JPS63199872A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS63199872A
JPS63199872A JP2832187A JP2832187A JPS63199872A JP S63199872 A JPS63199872 A JP S63199872A JP 2832187 A JP2832187 A JP 2832187A JP 2832187 A JP2832187 A JP 2832187A JP S63199872 A JPS63199872 A JP S63199872A
Authority
JP
Japan
Prior art keywords
boron nitride
gas
containing gas
boron
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2832187A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2832187A priority Critical patent/JPS63199872A/en
Publication of JPS63199872A publication Critical patent/JPS63199872A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit high hardness cubic boron nitride from a vapor phase by leading a preheated gaseous mixture contg. B and N to the surface of a substrate after passing through DC discharge. CONSTITUTION:A gaseous mixture of a B-contg. gas with an N-contg. gas is fed to a reaction chamber 6 and excited by preheating with a thermoelectron radiating material 7. The excited gaseous mixture is passed through the space between DC discharge electrodes 10, 10' to form cubic boron nitride on a heated substrate 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非常に高硬度を有するのみならず熱伝導率にと
み、化学的に安定で、加えてダイヤモンドとは異なり鉄
族金属に対する耐性にも優れることから、切削工具、耐
摩工具などの工具材料さらにはヒートシンクなどの電子
材料として用いられている立方晶窒化ホウ素を、気相よ
ジ基材表面に析出させる方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention not only has extremely high hardness, but also has excellent thermal conductivity, is chemically stable, and, unlike diamond, has resistance to iron group metals. The present invention relates to a method for depositing cubic boron nitride, which is used as tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks, on the surface of a dielectric substrate in a vapor phase because of its excellent properties.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が知られていた。
Conventionally, methods for producing cubic boron nitride have been known, such as the following methods (1) to (2).

■ 特公昭do−181262号公報に示されるように
、ホウ素を含有する蒸発源から基体上にホウ素分を蒸着
させると共に、少なくとも窒素を含めイオン種を発生せ
しめるイオン発生源から基体上に該イオンfik照射し
て、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の
製造方法。
As shown in Japanese Patent Publication No. 181262, a boron component is evaporated onto a substrate from an evaporation source containing boron, and the ion fik is deposited onto the substrate from an ion source that generates ionic species containing at least nitrogen. A method for producing a boron nitride film, the method comprising: irradiating the substrate to produce boron nitride on the substrate.

■ 「ジャーナル オプ マテリアル サイエンス レ
ターズ(Journal or matsrlalsc
lanoe 1etters  )、 、a(19a5
)51  N54頁」に示されるように、H2+N2プ
ラズマによるボロンの化学輸送を行うことによυ、立方
晶窒化ホウ素を生成する方法。
■ “Journal of Materials Science Letters”
lanoe 1etters), , a(19a5
) 51, page N54, a method of producing cubic boron nitride by chemically transporting boron using H2+N2 plasma.

■ 〔第9回イオン工学(Ion 8ouroa Io
nAgilated Technology )シンポ
ジウム(1985年、東京)議事録、「イオン源とイオ
ンを基礎とした応用技術」〕に示されるように、HOD
ガンでボロンを蒸発させながら、ホローアノードからN
2  をイオン化して基板に放射し、基板には高周波を
印加して、セルフバイアス効果を押洗せて立方晶窒化ホ
ウ素を生成する方法。
■ [9th Ion Engineering (Ion 8ouroa Io
As shown in the proceedings of the nAgilated Technology Symposium (Tokyo, 1985), ``Ion Sources and Ion-Based Application Technologies'', HOD
N from the hollow anode while vaporizing the boron with a gun.
2 is ionized and radiated to the substrate, and a high frequency is applied to the substrate to eliminate the self-bias effect and generate cubic boron nitride.

■ 〔漏波;「真空」第28巻第7号(1985年)2
9〜34頁〕に示されるように、ホウ素原子含有固体に
電子ビーム(ES)を当てることによシホウ素を蒸発さ
せて、それに窒素原子含有ガスを流しこみ、ホウ素及び
窒素を同時にイオン化することにより、基板表面に立方
晶窒化ホウ素を生成する方法。
■ [Leakage; “Vacuum” Vol. 28 No. 7 (1985) 2
As shown in [pages 9 to 34], boron is evaporated by applying an electron beam (ES) to a solid containing boron atoms, and a gas containing nitrogen atoms is poured into it to simultaneously ionize boron and nitrogen. A method of producing cubic boron nitride on the substrate surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記■の方法はイオンビームを発生する
装置及びその集束装置が高価であることが欠点である。
However, method (1) has a disadvantage that the ion beam generating device and its focusing device are expensive.

前記■の方法は、高出力のR?プラズマ金成膜に利用し
ているために、反応系からの不純物が混入しやすい。
The above method (■) uses high-output R? Since it is used for plasma gold deposition, impurities from the reaction system are likely to mix in.

前記■の方法は、■の方法と同じくイオンビームを発生
する装置及びその集束装置が高価であることと、不活比
ガスの原子が析出した立方晶窒化ホウ素に取り込まれる
、という欠点を有する。
The method (2) has the same disadvantages as the method (2) in that the ion beam generating device and its focusing device are expensive, and the atoms of the inert gas are incorporated into the precipitated cubic boron nitride.

前記■の方法は、ホウ素が比較的低融点であることから
ホウ素が突沸しやすく、そのためKBによって膜厚制御
をすることが困難である。
In the method (2) above, since boron has a relatively low melting point, boron tends to cause bumping, and therefore it is difficult to control the film thickness using KB.

以上のように■〜■のいずれの方法も種々の欠点を有し
ている。
As mentioned above, all methods (1) to (2) have various drawbacks.

本発明はこのような現状に鑑みてなきれたもので、耐熱
衝撃性、熱伝導比、硬度、耐摩耗性及び高温での鉄族金
属に対する耐性に優れた立方晶窒化ホウ素を気相から析
出させることのできる新規な合成法を提案することを目
的とするものである。
The present invention was developed in view of the current situation, and is a method of depositing cubic boron nitride from the gas phase, which has excellent thermal shock resistance, thermal conductivity ratio, hardness, wear resistance, and resistance to iron group metals at high temperatures. The purpose of this study is to propose a new synthetic method that can

〔問題点を解決する念めの手段〕[A precautionary measure to resolve the problem]

本発明者らは、高強度な立方晶窒化ホウ素を合成するに
あたり、ホウ素及び窒素が互にsp5結合を生じうるに
充分な励起状態となるエネルギーを与える方法について
鋭意研究の結果、例えば熱電子放射材等による加熱と直
流プラズマ放電という2つの励起手段を併用する方法が
好適であることを見出した。
In synthesizing high-strength cubic boron nitride, the present inventors have conducted extensive research into ways to provide energy to bring boron and nitrogen into an excited state sufficient to form sp5 bonds with each other. It has been found that a method that uses two excitation means together, heating with a material or the like and direct current plasma discharge, is suitable.

本発明は化学気相析出法による窒化ホウ素の合成法にお
いて、ホウ素原子含有ガスおよび窒素原子含有ガスから
なる混合ガスを、熱電子放射材によって予備加熱した後
圧、直流放電中を通過せしめ、次に加熱された基板表面
に導入して熱分解及び反応させ、それにより高硬度窒化
ホウ素を析出させることを特徴とする高硬度窒化ホウ素
の合成法である。
The present invention relates to a method for synthesizing boron nitride by chemical vapor deposition, in which a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is preheated with a thermionic emitter and then passed through a pressure and direct current discharge. This is a method for synthesizing high-hardness boron nitride, which is characterized in that it is introduced onto the surface of a heated substrate to cause thermal decomposition and reaction, thereby precipitating high-hardness boron nitride.

本発明においては、ホウ素原子含有ガス中のホウ素原子
数と窒素原子含有ガス中の窒素原子数との比a / N
を0.0 CI O1−10000の範囲として行なう
こと、また、予備加熱を温度10000以上の熱電子放
射材にて行なうことが、特に好結果を得られるので好ま
しい。
In the present invention, the ratio a/N of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas
It is preferable to carry out the heating in the range of 0.0 CI O1 to 10,000, and to carry out the preheating with a thermionic emitting material having a temperature of 10,000 or more, since particularly good results can be obtained.

以下図面を参照して説明する。第1図は本発明の実施態
様を示す概略の断面図であって、ホウ素原子含有ガス供
給装置1及び窒素原子含有ガス供給装置2から供給され
る、ホウ素原子含有ガスと窒素原子含有ガスは混合され
て混合ガスとして反応室6に供給される。この混合ガス
にはキャリヤガス供給装置3からのキャリヤガスを混合
しておいてもよい。この混合ガスをまず加熱された熱電
子放射材7を通過させることによって、該混合ガス中に
励起状態のホウ素原子含有ガス及び窒素原子含有ガスを
生成せしめる。このようになった混合ガスを次に直流放
電電極10及び10′の中を通過させることにより、該
混合ガスは分解励起し、ヒーター8により加熱した基板
9の上において互いにSp  結合が生じ、該基板表面
に立方晶窒化ホウ素を生成することができる。なお第1
図において4はフィラメント電源、5はヒータ電源、1
1は直流電源、12はコック、13は排気装置、14は
排気口をあられす。予備加熱に用いる熱電子放射材の温
度は、原料ガスを励起する為、1ooot:’以上であ
ることが好ましい。上限は材料の高温耐性の点から25
00C程度までできる。熱電子放射材としては、高温に
耐えられるタングステンフィラメント、トリウム含有タ
ングステンフィラメント、タンタルフィラメント等が挙
げられる。
This will be explained below with reference to the drawings. FIG. 1 is a schematic sectional view showing an embodiment of the present invention, in which the boron atom-containing gas and the nitrogen atom-containing gas supplied from the boron atom-containing gas supply device 1 and the nitrogen atom-containing gas supply device 2 are mixed. The mixed gas is supplied to the reaction chamber 6 as a mixed gas. A carrier gas from the carrier gas supply device 3 may be mixed with this mixed gas. By first passing this mixed gas through the heated thermionic emitter 7, excited boron atom-containing gas and nitrogen atom-containing gas are generated in the mixed gas. By passing the mixed gas thus formed through the DC discharge electrodes 10 and 10', the mixed gas is decomposed and excited, and Sp bonds are generated with each other on the substrate 9 heated by the heater 8. Cubic boron nitride can be produced on the substrate surface. Note that the first
In the figure, 4 is a filament power supply, 5 is a heater power supply, 1
1 is a DC power supply, 12 is a cock, 13 is an exhaust device, and 14 is an exhaust port. The temperature of the thermionic emission material used for preheating is preferably 1ooot:' or more in order to excite the source gas. The upper limit is 25 due to the high temperature resistance of the material.
Can be used up to about 00C. Examples of thermionic emitting materials include tungsten filaments, thorium-containing tungsten filaments, and tantalum filaments that can withstand high temperatures.

本発明においては、直流プラズマ放電全成膜手段として
使用しているが、これは簡便に放電が発生し、高周波や
マイクロ波のように入力波と反射波を合一させる必要が
なく、放電が消えることもない点で有利だからである。
In the present invention, direct current plasma discharge is used as a total film forming means, but this method easily generates discharge and does not require combining the input wave and reflected wave unlike high frequency or microwave. This is because it has the advantage of not disappearing.

直流放電出力は100W以上600W以下であることが
好ましい。出力が100W未満では、原料ガスであるホ
ウ素原子含有ガス及び窒素原子含有ガスが分解励起する
エネルギーに不足するので好ましくない。
The DC discharge output is preferably 100W or more and 600W or less. If the output is less than 100 W, it is not preferable because there is insufficient energy to decompose and excite the boron atom-containing gas and the nitrogen atom-containing gas, which are the raw material gases.

本発明においては原料ガスであるホウ素原子含有ガス中
のホウ素原子数と窒素原子含有ガス中の窒素原子数との
比B / Nは0.0001〜10000の範囲である
ことが好ましい。B/Nが0.0001未満では、非晶
質状の窒化ホウ素が析出しやす<、B/Nが10000
を越えるとホウ素が過剰となり、非晶質状のホウ素が形
成されやすい。更にホウ素原子含有ガス及び窒素含有ガ
スのみでなく、水素ガスやアルゴンガス等全キャリアガ
スとして、使用してもよい。
In the present invention, the ratio B/N of the number of boron atoms in the boron atom-containing gas and the number of nitrogen atoms in the nitrogen atom-containing gas, which is the raw material gas, is preferably in the range of 0.0001 to 10,000. When B/N is less than 0.0001, amorphous boron nitride is likely to precipitate <, B/N is 10000
If this value is exceeded, boron becomes excessive and amorphous boron is likely to be formed. Furthermore, not only a boron atom-containing gas and a nitrogen-containing gas, but also hydrogen gas, argon gas, and the like may be used as all carrier gases.

水素ガスをキャリヤガスとして用いると、励起状態又は
原子状態のHは、非立方晶窒化ホウ素を成長させる原因
となるSp  やsp2混成軌道を持った核と反応して
、これらをSp  結合に変換して立方晶窒化ホウ素の
生成を促進する、或いは水素化ホウ素や窒化水素を生成
して高硬度窒化ホウ素生成における清浄化の役目を果す
When hydrogen gas is used as a carrier gas, H in the excited or atomic state reacts with nuclei with Sp and sp2 hybrid orbitals, which are responsible for the growth of non-cubic boron nitride, converting them into Sp bonds. It promotes the production of cubic boron nitride, or produces boron hydride or hydrogen nitride, and plays a cleaning role in the production of high hardness boron nitride.

反応系圧力は、直流放電安定を維持する為、0.001
〜400 Torr  の範囲が好ましい。
The reaction system pressure is 0.001 to maintain DC discharge stability.
A range of ˜400 Torr is preferred.

本発明に使用する原料ガスとして、例えばB2H6,B
C/、、BBr、、BF3  等が挙げられ、窒素原子
含有ガスとして例えばN2. NH3等が挙げられる。
Examples of raw material gases used in the present invention include B2H6, B
Examples of the nitrogen atom-containing gas include N2. Examples include NH3.

本発明において基板の温度は300〜2000Cに調整
しておくことが好ましい。
In the present invention, the temperature of the substrate is preferably adjusted to 300 to 2000C.

〔実施例〕〔Example〕

以下に述べる実施例1.2及び比較例1には第1図の構
成の装置を用いて行った。
Examples 1.2 and Comparative Example 1 described below were carried out using the apparatus having the configuration shown in FIG.

実施例1 基板としてC−SZ  基板を用いて、本発明によシ窒
化ホウ素膜を合成し被覆した。原料ガスとしてB2H6
,N2.N2’it:それぞれ10 cc/ mln 
Example 1 Using a C-SZ substrate as a substrate, a boron nitride film was synthesized and coated according to the present invention. B2H6 as raw material gas
, N2. N2'it: 10 cc/mln each
.

10 cc/ mzn 、 100 cc/ mln流
して、反応管内圧力をI Torr  に調整し、直流
グラズマ放電出力500W基板温度1000G、予備加
熱のタングステンフィラメント温度2000Cの条件に
て4時間反応させた。その結果該基板表面に厚さ8μm
 程度の窒化ホウ素膜が析出した。
A flow rate of 10 cc/mzn and 100 cc/ml was adjusted to adjust the pressure inside the reaction tube to I Torr, and the reaction was carried out for 4 hours under the conditions of a DC glazma discharge output of 500 W, a substrate temperature of 1000 G, and a preheated tungsten filament temperature of 2000 C. As a result, a thickness of 8 μm was formed on the surface of the substrate.
A certain amount of boron nitride film was deposited.

この膜の評価手段としてX線回折を使用した結果、21
F=43.2°付近に鋭いピークを検出し、立方晶窒化
ホウ素と同定できた。これにより本発明方法により、立
方晶窒化ホウ素をうまく合成できることが証明された。
As a result of using X-ray diffraction as a means of evaluating this film, 21
A sharp peak was detected near F=43.2°, and it was identified as cubic boron nitride. This proves that cubic boron nitride can be successfully synthesized by the method of the present invention.

実施例2 基板として石英板を用いて、本発明により窒化ホウ素膜
を合成・被覆した。原料ガスとしてBBr3.NH5,
N2をそれぞれ8 cc / m1n 、 20cc/
mxn 、 50 cc / m1n流した。反応管内
圧力をTOrr  K調整し、直流プラズマ放電出力6
00W、基板温度900C,タンタルフィラメント温度
2300Cの条件にて3時間反応させた。
Example 2 Using a quartz plate as a substrate, a boron nitride film was synthesized and coated according to the present invention. BBr3. NH5,
N2 at 8 cc/m1n and 20 cc/m1n, respectively
mxn, 50 cc/m1n flowed. The pressure inside the reaction tube was adjusted to TOrr K, and the DC plasma discharge output was 6.
The reaction was carried out for 3 hours under the conditions of 00W, substrate temperature of 900C, and tantalum filament temperature of 2300C.

その結果、基板表面に厚さ7μm 8度の窒化ホウ素膜
が析出した。
As a result, a boron nitride film with a thickness of 7 μm and a thickness of 8 degrees was deposited on the surface of the substrate.

この膜をラマン分析法で評価した結果、1055Crn
−1及び1310 ff1−’付近に鋭いピークを検出
し、立方晶窒化ホウ素と同定できた。
As a result of evaluating this film by Raman analysis, it was found that 1055Cr
Sharp peaks were detected near -1 and 1310 ff1-', and it was identified as cubic boron nitride.

比較例1 基板としてO−31基板を用いて、原料ガスの直流プラ
ズマ放電中の通過を行わない以外は本発明の方法に準じ
て行ない、窒化ホウ素膜被覆を行った。原料ガスとして
B2H6,N2.N2  をそれぞれ15cc/ m:
cn 、 10cc/m1n 、 100cc/m1n
流した。反応管内圧力を5 Torr  に調整し、タ
ンタルフィラメント温度2200Cの条件にて5時間反
応させた。その結果、基板表面に厚さ6μm 程度の窒
化ホウ素膜が析出した。
Comparative Example 1 An O-31 substrate was used as the substrate, and a boron nitride film coating was performed according to the method of the present invention except that the raw material gas was not passed through the DC plasma discharge. B2H6, N2. 15cc/m of N2 each:
cn, 10cc/m1n, 100cc/m1n
It flowed. The pressure inside the reaction tube was adjusted to 5 Torr, and the reaction was carried out for 5 hours at a tantalum filament temperature of 2200C. As a result, a boron nitride film with a thickness of about 6 μm was deposited on the surface of the substrate.

この膜をX線回析で評価した結果、2a=26.7°及
び45.2°付近にピークを検出し、立方晶窒化ホウ素
及び六方晶窒化ホウ素が混在していると同定できた。
As a result of evaluating this film by X-ray diffraction, peaks were detected near 2a=26.7° and 45.2°, and it was identified that cubic boron nitride and hexagonal boron nitride were present together.

性能評価試験1 以上の実施例1.2及び比較例10条件で、いずれも窒
化ホウ素膜を合成でき念ので、これらの条件を用いて超
硬合金チップ製品にコーティングを行い、これにより得
られた被覆チップについて切削テストを行った。比較の
なめコーティングを行わないままのチップ及びOVD法
を使用してTICfコーティングしたチップのテストも
合せて行った。使用したチップは5NGN120408
(Wc基超超硬合金、被覆層の膜厚は2μm と統一し
之。切削テスト条件は次に示すとおシである。
Performance Evaluation Test 1 Since boron nitride films could not be synthesized under the above conditions of Example 1.2 and Comparative Example 10, a cemented carbide chip product was coated using these conditions, and the resulting Cutting tests were conducted on the coated chips. Comparative tests were also conducted on chips without lick coating and chips coated with TICf using the OVD method. The chip used is 5NGN120408
(Wc-based cemented carbide, the thickness of the coating layer is uniformly 2 μm. The cutting test conditions are as shown below.

切削速度: 300 m / m1n 送   、j) :  0.2 tm / ray切シ
込み:o、3111 被剛材:5KD11 切削テストの結果は表1に示すとおりであって、このデ
ータから、窒化ホウ素被覆チップ(A1〜屋3)は、無
被覆のもの(A5)やOVD法によるもの(扁4)に比
較して優れているが、特に六方晶窒化ホウ素の混在しな
い本発明の立方晶窒化ホウ素を被覆層とするチップ(A
I及び扁2)は、きわめて耐摩耗性に優れていることが
わかる。
Cutting speed: 300 m/m1n feed, j): 0.2 tm/ray Depth of cut: o, 3111 Rigid material: 5KD11 The results of the cutting test are as shown in Table 1, and from this data, boron nitride The coated chips (A1 to Ya3) are superior to the uncoated chips (A5) and those made by the OVD method (Ban 4), but especially the cubic boron nitride of the present invention that does not contain hexagonal boron nitride. Chip with coating layer (A
It can be seen that Samples I and 2) have extremely excellent wear resistance.

表  1 注1)OBN:立方晶窒化ホウ素 注2)hBN:六方晶窒化ホウ素 性能評価試験2(鋳鉄旋削における切削性能)TNMG
322(球状黒鉛鋳鉄)チップに、本発明により立方晶
窒化ホウ素膜を3μm 被覆したもの(Al、cvn法
によ、り AI!203IIr:3ttm 被覆したも
の(Bl、被覆せずチップそのままのもの(0)の3者
について、被剛材FOD50?切削して、切削速度(m
 / mln )と寿命時間(m1n)の関係を調べた
。結果は第2図のグラフに示すとおりであって、本発明
による被槍が非常に優れていることがわかる。
Table 1 Note 1) OBN: Cubic boron nitride Note 2) hBN: Hexagonal boron nitride Performance evaluation test 2 (cutting performance in cast iron turning) TNMG
322 (spheroidal graphite cast iron) chip coated with a cubic boron nitride film of 3 μm according to the present invention (Al, by CVN method). 0), cut the rigid material FOD50? and cut the cutting speed (m
/mln) and lifetime time (mln) was investigated. The results are as shown in the graph of FIG. 2, and it can be seen that the coating according to the present invention is very superior.

評価試験3(鋼旋削における切削性能)TNMG331
チップに本発明にょシ立方晶窒化ホウ素膜を被覆したも
の(DJ、cvp法によpTIN IIを被覆したもの
(E)、被覆せずチップそのままのもの(Flの3者に
ついて、被削材50M435(クロムモリブデン鋼)、
切削速度250m/mzn 、送り0.3w/rev、
切り込み0.21の条件で切削時間と逃げ面摩耗量(朋
)の関係を調べた。結果は第5図に示すとおシで本発明
の(D)が、やはシ非常に優れていることが明らかであ
る。
Evaluation test 3 (cutting performance in steel turning) TNMG331
The chips were coated with the cubic boron nitride film of the present invention (DJ, those coated with pTIN II by the cvp method (E), and the chips as they were without coating (Fl), the work material was 50M435. (chromium molybdenum steel),
Cutting speed 250m/mzn, feed 0.3w/rev,
The relationship between cutting time and flank wear amount was investigated under the condition of a depth of cut of 0.21. The results are shown in FIG. 5, and it is clear that (D) of the present invention is extremely superior.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、耐熱衝撃性、熱伝導性
、硬度、耐摩耗性及び高温での鉄族金属に対する耐性に
も優れる立方晶窒化ホウ素を気相から析出できる新規な
方法である。
As explained above, the present invention is a novel method for precipitating cubic boron nitride from the gas phase, which has excellent thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を概略説明する断面図である
。 第2図は本発明品と比較品の鋳鉄旋削における切削性能
を切削速度(m / mln )と寿命時間(min)
の関係で示したグラフ、 第3図は本発明品と比較品の鋼旋削における耐摩耗性を
、時間(m1n)と逃げ面摩耗量(rn )との関係で
示したグラフである。
FIG. 1 is a sectional view schematically explaining an embodiment of the present invention. Figure 2 shows the cutting performance of the inventive product and comparative product in cast iron turning in terms of cutting speed (m/mln) and life time (min).
Figure 3 is a graph showing the wear resistance in steel turning of the product of the present invention and the comparative product in terms of the relationship between time (m1n) and flank wear amount (rn).

Claims (3)

【特許請求の範囲】[Claims] (1)化学気相析出法による窒化ホウ素の合成法におい
て、ホウ素原子含有ガスおよび窒素原子含有ガスからな
る混合ガスを、熱電子放射材によつて予備加熱した後に
、直流放電中を通過せしめ、次に加熱された基板表面に
導入して熱分解及び反応させ、それにより高硬度窒化ホ
ウ素を析出させることを特徴とする高硬度窒化ホウ素の
合成法。
(1) In a method for synthesizing boron nitride by chemical vapor deposition, a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is preheated with a thermionic emitter and then passed through a DC discharge, A method for synthesizing high-hardness boron nitride, which is characterized in that the high-hardness boron nitride is then introduced onto the surface of a heated substrate to cause thermal decomposition and reaction, thereby precipitating high-hardness boron nitride.
(2)ホウ素原子含有ガス中のホウ素原子と、窒素原子
含有ガス中の窒素原子との原子比B/Nを、0.000
1〜10000の範囲にて行なう特許請求の範囲第(1
)項に記載される高硬度窒化ホウ素の合成法。
(2) The atomic ratio B/N of boron atoms in the boron atom-containing gas and nitrogen atoms in the nitrogen atom-containing gas is 0.000.
Claim No. 1 to 10,000
Synthesis method of high hardness boron nitride described in section ).
(3)熱電子放射材の温度を1000℃以上にして行な
う特許請求の範囲第(1)項に記載される高硬度窒化ホ
ウ素の合成法。
(3) A method for synthesizing high-hardness boron nitride according to claim (1), which is carried out at a temperature of the thermionic emitting material of 1000° C. or higher.
JP2832187A 1987-02-12 1987-02-12 Method for synthesizing high hardness boron nitride Pending JPS63199872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2832187A JPS63199872A (en) 1987-02-12 1987-02-12 Method for synthesizing high hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2832187A JPS63199872A (en) 1987-02-12 1987-02-12 Method for synthesizing high hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS63199872A true JPS63199872A (en) 1988-08-18

Family

ID=12245348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2832187A Pending JPS63199872A (en) 1987-02-12 1987-02-12 Method for synthesizing high hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS63199872A (en)

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
JPH0259862B2 (en)
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPS6369973A (en) Production of cubic boron nitride film
JPH02173264A (en) High-hardness multilayered film
JPH01119673A (en) Method for synthesizing high-hardness boron nitride
JPH0819523B2 (en) High hardness boron nitride synthesis method
JPH01104775A (en) Method for synthesizing high-hardness boron nitride
JPS62260063A (en) Method for synthesizing high hardness boron nitride
JPS62280364A (en) Method for synthesizing hard boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS5918475B2 (en) coated high speed steel
JPS62205277A (en) Method for synthesizing high-hardness boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
KR910001360B1 (en) Method for synthesizing diamondbulk material
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPH0667797B2 (en) Diamond synthesis method