JPS62260063A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS62260063A
JPS62260063A JP10302586A JP10302586A JPS62260063A JP S62260063 A JPS62260063 A JP S62260063A JP 10302586 A JP10302586 A JP 10302586A JP 10302586 A JP10302586 A JP 10302586A JP S62260063 A JPS62260063 A JP S62260063A
Authority
JP
Japan
Prior art keywords
boron nitride
heated
substrate
gas
gas contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302586A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10302586A priority Critical patent/JPS62260063A/en
Publication of JPS62260063A publication Critical patent/JPS62260063A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain chemically stable BN having high hardness and satisfactory heat conductivity by heating a gaseous mixture of a gas contg. B with a gas contg. N with a heated thermoelectron emitting material and by leading the mixture to the surface of a heated substrate so as to bring the mixture into thermal decomposition and reaction. CONSTITUTION:A gaseous mixture of a gas contg. B such as B2H6 or BCl3 with a gas contg. N such as N2 or NH3 is heated with a thermoelectron emitting material heated to >=1,000 deg.C to produce an excited gas contg. B, an excited gas contg. N and atomic H. The excited gases are led to the surface of a substrate heated to 300-2,000 deg.C. The gases are thermally decomposed and the resulting free B and N are brought into SP<3> bond to each other to produce cubic BN. Thus, cubic BN having superior thermal shock resistance, heat conductivity, hardness and wear resistance and also having superior resistance to iron group metals at high temp. can be deposited from the vapor phase under variable synthesis conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常に高硬度を有するのみならず、熱伝導率
にとみ、化学的に安定で、加えてダイヤモンドとは異な
シ、鉄族金属に対する耐性にも優れることから、切削工
具、耐摩工具などの工具材料、さらにはヒートシンクな
どの電子材料として用いられている立方晶窒化ホウ素を
、気相より、基材表面に析出させる方法に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention not only has extremely high hardness, but also has high thermal conductivity and is chemically stable. This relates to a method for depositing cubic boron nitride, which has excellent resistance to metals and is used as tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks, on the surface of substrates from the gas phase. It is.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が知られていた。
Conventionally, methods for producing cubic boron nitride have been known, such as the following methods (1) to (2).

■ 特公昭60−181262号公報に示されるように
、ホウ素を含有する蒸発源から基体上にホウ素分を蒸着
させると共に、少なくとも窒素を含むイオン棟を発生せ
しめるイオン発生源から基体上に該イオン種分照射して
、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の製
造方法。
■ As shown in Japanese Patent Publication No. 60-181262, a boron component is evaporated onto a substrate from an evaporation source containing boron, and the ion species are deposited onto the substrate from an ion source that generates an ion ridge containing at least nitrogen. A method for producing a boron nitride film, which comprises irradiating the substrate for 30 minutes to produce boron nitride on the substrate.

■ ジャーナル オブ マテリアルス サイエンス レ
ターズ(Journal of materialss
cience 1etters )、4(1985)5
1〜54頁、に示されるように、H!+Ntプラズマに
よるボロンの化学輸送を行うことによシ、立方晶窒化ホ
ウ素を生成する方法。
■ Journal of Materials Science Letters
science 1etters), 4 (1985) 5
As shown on pages 1-54, H! A method for producing cubic boron nitride by chemically transporting boron using +Nt plasma.

■ 第9回イオン工学シンポジウム(1985年、東京
)議事録、[イオン源とイオンを基礎とした応用技術]
、に示されるように、HCDガンでボロンを蒸発させな
がら、°ホローアノードからN、をイオン化して基板に
放射し、基板には高周波を印加して、セルフバイアス効
果を持たせて立方晶窒化ホウ素を生成する方法。
■ Proceedings of the 9th Ion Engineering Symposium (1985, Tokyo), [Ion sources and ion-based applied technologies]
As shown in , while boron is evaporated with an HCD gun, N is ionized from the hollow anode and radiated to the substrate, and a high frequency is applied to the substrate to create a self-biasing effect to form cubic nitridation. How to produce boron.

■ (離液;「真空」第28巻第27号(1985年)
29〜54頁〕に示すように、ホウ素原子含有固体に電
子ビーム(EB)を当てることにより、ホウ素を蒸発さ
せ、それに窒素原子含有ガスを流しこみ、ホウ素及び窒
素を同時にイオン化することによシ、基板表面に立方晶
窒化ホウ素を生成する方法。
■ (Syneresis; “Vacuum” Vol. 28, No. 27 (1985)
As shown in pages 29 to 54, boron is evaporated by applying an electron beam (EB) to a solid containing boron atoms, and a gas containing nitrogen atoms is poured into it to simultaneously ionize boron and nitrogen. , a method for producing cubic boron nitride on a substrate surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記■の方法はイオンビームを発生する
装置及びその集束装置が高価であることが欠点、でちる
However, the method (2) has the drawback that the ion beam generating device and its focusing device are expensive.

前記■の方法は、高出力のRFプラズマを成膜に利用し
ていることによシ、反応系からの不純物が混入しやすい
Since the method (2) uses high-power RF plasma for film formation, impurities from the reaction system are likely to be mixed in.

前記■の方法は、■の方法と同じく、イオンビームを発
生する装置及びその集束装置が高価であることと、不活
性ガスの原子が析出した立方晶窒化ホウ素に取り込まれ
る、という欠点を有する。
Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive, and that atoms of the inert gas are incorporated into the deposited cubic boron nitride.

前記■の方法は、ホウ素の融点と沸点とが近いため、1
12Bを当てることによシ突沸しやすく、これを制御す
ることが困難である。
In the method (1) above, since the melting point and boiling point of boron are close to each other,
12B tends to cause bumping, which is difficult to control.

本発明はこのような従来法の欠点・困難点を解決した新
規な立方晶屋化ホウ素の製造方法を目的とするものであ
って、気相から基板表面に硬質窒化硼素を安定に析出す
ることができ、例えば工具等に被覆して優れた切削性、
耐摩耗性、耐欠損性を与えうる硬質窒化硼素の製造方法
を提供せんとするものである。
The purpose of the present invention is to provide a novel method for producing cubic boron nitride that solves the drawbacks and difficulties of the conventional methods, and includes stably depositing hard boron nitride on the surface of a substrate from the gas phase. For example, it can be coated on tools etc. to provide excellent machinability,
The object of the present invention is to provide a method for producing hard boron nitride that can provide wear resistance and chipping resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、化学気相析出法による立方晶窒化ホウ素
の合成方法を鋭意研究の結果、本発明のホウ素原子含有
ガスおよび窒素原子含有ガスからなる混合ガスを、10
00℃以上に加熱しだ熱電子放射材によって予備加熱し
た後、該加熱混合ガスを500〜2000℃に加熱され
た基板表面に導入して熱分解及び反応させ、それにより
°高硬度窒化ホウ素を析出させることを特徴とする高硬
度窒化ホウ素の合成方法に到達した。本発明の特に好ま
しい実施態様としては、ホウ素原子含有ガス中のホウ素
圓子ガスと、窒素原子含有ガス中の窒素原子ガスとの原
子比B/Nが、0.1≦B/N≦10である上記方法が
挙げられる。
As a result of intensive research into a method for synthesizing cubic boron nitride by chemical vapor deposition, the present inventors have found that a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas according to the present invention is
After preheating with a thermionic emitter at 00°C or higher, the heated mixed gas is introduced onto the surface of the substrate heated to 500 to 2000°C to cause thermal decomposition and reaction, thereby converting high hardness boron nitride. A method for synthesizing high-hardness boron nitride, which is characterized by precipitation, has been achieved. In a particularly preferred embodiment of the present invention, the atomic ratio B/N of the boron atom gas in the boron atom-containing gas and the nitrogen atom gas in the nitrogen atom-containing gas is 0.1≦B/N≦10. Examples include the above methods.

本発明においては、熱電子放射材分加熱体として、ホウ
素原子含有ガス及び窒素原子含有ガスと水素との混合ガ
スを予備加熱することによって、励起状態のホウ素原子
含有ガス及び窒素原子含有ガス並びに原子状水素を生成
せしめる。
In the present invention, by preheating a mixed gas of a boron atom-containing gas, a nitrogen atom-containing gas, and hydrogen as a thermoelectron emitting material heating body, the boron atom-containing gas and nitrogen atom-containing gas and atoms in an excited state are heated. Produces hydrogen in the form of hydrogen.

この励起状態のホウ素原子含有ガスと窒素原子含有ガス
が加熱された基板表面で熱分解した時に、生成する遊離
ホウ素原子及び窒素原子が互にSP”結合を起し、立方
晶窒化ホウ素を生成する。本発明においては水素ガスを
用いないので、B−)I化合物?形成してしまう心配は
なく、B−N化合物のみを得ることができる。
When this excited state boron atom-containing gas and nitrogen atom-containing gas are thermally decomposed on the heated substrate surface, the resulting free boron atoms and nitrogen atoms form SP" bonds with each other, producing cubic boron nitride. Since hydrogen gas is not used in the present invention, there is no concern that a B-)I compound will be formed, and only a B-N compound can be obtained.

本発明に用いる熱電子放射材としては、高熱に耐えられ
る例えばタングステンフィラメント、トリウム含有タン
グステンフィラメント等が挙げられ、該熱電子放射材の
温度は、励起状態のホウ素原子含有ガス及び窒素原子含
有ガスを生成せしめるために、1000℃以上であるこ
とが好ましい。
Examples of the thermionic emitting material used in the present invention include tungsten filaments, thorium-containing tungsten filaments, etc. that can withstand high heat. In order to cause the formation, the temperature is preferably 1000°C or higher.

本発明に使用するホウ素原子含有ガスとしては例えばB
、!’16 、BCl3、EBr3、B、 N、 H4
等が挙げられ、窒素原子含有ガスとして例えばH7、N
H,等が挙げられる。本発明の原料ガスとして用いるボ
ウ素原子含有ガス中のホウ素原子と窒素原子含有ガス中
の窒素原子の原子比B/Nは、0.1≦B/N≦1゜で
あることが好ましい。これは、B/N<α1であると非
晶質状の窒化ホウ素膜が析出されやすく、またB/N 
> 1oであるとホウ素が過剰と々シ非晶質状のホウ素
が形成されやすいからである。
Examples of the boron atom-containing gas used in the present invention include B
,! '16, BCl3, EBr3, B, N, H4
Examples of the nitrogen atom-containing gas include H7, N
H, etc. are mentioned. The atomic ratio B/N of boron atoms in the boron atom-containing gas and nitrogen atoms in the nitrogen atom-containing gas used as the raw material gas of the present invention is preferably 0.1≦B/N≦1°. This is because when B/N < α1, an amorphous boron nitride film is likely to be deposited, and B/N
>1o, the boron content is excessive and amorphous boron is likely to be formed.

本発明における基板温度は、励起状態のホウ素[東予含
有ガス及び窒素原子含有ガスを熱分解し、互いに反応さ
せるため300℃〜2000℃の範囲内とすることが奸
才しい。基板温度が500℃未満であると、立方晶窒化
ホウ素を基板上に析出せしめるエネルギーを供給するに
不足し、2000℃を超えると形成された窒化ホウ素膜
から窒素が抜は出て、非立方晶窒化ホウ素となってしま
う。なお、本発明において用いる基板としては特に限定
されるところはなく例えば金属、合金、07SiやAI
Hのような窒化物、炭化物、硅化物、石英、ダイヤモン
ドその他の公知のその表面に硬質被つを形成しうる基板
材料を用いることができる。
The substrate temperature in the present invention is preferably within the range of 300° C. to 2000° C. in order to thermally decompose the excited state boron [Toyo-containing gas and nitrogen atom-containing gas and cause them to react with each other. If the substrate temperature is less than 500°C, there will be insufficient energy to deposit cubic boron nitride on the substrate, and if it exceeds 2000°C, nitrogen will be extracted from the formed boron nitride film, resulting in non-cubic boron nitride. It becomes boron nitride. Note that the substrate used in the present invention is not particularly limited, and may include, for example, metal, alloy, 07Si, and AI.
Nitrides such as H, carbides, silicides, quartz, diamond, and other known substrate materials capable of forming a hard cap on their surfaces can be used.

また本発明において、反応管内の圧力は0.1〜A O
OTorrの範囲に調整することが好ましい。
In addition, in the present invention, the pressure inside the reaction tube is 0.1 to A O
It is preferable to adjust to a range of OTorr.

第1図は本発明の高硬度窒化ホウ素を合成するに用いる
装置の1例の説明図であって、第1図中1は反応炉、2
は排気装置、3(−i反応ガス供給装置、4は基板支持
棒、5は基板支持台、66−i反応管、7,8はコック
、9は混合ガス供給管、10は熱電子放射材、11は排
気口、12は基板?示す。第1図において反応ガス供給
袋ff′f5からのホウ素原子含有ガス及び窒素原子含
有ガスからなる混合ガスを、コック8、混合ガス供給管
9を経て反応管6内に供給し、該反応管6内の1000
℃以上に加熱した熱電子放射材(例えばタングステンフ
ィラメント等)10によって、該混合ガス?予備加熱し
た後、この加熱混合ガスを500〜2000℃に加熱し
た基板12の表面に導入して、ホウ素原子含有ガス及び
窒素原子含有ガスを分解・反応させて、立方晶窒化ホウ
素を析出させる。このときの反応管6内の圧力は排気装
置2及び排気口12により調整しておく。
FIG. 1 is an explanatory diagram of an example of an apparatus used for synthesizing high-hardness boron nitride of the present invention, in which 1 is a reactor;
is an exhaust device, 3 (-i reaction gas supply device, 4 is a substrate support rod, 5 is a substrate support stand, 66-i reaction tube, 7 and 8 are cocks, 9 is a mixed gas supply tube, 10 is a thermionic radiation material , 11 is an exhaust port, and 12 is a substrate. In FIG. 1000 in the reaction tube 6.
The mixed gas ? After preheating, this heated mixed gas is introduced onto the surface of the substrate 12 heated to 500 to 2000° C., and the boron atom-containing gas and the nitrogen atom-containing gas are decomposed and reacted to precipitate cubic boron nitride. At this time, the pressure inside the reaction tube 6 is adjusted by the exhaust device 2 and the exhaust port 12.

〔実施例〕〔Example〕

以下の実施例1〜3はすべて第1図の構成に従い、本発
明により高硬度窒化ホウ素の合成を行った例である。
Examples 1 to 3 below are all examples in which high hardness boron nitride was synthesized according to the present invention in accordance with the configuration shown in FIG.

実施例1゜ 基板としてはシリコンウェハーを用い、原料ガスとして
ジボランガス5 CC/ sinおよびアンモニアガス
20 cc / zinを流した。反応管内圧力ば10
  Tnrrに調整し、基板温度900tl:、り/ゲ
ステンフィラメント温度を2000℃とし、5時間反応
させた。その結果、基板表面に厚さ約2μ雷の窒化ホウ
素膜を析出をせることかできた。
Example 1 A silicon wafer was used as the substrate, and 5 cc/sin of diborane gas and 20 cc/zin of ammonia gas were flowed as raw material gases. Reaction tube internal pressure 10
The temperature of the substrate was adjusted to Tnrr, the temperature of the substrate was 900 tl, the temperature of the Gesten filament was 2000° C., and the reaction was carried out for 5 hours. As a result, a boron nitride film with a thickness of approximately 2 μm was deposited on the surface of the substrate.

該窒化ホウ素膜についてX線回折を行ったところ、立方
晶窒化ホウ素の最強のCI、1.1 )ピークである、
2θ=4五2°に鋭いピークを検出したので、この窒化
ホウ素は立方晶窒化ホウ素であると同定できた。
When X-ray diffraction was performed on the boron nitride film, the strongest CI of cubic boron nitride, 1.1), was the peak.
Since a sharp peak was detected at 2θ=452°, this boron nitride was identified as cubic boron nitride.

実施例λ モリブデン基板を用い、原料ガスとしては塩化ホウ素ガ
ス10cc/minおよびアンモニアガス20 cc/
 min ’z(N、し、反応管内圧力8Torr。
Example λ A molybdenum substrate was used, and the raw material gases were boron chloride gas 10 cc/min and ammonia gas 20 cc/min.
min'z (N, reaction tube internal pressure 8 Torr.

基板温度1000℃、タングステンフィラメント温度2
300℃の条件で4時間反応を続けた。
Substrate temperature 1000℃, tungsten filament temperature 2
The reaction was continued for 4 hours at 300°C.

その結果、基板表面に約3μmの窒化ホウ素膜が析出し
た。該膜についてX線回折を行ったところ、実施例1と
同様に立方晶窒化ホウ素であると同定できた。
As a result, a boron nitride film of about 3 μm was deposited on the surface of the substrate. When this film was subjected to X-ray diffraction, it was identified as cubic boron nitride, as in Example 1.

実施例五 シリコンウェハー分基イffとして用い、j京科ガスと
してジボランガス5 CC/ min 、窒素ガス50
CC/ minを流し、反応管内圧力j5Torr、基
板温度800℃、トリウム含有タングステンフィラメン
ト温度2200℃の条件にて5時間反応?続けた。
Example 5 Silicon wafer was used as base material, diborane gas 5 CC/min and nitrogen gas 50 CC/min as Kyoshi gas.
CC/min flow, reaction tube internal pressure j5 Torr, substrate temperature 800°C, and thorium-containing tungsten filament temperature 2200°C for 5 hours. continued.

その結果、基板表面に厚さ約1.8μmf)窒化ホウ素
膜が析出し、該膜もXそψ回折によυ実画例1および2
と同様に立方晶窒化ホウ素であると同定できた。
As a result, a boron nitride film (approximately 1.8 μm thick) was deposited on the substrate surface, and this film was also observed by
Similarly, it was identified as cubic boron nitride.

以上のように実施例1〜3の条件により立方晶窒化ホウ
素を合成できたので、各実施例の条件により、切削チッ
プに立方晶窒化ホウ素膜のコーティングを行い、得られ
た被覆チップ(実施例1〜3の条件に対応してA1〜&
3とした)について、切削テストを行った。基体チップ
としてはl50−M−10グレード超硬合金(型番5N
0120408)切削チップを用い、被覆層厚はすべて
3μ惧となるよう成膜時間は調整した。また、比較のた
めに同じ基体チップに従来法によりTiNコーティング
を511m施したものをム4とし、被覆なしのものを厘
5として同様に切削テストした。
As described above, cubic boron nitride could be synthesized under the conditions of Examples 1 to 3, so the cutting tip was coated with a cubic boron nitride film under the conditions of each example, and the resulting coated chip (Example A1~& corresponding to conditions 1~3
3), a cutting test was conducted. The base chip is l50-M-10 grade cemented carbide (model number 5N
0120408) A cutting tip was used, and the film-forming time was adjusted so that the coating layer thickness was approximately 3 μm. For comparison, the same substrate chip was coated with 511 m of TiN by the conventional method as Mu4, and the same base chip was coated with no coating as Mu5, and cutting tests were conducted in the same manner.

切削テストの条件を表1に、また切削テストの結果を表
2にまとめて示す。表1及び表2から明らかなように、
本発明によシ立方晶窒化ホウ素を被覆層として施した切
Mlチップは、従来品のTiN被覆及び被覆なしのもの
に比し、耐摩耗性に非常に優れたものであることがわか
る。
The conditions of the cutting test are summarized in Table 1, and the results of the cutting test are summarized in Table 2. As is clear from Tables 1 and 2,
It can be seen that the cut Ml chips coated with cubic boron nitride as a coating layer according to the present invention have extremely superior wear resistance compared to conventional TiN coated and uncoated chips.

表1 表2 さらに本発明による立方晶窒化硼素被覆を行ったテップ
と、TiC又はJR,03被覆のチップ、さらに被覆な
しのチップについて、切削性能。
Table 1 Table 2 Cutting performance of tips coated with cubic boron nitride according to the present invention, tips coated with TiC or JR,03, and tips without coating.

耐摩性、耐欠損性を比較した結果をグラフにして第2図
、第5図及び第4図に示す。いずれの比較も、夫々にお
いて同チップに同じ厚さの被覆(コート)を行った。立
方晶窒化硼素はcBMと略記しである。
The results of comparing wear resistance and chipping resistance are shown in graphs in FIGS. 2, 5, and 4. In both comparisons, the same chip was coated with the same thickness. Cubic boron nitride is abbreviated as cBM.

第2図は鋼旋削における切削性能の比較を示し、被削材
: SCM 455、チップ: SNG A52のとき
の、切削速度(+m)と寿命時間の関係図である。
FIG. 2 shows a comparison of cutting performance in steel turning, and is a diagram showing the relationship between cutting speed (+m) and life time when the workpiece material is SCM 455 and the tip is SNG A52.

第3図は鋳鉄旋削における耐摩耗性の比較を示し、被削
材:FOA5、テップ: TNG 522、切削速度=
250?FL/In1n での時間(min)とにげ面
摩耗量(rWn)の関係図である。
Figure 3 shows a comparison of wear resistance in cast iron turning, work material: FOA5, tip: TNG 522, cutting speed =
250? It is a relationship diagram between the time (min) at FL/In1n and the amount of wear on the exposed surface (rWn).

第4図は耐欠損性の比較を示し、被削材:SNG 45
5、チップ: FCD 50、切削速度=500m/口
1nのときの、衡撃回数と欠損までの切削時間(min
)の図である。
Figure 4 shows a comparison of fracture resistance, work material: SNG 45
5. Chip: FCD 50, cutting speed = 500m/cut 1n, number of counterattacks and cutting time until breakage (min
).

以上の第2図、第5図及び第41からも明らかなように
、本発明による硬質窒化硼素被覆を行ったチップは、切
削性能、耐摩耗性、耐欠損性のいずれも非常に優れてい
る。
As is clear from the above FIGS. 2, 5, and 41, the hard boron nitride-coated insert according to the present invention has excellent cutting performance, wear resistance, and chipping resistance. .

〔発明の効果〕〔Effect of the invention〕

本発明は耐熱衝撃性、熱伝導性、硬度、耐摩耗性及び高
温での鉄族金1属に対する耐性にも優れる、立方晶窒化
ホウ素を、可変な合成条件により気相から析出できる新
規な方法である。このように合成条件が可変であるので
、本発明の方法は切削部材、耐摩耗部材、耐熱部材等の
立方晶窒化ホウ素被覆形成に用いて、非常に有利である
The present invention provides a novel method for precipitating cubic boron nitride from the gas phase using variable synthesis conditions, which has excellent thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. It is. Since the synthesis conditions are thus variable, the method of the present invention is very advantageous for forming cubic boron nitride coatings on cutting members, wear-resistant members, heat-resistant members, and the like.

本発明方法により得られる立方晶窒化ホウ素は、耐熱衝
撃性、熱伝導性、硬度及び耐摩耗性並びに高温での鉄族
金属に対する耐性にも1憂れているため、切削部材、耐
摩耗部材及び耐熱部材の被覆膜として利用して、多大の
効果を有す、る。
The cubic boron nitride obtained by the method of the present invention has poor thermal shock resistance, thermal conductivity, hardness and wear resistance, and resistance to iron group metals at high temperatures, so it can be used in cutting parts, wear-resistant parts, etc. It has great effects when used as a coating for heat-resistant members.

【図面の簡単な説明】[Brief explanation of drawings]

M1図は本発明の実施態様を概略説明する構成図である
。 第2図〜第4図は本発明による被覆を形成したチップと
従来品との特性比較を示す図で、第2図は切削性能の比
較を示す図、第3図は耐摩耗性の比較を示す図、第4図
は耐欠損性の比較を示す図である。
FIG. M1 is a configuration diagram schematically explaining an embodiment of the present invention. Figures 2 to 4 are diagrams showing a comparison of the characteristics of the tip coated with the present invention and a conventional product. Figure 2 is a diagram showing a comparison of cutting performance, and Figure 3 is a diagram showing a comparison of wear resistance. FIG. 4 is a diagram showing a comparison of fracture resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)化学気相析出法による窒化ホウ素の合成法におい
て、ホウ素原子含有ガスおよび窒素原子含有ガスからな
る混合ガスを、1000℃以上に加熱した熱電子放射材
によつて予備加熱した後、該加熱混合ガスを300〜2
000℃に加熱された基板表面に導入して熱分解及び反
応させ、それにより高硬度窒化ホウ素を析出させること
を特徴とする高硬度窒化ホウ素の合成方法。
(1) In a method for synthesizing boron nitride by chemical vapor deposition, a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is preheated with a thermionic emitter heated to 1000°C or higher, and then the Heating mixed gas 300~2
1. A method for synthesizing high-hardness boron nitride, which comprises introducing the high-hardness boron nitride onto the surface of a substrate heated to 000° C. for thermal decomposition and reaction, thereby precipitating high-hardness boron nitride.
(2)ホウ素原子含有ガス中のホウ素原子と、窒素原子
含有ガス中の窒素原子との原子比B/Nが、0.1≦B
/N≦10である特許請求の範囲第(1)項に記載の高
硬度窒化ホウ素の合成方法。
(2) The atomic ratio B/N of boron atoms in the boron atom-containing gas and nitrogen atoms in the nitrogen atom-containing gas is 0.1≦B
The method for synthesizing high hardness boron nitride according to claim (1), wherein /N≦10.
JP10302586A 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride Pending JPS62260063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302586A JPS62260063A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302586A JPS62260063A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS62260063A true JPS62260063A (en) 1987-11-12

Family

ID=14343103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302586A Pending JPS62260063A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS62260063A (en)

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US6152977A (en) Surface functionalized diamond crystals and methods for producing same
US6350191B1 (en) Surface functionalized diamond crystals and methods for producing same
IE912496A1 (en) Cvd diamond coated twist drills
JP3388736B2 (en) Double-coated tool and method and apparatus for manufacturing the same
JPS62260063A (en) Method for synthesizing high hardness boron nitride
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPH04124272A (en) Cubic boron nitride coating member and its production
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH05279854A (en) Formation of diamond film
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH07133103A (en) Method for synthesizing c3n4 by plasma arc method
JPH01119673A (en) Method for synthesizing high-hardness boron nitride
JPH0582473B2 (en)
JPS62280364A (en) Method for synthesizing hard boron nitride
JPH0794081B2 (en) Hard carbon coated parts
JPH0542509B2 (en)
JPS60127299A (en) Gas-phase synthesis of diamond