS63134662A
JPS63134662A JP27936086A JP27936086A JPS63134662A JP S63134662 A JPS63134662 A JP S63134662A JP 27936086 A JP27936086 A JP 27936086A JP 27936086 A JP27936086 A JP 27936086A JP S63134662 A JPS63134662 A JP S63134662A
Authority
JP
Japan
Prior art keywords
boron nitride
gas
substrate
boron
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27936086A
Other languages
Japanese (ja)
Other versions
JPH0819523B2 (en
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61279360A priority Critical patent/JPH0819523B2/en
Publication of JPS63134662A publication Critical patent/JPS63134662A/en
Publication of JPH0819523B2 publication Critical patent/JPH0819523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To deposit high hardness cubic boron nitride on a heated substrate by passing a B-contg. gas and an N-contg. gas through excimer laser light and high frequency plasma and by leading the gases to the substrate. CONSTITUTION:A gaseous mixture of a B-contg. gas such as B2H6 with an N-contg. gas such as N2 is decomposed and excited by passing through excimer laser light. High energy is provided to the excited B and N atoms by passing through high frequency plasma. The gaseous mixture is then led to the surface of a substrate heated to 300-2,000 deg.C and it is brought into a reaction under sufficient energy to deposit cubic boron nitride on the surface of the substrate. The ratio of the number of B atoms in the B-contg. gas to the number of N atoms in the N-contg. gas (B/N) is preferably regulated to 0.1-10 and hydrogen is preferably used as a reactive gas.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高硬度な立方晶窒化硼素の合成法に係り、詳
しくは非常に高硬度を有するだけでなく、熱伝導率に富
み、化学的に安定で加えてダイヤモンドとは異なり、鉄
族金属に対する耐性にもすぐれていることから切削工具
、耐摩工具などの工具材料、さらにはヒートシンクなど
の電子材料として用いられる立方晶窒化硼素を気相より
基材表面に析出させる方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for synthesizing highly hard cubic boron nitride. Specifically, it not only has very high hardness but also has high thermal conductivity and chemical In addition, unlike diamond, cubic boron nitride is used as tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks because it has excellent resistance to iron group metals. This relates to a method of depositing on the surface of a substrate.

〈従来の技術〉 従来、窒化硼素の製造法としては、 +11 111f4を含有する蒸発源から基体上に硼素
分子を蒸着させるとともに、少なくとも窒素を含むイオ
ン種を発生せしめるイオン発生源から基体上に該イオン
種を照射して、該基体上に窒化硼素を析出せしめる窒化
tIl素膜の製造方法(特公昭60−181262号公
報)。
<Prior Art> Conventionally, boron nitride has been produced by depositing boron molecules onto a substrate from an evaporation source containing +11 111f4, and depositing boron molecules onto the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a nitrided tIl elementary film in which boron nitride is deposited on the substrate by irradiating ion species (Japanese Patent Publication No. 181262/1982).

+21  N2 + N2プラズマによるIII素の化
学輸送を行なうことによって立方晶窒化硼素を生成させ
る方法(Journal of l1aterial 
5cience 1etters 4、(1985) 
、P51〜54)。
+21 Method for producing cubic boron nitride by chemical transport of element III by N2 + N2 plasma (Journal of l1terial
5science 1etters 4, (1985)
, P51-54).

+31  HCD ounで硼素を蒸発させながら、I
lollowAnodeからN2をイオン化して基板に
放射し、基板には高周波を印加して5elf bias
効果をもたせて立方晶窒化硼素を生成する方法(Pro
ceedin9.9 th、 5ynposiun o
n Ion 5ource Ion AsistedT
echnology Anode 85 、Tokyo
  (1985))。
+31 While evaporating boron with HCD own, I
Ionize N2 from the lollowAnode and radiate it to the substrate, apply high frequency to the substrate, and 5elf bias
Method for producing cubic boron nitride with effect (Pro
ceedin9.9th, 5ynposiun o
n Ion 5source Ion AssistedT
technology Anode 85, Tokyo
(1985)).

+4+  ill素原子含有固体にE8を当てることに
より、硼素を蒸発させ、それに窒素原子含有ガスを流し
こみ、硼素および窒素を同時にイオン化することにより
、基材表面に立方晶窒化硼素を生成する方法(真空、第
28巻、第7号、1985)。
+4+ ill A method for producing cubic boron nitride on the surface of a substrate by applying E8 to a solid containing elementary atoms to evaporate boron, and then flowing a nitrogen atom-containing gas into it to simultaneously ionize boron and nitrogen ( Vacuum, Vol. 28, No. 7, 1985).

などが知られている。etc. are known.

〈発明が解決しようとする問題点〉 しかしながら、上記、(1)の方法はイオンビームを発
生する装置および集束装置が高価であることが欠点とさ
れ、(2)の方法は高出力のRFプラズマを成膜に利用
していることにより、反応系からの不純物が混入しやす
い。(3)の方法は(1)の方法と同じくイオンビーム
を発生する装置およびその集束装置が高価であることと
、不活性ガスの原子が析出した窒化硼素に取り込まれる
欠点がある。また(4)の方法においては、硼素は融点
と沸点が近いため、E8を当てることにより、突沸しや
すく制御が困難であるという欠点を有しているのである
<Problems to be Solved by the Invention> However, the disadvantage of method (1) is that the ion beam generating device and focusing device are expensive, and method (2) requires high-power RF plasma. is used for film formation, impurities from the reaction system are likely to be mixed in. Method (3), like method (1), has the drawbacks that the ion beam generating device and its focusing device are expensive, and that inert gas atoms are incorporated into the precipitated boron nitride. In addition, the method (4) has the disadvantage that since the melting point and boiling point of boron are close to each other, the application of E8 tends to cause bumping and is difficult to control.

く問題点を解決するための手段〉 この発明は上記した従来法の欠点を解消した窒化硼素の
合成法を得るべく検討の結果見出されたものである。
Means for Solving the Problems> The present invention was discovered as a result of studies aimed at obtaining a method for synthesizing boron nitride that eliminates the drawbacks of the conventional methods described above.

即ち、この発明は団lA原子含有ガス、窒素原子含有ガ
スをエキシマレーザ−CVD法にて分解、励起状態とし
たのち、高周波プラズマ中を通過せしめることにより3
00〜2000℃に加熱した基板表面に導入して立方晶
窒化1素を析出させることを特徴とする高硬度窒化硼素
の合成法を提供することを目的とするものである。
That is, this invention decomposes a group IA atom-containing gas and a nitrogen atom-containing gas by an excimer laser CVD method, brings them into an excited state, and then passes them through a high-frequency plasma.
The object of the present invention is to provide a method for synthesizing high-hardness boron nitride, which is characterized by introducing cubic mononitride onto the surface of a substrate heated to 00 to 2000°C to precipitate cubic nitride.

く作用〉 この発明においては、硼素原子含有ガスおよび窒素原子
含有ガスの混合ガスをエキシマレーザ−中を通過せしめ
ることにより分解、励起し、励起状の硼素原子および窒
素原子を生成せしめる。かつその励起状の硼素原子およ
び窒素原子をさらに高周波プラズマ中を通過させること
により、より高次のエネルギーを有し、加熱した基板上
において立方晶窒化i木を生成する。
Effect> In the present invention, a mixed gas of a boron atom-containing gas and a nitrogen atom-containing gas is passed through an excimer laser to decompose and excite it to generate excited boron atoms and nitrogen atoms. By further passing the excited boron atoms and nitrogen atoms through a high-frequency plasma, cubic nitride i-trees having higher energy are generated on the heated substrate.

このように、この発明においては成膜プロセスとしてエ
キシマレーザ−および高周波プラズマを使用する。
Thus, in the present invention, excimer laser and high frequency plasma are used in the film forming process.

上記において、エキシマレーザ−のみ、あるいは高周波
プラズマのみを成膜手段として用いた場合、原料源であ
る硼素原子と窒素原子を互いにs p 3結合を行なわ
せるには反応エネルギーが不足するため、非晶質窒化硼
素や六方晶窒化硼素を作成しやすい。
In the above, when only an excimer laser or only a high-frequency plasma is used as a film forming means, there is insufficient reaction energy to form sp 3 bonds between boron atoms and nitrogen atoms, which are the raw material sources, so the amorphous It is easy to create pure boron nitride and hexagonal boron nitride.

これに対して、エキシマレーザ−と高周波プラズマの2
つの成膜手段を組合せて利用した場合、硼素原子と窒素
原子が互いにs p 3結合を起こすのに充分な反応エ
ネルギーが得られるのである。
On the other hand, excimer laser and high frequency plasma
When these two film forming methods are used in combination, sufficient reaction energy can be obtained to cause sp 3 bonds between boron atoms and nitrogen atoms.

上記においてエキシマレーザ−出力は1〜100Wの範
囲が好適である。これは1Wより小さいと、成膜速度が
非常に小さくなり、かつ原料源を励起するのに不足し、
また100Wより大きいと、媒質ガスの寿命が短くなる
ため、出力減衰が顕著となり、安定した出力を得ること
はできない。
In the above, the excimer laser output is preferably in the range of 1 to 100W. If this is less than 1W, the film formation rate will be very low and it will be insufficient to excite the raw material source.
Moreover, if it is larger than 100 W, the lifetime of the medium gas will be shortened, resulting in significant output attenuation, making it impossible to obtain stable output.

次に高周波プラズマの出ツノは100w以上が好ましい
。これは100Wより小さいと、励起硼素原子と励起窒
素原子を互いにs p3結合を行なわせるにはエネルギ
ーが不足するためである。
Next, it is preferable that the output power of the high-frequency plasma is 100 W or more. This is because if the power is less than 100 W, there is insufficient energy to cause the excited boron atoms and the excited nitrogen atoms to form sp3 bonds with each other.

基板温度は300℃より低いと、励起状態の硼素原子と
窒素原子が互いにs p 3結合する熱エネルギーとし
て不足し、また2000℃より高くなると、成膜する窒
化硼素膜から窒素が抜は出てしまうため、300〜20
00℃が好ましい。
If the substrate temperature is lower than 300°C, there is insufficient thermal energy for the excited boron atoms and nitrogen atoms to bond with each other sp3, and if it is higher than 2000°C, nitrogen is extracted from the boron nitride film being formed. 300~20 to store
00°C is preferred.

この発明において、使用するエキシマレーザ−の媒質ガ
スとしてはArF、  ¥−rF、F2ガスなどが用い
られる。
In this invention, ArF, \-rF, F2 gas, etc. are used as the medium gas of the excimer laser.

硼素原子含有ガス中の硼素原子数および窒素原子含有ガ
ス中の窒素原子数の比はB/N= 0.1〜10の範囲
が好ましい。これはB/N<0.1の時は非晶質状の窒
化硼素の膜が析出されやすく、B/N〉100時は硼素
が過剰となり、非晶質状の硼素が形成されやすいためで
ある。
The ratio of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is preferably in the range of B/N=0.1 to 10. This is because when B/N<0.1, an amorphous boron nitride film tends to be deposited, and when B/N>100, boron becomes excessive and amorphous boron is likely to be formed. be.

硼素原子含有ガスとしてB2HいBCl3、BBr*、
B、N、H6などが挙げられ、窒素原子含有ガスとじて
はN2、N 83等が用いられる。
As a boron atom-containing gas, B2H, BCl3, BBr*,
Examples include B, N, H6, etc., and N2, N83, etc. are used as the nitrogen atom-containing gas.

なおこの発明で高硬度窒化硼素合成に際しては、第1図
あるいは第2図に概略図として示す製造装置を使用する
。そして第1図は基板をヒーターにて加熱するタイプで
あり、第2図は高周波プラズマ中に基板が位置している
のでプラズマ強度によって基板温度を調節できるタイプ
である。
In the present invention, when synthesizing high hardness boron nitride, a manufacturing apparatus shown schematically in FIG. 1 or 2 is used. FIG. 1 shows a type in which the substrate is heated with a heater, and FIG. 2 shows a type in which the substrate is placed in high-frequency plasma, so that the substrate temperature can be adjusted depending on the plasma intensity.

両図におりて、1は硼素原子含有ガス供給装置、2は窒
素原子含有ガス供給装置、3はエキシマレーザ−発生装
置、4は反応室、5はエキシマレーザ−ガイド、6はエ
キシマレーザ−17は基板、8は基板支持台、9はヒー
ター、10は高周波コイル、11は高周波電源、12は
コック、13は排気装置、14は排気口である。
In both figures, 1 is a boron atom-containing gas supply device, 2 is a nitrogen atom-containing gas supply device, 3 is an excimer laser generator, 4 is a reaction chamber, 5 is an excimer laser guide, and 6 is an excimer laser 17 1 is a substrate, 8 is a substrate support stand, 9 is a heater, 10 is a high frequency coil, 11 is a high frequency power source, 12 is a cock, 13 is an exhaust device, and 14 is an exhaust port.

〈実施例〉 以下実施例によりこの発明の詳細な説明する。<Example> The present invention will be explained in detail below with reference to Examples.

実施例1 第1図に示す製造装置を用い、シリコンウェハーを基板
として使用し、原料ガスとしてジボランおよび窒素を夫
々20cc/l1in、 10cc/m1ntした。
Example 1 A manufacturing apparatus shown in FIG. 1 was used, a silicon wafer was used as a substrate, and diborane and nitrogen were used as source gases at 20 cc/l1in and 10 cc/mlnt, respectively.

反応管内圧力は0. ITorrに調整し、基板温度を
900℃とした。エキシマレーザ−としてAr Fレー
ザーを使用し、レーザー出力は20wとした。高周波周
波数は13.56 M l−1z 、高周波出力は50
0Wとし、成膜時間は4時間とした。
The pressure inside the reaction tube is 0. It was adjusted to ITorr, and the substrate temperature was 900°C. An Ar F laser was used as the excimer laser, and the laser output was 20W. High frequency frequency is 13.56 M l-1z, high frequency output is 50
The power was 0W, and the film forming time was 4 hours.

成膜終了後、6μ而面度の窒化硼′iA膜が析出され、
X11回折で評価したところ、20 = 43.2度付
近に鋭いピークを検出し、立方晶窒化硼素であると固定
した。
After the film formation was completed, a 6 μm thick boron nitride film was deposited.
When evaluated by X11 diffraction, a sharp peak was detected near 20 = 43.2 degrees, and it was determined that it was cubic boron nitride.

実施例2 第2図に示す製造装置を用い、シリコンウェハーを基板
として使用し、原料ガスとして塩化硼素、窒素を夫々8
cc/ntn、 16cc/n1niした。
Example 2 Using the manufacturing apparatus shown in Fig. 2, a silicon wafer was used as the substrate, and boron chloride and nitrogen were each used as raw material gases.
cc/ntn, 16cc/n1ni.

反応管内圧力は0.3Torrに調整し、基板温度を1
100℃とした。エキシマレーザ−としてに、Fレーザ
ーを使用し、レーザー出力は30wとした。高周波周波
数は13.56 M HZ 、高周波出力は1kwとし
、成膜時間は7時間とした。
The pressure inside the reaction tube was adjusted to 0.3 Torr, and the substrate temperature was adjusted to 1.
The temperature was 100°C. An F laser was used as the excimer laser, and the laser output was 30W. The high frequency frequency was 13.56 MHz, the high frequency output was 1 kW, and the film forming time was 7 hours.

成膜終了後、12μm程度の窒化硼X膜が析出され、ラ
マン分析で評価したところ1310c、−1と1055
cJ+−1付近に鋭いピークを検出し、立方晶窒化硼素
と同定できた。
After the film formation was completed, a 12 μm thick boron nitride
A sharp peak was detected near cJ+-1, and it was identified as cubic boron nitride.

実施例3 第1図に示す製造装置を使用した。Example 3 A manufacturing apparatus shown in FIG. 1 was used.

モリブデンを基板として用い、原料ガスとしてフッ化硼
素、アンモニアを夫々10cc/1n、 30cc/1
n流した。反応管内圧力は0.2Torrに調整し、基
板温度を800℃とした。成膜手段としてエキシマレー
ザ−は使用せず、高周波プラズマのみとし、高周波周波
数13.56 M HZ 、高周波出力を400wとし
、成膜時間を5時間とした。
Using molybdenum as a substrate, boron fluoride and ammonia were used as source gases at 10cc/1n and 30cc/1, respectively.
n flowed. The pressure inside the reaction tube was adjusted to 0.2 Torr, and the substrate temperature was 800°C. Excimer laser was not used as a film forming means, only high frequency plasma was used, the high frequency frequency was 13.56 MHz, the high frequency output was 400 W, and the film forming time was 5 hours.

成膜修了後、5μ乳程度の窒化硼素膜が析出され、X8
回折で評価したところ、2θ= 26.7度および43
.2度付近に夫々広いピークを検出し、六方晶窒化lI
I素および立方晶窒化isの混在した薄膜であることが
認められた。
After the film formation is completed, a boron nitride film of about 5 μm is deposited, and
As evaluated by diffraction, 2θ = 26.7 degrees and 43
.. Broad peaks were detected around 2 degrees, and hexagonal nitride lI
It was confirmed that the film was a mixture of I element and cubic crystal nitride IS.

実施例4 上記実施例1〜3の条件を用いてWCC超超硬合金ある
TNMG432をチップとして用いて該チップ上にコー
ティングを行ない、切削テストを行なりた。
Example 4 Using the conditions of Examples 1 to 3 above, a WCC cemented carbide, TNMG432, was used as a chip, a coating was applied on the chip, and a cutting test was conducted.

比較としてコーティングを行なわないチップおよびCV
I)法にてT、Nコーティングを行なったチップの切削
テストをも行なった。
Chip and CV without coating for comparison
A cutting test was also conducted on chips coated with T and N using the method I).

コーティングは何れも被覆層厚3μmとした。All coatings had a coating layer thickness of 3 μm.

切削テスト条件は第1表に示した。また切削テストの結
果は第2表に示した。
The cutting test conditions are shown in Table 1. The results of the cutting test are shown in Table 2.

第    1    表 第   2   表 上表から立方晶窒化硼素を被覆層としてチップに使用し
た場合、この発明の実施例は全て耐摩耗性にすぐれてい
ることが認められた。
From Table 1 and Table 2, it was found that all the examples of the present invention had excellent wear resistance when cubic boron nitride was used as a coating layer in the chip.

また、この発明で得たCBNコートチップの鋼旋削にお
ける切削性能を切削速度と寿命時間との関係で調べたと
ころ第3図の結果を得、さらに鋳鉄切削における欠損ま
での切削時間と衝撃回数との関係を調べたところ第4図
の結果を得た。
Furthermore, the cutting performance of the CBN-coated insert obtained in this invention in steel turning was investigated in terms of the relationship between cutting speed and life time, and the results shown in Figure 3 were obtained. When we investigated the relationship, we obtained the results shown in Figure 4.

〈発明の効果〉 以上説明したように、この発明は耐熱衝撃性、熱伝導性
、硬度、耐摩耗性および高温における鉄族金属に対する
耐性にもすぐれる立方品窒化硼素膿を気相から析出する
新規な合成法であり、切削部材、耐摩耗部材および耐熱
部品の被覆膜として用いた場合、第2図および第3図に
示すように多大な効果を示すことが認められた。
<Effects of the Invention> As explained above, the present invention precipitates cubic boron nitride pus from the gas phase, which has excellent thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. This is a novel synthesis method, and when used as a coating film for cutting members, wear-resistant members, and heat-resistant parts, it has been found to have great effects as shown in FIGS. 2 and 3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の方法にて用いる製造装
置の概略説明図、第3図および第4図はこの発明の方法
で得られる立方晶窒化l11素を被覆膜としたチップの
切削性能を示す図表である。 1・・・硼素原子含有ガス供給装置 2・・・窒素原子含有ガス供給装置 3・・・エキシマレーザ−発生装置 4・・・反応室      6・・・エキシマレーザ−
7・・・基板       9・・・ヒーター10・・
・高周波コイル   11・・・高周波電源出願人代理
人  弁理士  和 1)昭第1図 第3図 第2図 第4@
Figures 1 and 2 are schematic explanatory diagrams of the manufacturing equipment used in the method of the present invention, and Figures 3 and 4 show chips coated with cubic l11 element nitride obtained by the method of the present invention. It is a chart showing cutting performance. 1... Boron atom-containing gas supply device 2... Nitrogen atom-containing gas supply device 3... Excimer laser generator 4... Reaction chamber 6... Excimer laser
7... Board 9... Heater 10...
・High frequency coil 11... High frequency power supply applicant's agent Patent attorney Kazu 1) Showa 1, 3, 2, 4 @

Claims (2)

【特許請求の範囲】[Claims] (1)硼素原子含有ガスおよび窒素原子含有ガスをエキ
シマレーザーCVD法にて分解、励起状態としたのち、
高周波プラズマ中を通過せしめることにより300〜2
000℃に加熱した基板表面に導入し、立方晶窒化硼素
を析出させることを特徴とする高硬度窒化硼素の合成法
(1) After decomposing a boron atom-containing gas and a nitrogen atom-containing gas by excimer laser CVD method and bringing them into an excited state,
300~2 by passing through high frequency plasma.
A method for synthesizing high-hardness boron nitride, which is characterized by introducing cubic boron nitride onto the surface of a substrate heated to 000°C to precipitate cubic boron nitride.
(2)硼素原子含有ガス中の硼素原子数と窒素原子含有
ガス中の窒素原子数との比較をB/N=0.1〜10の
範囲として反応ガスに水素を用いない特許請求の範囲第
1項記載の高硬度窒化硼素の合成法。
(2) A claim in which the number of boron atoms in the boron atom-containing gas and the number of nitrogen atoms in the nitrogen atom-containing gas are in the range of B/N = 0.1 to 10 and hydrogen is not used as the reaction gas. A method for synthesizing high hardness boron nitride according to item 1.
JP61279360A 1986-11-22 1986-11-22 High hardness boron nitride synthesis method Expired - Lifetime JPH0819523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279360A JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279360A JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Publications (2)

Publication Number Publication Date
JPS63134662A true JPS63134662A (en) 1988-06-07
JPH0819523B2 JPH0819523B2 (en) 1996-02-28

Family

ID=17610080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279360A Expired - Lifetime JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Country Status (1)

Country Link
JP (1) JPH0819523B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263549A (en) * 1988-08-27 1990-03-02 Agency Of Ind Science & Technol Process and apparatus for plasma reaction
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063372A (en) * 1983-09-19 1985-04-11 Agency Of Ind Science & Technol Manufacture of thin boron nitride film of high hardness
JPS6184379A (en) * 1984-09-29 1986-04-28 Kyocera Corp Production of high-hardness boron nitride film
JPS61224318A (en) * 1985-03-29 1986-10-06 Hitachi Ltd Device and method for formation of vapor-phase thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063372A (en) * 1983-09-19 1985-04-11 Agency Of Ind Science & Technol Manufacture of thin boron nitride film of high hardness
JPS6184379A (en) * 1984-09-29 1986-04-28 Kyocera Corp Production of high-hardness boron nitride film
JPS61224318A (en) * 1985-03-29 1986-10-06 Hitachi Ltd Device and method for formation of vapor-phase thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263549A (en) * 1988-08-27 1990-03-02 Agency Of Ind Science & Technol Process and apparatus for plasma reaction
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack

Also Published As

Publication number Publication date
JPH0819523B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
JPS5930709A (en) Method for synthesizing carbon film and carbon granule in vapor phase
JPH04958B2 (en)
JPS62138395A (en) Preparation of diamond film
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS58156594A (en) Preparation of hard coating film
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS6054996A (en) Synthesis of diamond
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS60231498A (en) Synthesizing method of diamond under low pressure
JP2840750B2 (en) Coating method
JPS6369973A (en) Production of cubic boron nitride film
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH0224005A (en) Diamond coated tool and manufacture thereof
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPS63297561A (en) Method for synthesizing high-hardness boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH0814023B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH049472A (en) Method for synthesizing cubic boron nitride