JPS62207869A - Parts coated with hard boron nitride containing oxygen - Google Patents

Parts coated with hard boron nitride containing oxygen

Info

Publication number
JPS62207869A
JPS62207869A JP61050007A JP5000786A JPS62207869A JP S62207869 A JPS62207869 A JP S62207869A JP 61050007 A JP61050007 A JP 61050007A JP 5000786 A JP5000786 A JP 5000786A JP S62207869 A JPS62207869 A JP S62207869A
Authority
JP
Japan
Prior art keywords
boron nitride
oxygen
cubic
coating film
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61050007A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Kazuhiko Fukushima
和彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61050007A priority Critical patent/JPS62207869A/en
Publication of JPS62207869A publication Critical patent/JPS62207869A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the hardness of a coating film of hard boron nitride by incorporating oxygen into the film during deposition on the surface of a base materizal from a vapor phase so as to increase the amount of cubic or wurtzite type crystals. CONSTITUTION:A gaseous mixture cong. B2H6, NH3, H2 and N2O is introduced into a reactor. Microwaves are applied to the reactor to generate plasma and a base material is placed in the plasma to form a coating film contg. oxygen by 0.01-30atom% of the total amount of nitrogen and oxygen. Thus, parts coated with hard boron nitride contg. oxygen and having a cubic or wurtzite type crystal structure are obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削加工、塑性加工、研削加工などに用いら
れる工具材料の酸素含有硬質窒化硼素被覆部品に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an oxygen-containing hard boron nitride coated part of a tool material used in cutting, plastic working, grinding, etc.

(従来の技術) 立方晶の窒化硼素は、ダイヤモンドに次いで高硬度であ
り、耐酸化性に富み、かつ鉄族金属との反応性が無いこ
とから、切削加工、塑性加工などに用いられる工具材料
としては、きわめて理想的な材料である。
(Prior art) Cubic boron nitride has the second highest hardness after diamond, has high oxidation resistance, and has no reactivity with iron group metals, so it is used as a tool material for cutting, plastic working, etc. It is an extremely ideal material.

しかしながら、立方晶の窒化硼素は、天然では存在せず
、その合成には超高圧、高温を必要とすることから、工
具材料として考えると形状に制限があり、かつ経済的に
も高価なものにならざるを得ないため、工具材料として
の適用領域は限られたものであった。最近この立方晶窒
化硼素を、超高圧、高温を用いずに、気相表面に析出さ
せて、薄膜の立方晶窒化硼素を被覆する技術が種々提案
されている。この気相被覆技術によれば、工具材料とし
て、形状の制限は極めて少なく、経済的に見ても安価な
ことから、立方晶窒化硼素の優れた特性を活かした工具
材料として、その適用領域は著しく拡大するものと考え
られる。立方晶窒化硼素を被覆する従来の技術としては
、 (II  特公昭60− /I/2A、2号公報に示さ
れるように硼素を蒸発させて、基材上に硼素を蒸暑させ
ながら、窒素のイオンビームを同時に基材に照射するこ
とによる立方晶窒化硼素の製造法。
However, cubic boron nitride does not exist in nature, and its synthesis requires ultra-high pressure and high temperatures, so when considered as a tool material, it has limited shapes and is economically expensive. Therefore, its application as a tool material was limited. Recently, various techniques have been proposed for coating a thin film of cubic boron nitride by depositing cubic boron nitride on a gas phase surface without using ultra-high pressure or high temperature. According to this vapor phase coating technology, there are very few restrictions on the shape of the tool material, and it is economically inexpensive, so it can be used as a tool material that takes advantage of the excellent properties of cubic boron nitride. It is thought that this will expand significantly. The conventional technique for coating cubic boron nitride is to evaporate boron and evaporate nitrogen while heating the boron on the substrate, as shown in (II Japanese Patent Publication No. 1/2A, No. 2). A method for producing cubic boron nitride by simultaneously irradiating the substrate with an ion beam.

(21Journal of 1aterials 5
cience Letters If (/91r!;
 ’) 3/ −!;Itに示される水素と窒素の混合
プラズマによって硼素の化学輸送を行うことにより、基
材上に立方晶窒化硼素を堆積する製造法。
(21 Journal of Materials 5
science Letters If (/91r!;
') 3/-! ; A manufacturing method in which cubic boron nitride is deposited on a substrate by chemically transporting boron using a mixed plasma of hydrogen and nitrogen as shown in It.

f31  Proc、 qth Symp on l5
IAT (Ion 5ource andIon As
5isted Technology ) I! 、 
Tokyo (/91J )に示されているように、E
(CD銃(電子銃の一種)にて硼素を蒸発させながら、
ホローアノードから窒素ガスをイオン化して、基材上に
導入1かつ基材には高周波を印加させて、自己バイアス
効果をもたせることによって、基材上に立方晶窒化硼素
を被覆する製造法。
f31 Proc, qth Symp on l5
IAT (Ion 5source and Ion As
5isted Technology) I! ,
As shown in Tokyo (/91J), E
(While evaporating boron with a CD gun (a type of electron gun),
A manufacturing method in which cubic boron nitride is coated on a substrate by ionizing nitrogen gas from a hollow anode, introducing it onto the substrate, and applying high frequency to the substrate to create a self-biasing effect.

などが知られている。etc. are known.

(発明が解決しようとする問題点) 従来の技術による立方晶窒化硼素被覆部品を詳細に検討
したところ、たしかに被覆膜の硬度は、ヴイツカース硬
度で2000に9/−以上と硬いもの\、通常超高圧、
高温下で得られている立方晶窒化硼素焼結体のヴイツカ
ース硬度に比べると極めて不満足なものであった。これ
は、得られた膜が完全に立方晶の結晶構造を持つ窒化硼
素の単−相から成るのではなく、大方晶の窒化硼素膜の
中に極めて微細な立方晶、もしくはウルツ型結晶構造を
持つ窒化硼素の結晶が混在しているにすぎないからであ
る。大方晶の窒化硼素は、立方晶あるいはウルツ型の結
晶構造をもつ窒化硼素のような高硬度でないため、従来
技術による被覆膜は硬さの面で問題があった。
(Problems to be Solved by the Invention) A detailed study of cubic boron nitride-coated parts made using conventional technology reveals that the hardness of the coating film is, in fact, as hard as 9/-2000 or more on the Witzkers hardness. ultra high pressure,
The Witzkars hardness was extremely unsatisfactory compared to that of cubic boron nitride sintered bodies obtained at high temperatures. This is because the obtained film does not consist of a single phase of boron nitride with a completely cubic crystal structure, but has an extremely fine cubic or Wurtz crystal structure within the macrogonal boron nitride film. This is because the crystals of boron nitride, which have the same properties, are mixed together. Since the orthogonal boron nitride does not have the high hardness of boron nitride having a cubic or Wurtz crystal structure, coating films made in the prior art have had problems in terms of hardness.

これらの間履点を解決するのが本発明の目的である。It is an object of the present invention to solve these problems.

(問題点を解決するための手段) 従来技術による立方晶窒化硼素被着膜中に六方晶の窒化
硼素が多量に含まれることは、熱力学上常温常圧では六
方晶の方が安定であることを反映しているに過ぎない。
(Means for solving the problem) The fact that a large amount of hexagonal boron nitride is contained in the cubic boron nitride film deposited by the prior art is because hexagonal boron nitride is thermodynamically more stable at room temperature and pressure. It just reflects that.

従来技術では、気相中の各窒化硼素構成原子を出来るだ
け高いエネルギー状態に励起し、その励起状態を利用し
て準安定相の立方晶あるいはウルシ型結晶構造を有する
硬質の窒化硼素を合成している。しかしながら従来技術
では、安定相の大方晶の窒化硼素の混在は避けがたかっ
た。これは従来技術では、硼素原子と窒素原子を気相中
で高エネルギー状態に励起させ、この励起種どおしが基
材表面あるいは基材表面のごく近傍で結合して、両者の
エネルギー準位に応じて窒化硼素を形成するわけである
が、この際SP2混成軌道を形成するム結合が支配的に
なりやすく、SP3混成軌道を形成するへ結合を生じる
のは、きわめて限定されたエネルギー準位にすぎないか
らである。そのため単−相の立方晶の窒化硼素を合成す
るためには、励起種のエネルギー準位をきわめて限定さ
れた領域の中で合成を行う方法、例えば硼素イオンビー
ムと窒素イオンビームを同時に用いるダブルイオンビー
ムデポジション(D、 1. B。
In the conventional technology, each boron nitride constituent atom in the gas phase is excited to the highest possible energy state, and the excited state is used to synthesize hard boron nitride having a cubic or urushi-type crystal structure in a metastable phase. ing. However, in the conventional technology, it was difficult to avoid the presence of stable macrogonal boron nitride. In the conventional technology, boron atoms and nitrogen atoms are excited to a high energy state in the gas phase, and these excited species bond on or near the substrate surface, raising the energy level of both. Boron nitride is formed according to the energy level, but at this time, the mu bonds that form the SP2 hybrid orbital tend to be dominant, and the bonds that form the SP3 hybrid orbital occur at extremely limited energy levels. This is because it is nothing more than a . Therefore, in order to synthesize single-phase cubic boron nitride, the energy level of the excited species must be synthesized within a very limited region. For example, a double ion beam using a boron ion beam and a nitrogen ion beam simultaneously is required. Beam deposition (D, 1.B.

D)法とか、プラズマ中のエネルギー準位を狭く保てる
電子のサイクロトロン共鳴を利用したE。
D) method, E which uses the cyclotron resonance of electrons that can keep the energy level in the plasma narrow.

C0RプラズマOVD法などが考えられる。しかしなが
らこれらの方法は、いずれも装置が大型化してしまい、
−殺性に劣る。
A COR plasma OVD method or the like may be considered. However, all of these methods require large equipment,
-Less lethal.

発明者等は、硬質の窒化硼素の合成法を詳細に検討した
ところ、酸素が被覆膜中に共存すると、広汎なエネルギ
ー準位の下で、立方晶およびウルツ型の結晶構造を有す
る硬質の窒化硼素を優先的に合成しうるという知見を得
た。
The inventors investigated in detail the synthesis method of hard boron nitride and found that when oxygen coexists in the coating film, hard boron nitride with cubic and Wurtzian crystal structures can be formed under a wide range of energy levels. We obtained the knowledge that boron nitride can be preferentially synthesized.

(作用) 本発明は、硬質の窒化硼素を合成する際に、該窒化硼素
膜中に酸素を含有させると、立方晶もしくはウルツ型の
結晶構造を有する硬質の窒化硼素を合成しうるという知
見による。例えば、BJH,ガスをθ2!;vo1%、
NH3ガスを□Jvo1%、残H2ガスノ琵合ガスを、
rOTorrの圧力で石英製の反応容器に導入、この容
器に2#j−GH工のマイクロ波を300 W印荷し、
マイクロ波無極放電によるプラズマを生成させた。なお
、プラズマ中にSiからなる基板を設置、基板はプラズ
マによって約qso ’cに加熱された。なお、この混
合ガス中に種々の濃度のN20ガスを混ぜて、系の酸素
分圧を調整した。各5時間被筒を行い、それぞれ約5μ
の被覆膜を得た。
(Function) The present invention is based on the knowledge that when synthesizing hard boron nitride, if oxygen is included in the boron nitride film, hard boron nitride having a cubic or Wurtzian crystal structure can be synthesized. . For example, BJH, gas θ2! ;vo1%,
NH3 gas □Jvo1%, remaining H2 gas,
The mixture was introduced into a quartz reaction vessel at a pressure of rOTorr, and 300 W of 2#j-GH microwave was applied to this vessel.
Plasma was generated by microwave non-polar discharge. Note that a substrate made of Si was placed in the plasma, and the substrate was heated to about qso'c by the plasma. Note that the oxygen partial pressure of the system was adjusted by mixing various concentrations of N20 gas into this mixed gas. Each tube was covered for 5 hours, and each was approximately 5μ
A coating film was obtained.

電子線反射回折、X線回折およびESCAにて相の同定
を、ラザフオード、バック、スキャタリング(R,B、
S)にて被覆膜中の酸素量の分析を行った。
Phase identification was performed using electron beam reflection diffraction, X-ray diffraction, and ESCA using Rutherford, back, and scattering (R, B,
The amount of oxygen in the coating film was analyzed in S).

結果を表−/に記す。The results are shown in Table-/.

表−/で明らかなように被覆膜中に酸素が共存すると、
得られた被覆膜中に存在する立方晶の窒化硼素の量が増
大し、原子比で該被覆膜中の窒素と酸素の分量のo、o
i%以上あれば立方晶窒化硼素を生成しりる割合が十分
なものとなることがわかる。なお、酸素含有量が30%
を越えると、被覆膜中に酸化硼素が多量に生じるため好
ましくなかった0 (実施例1) マイクロ波OVD装置に、超硬合金製の切削チップ(I
SOK−10,型番SNGグ32)を設置し、BzH6
0,2!; vo [%e NH30,、!; vo1
%、 N、OO,01 voJ%。
As is clear from Table-/, when oxygen coexists in the coating film,
The amount of cubic boron nitride present in the resulting coating film increases, and the atomic ratio of nitrogen and oxygen in the coating film increases.
It can be seen that if the amount is i% or more, the proportion of cubic boron nitride generated is sufficient. In addition, the oxygen content is 30%
If it exceeds 0, it is not preferable because a large amount of boron oxide is generated in the coating film. (Example 1) A cutting tip made of cemented carbide (I
SOK-10, model number SNG 32) was installed, and BzH6
0,2! ; vo [%e NH30,,! ; vol1
%, N,OO,01 voJ%.

残部H2,ガスを90Torrで導入、ttoo wの
ill!; GHzのマイクロ波によってプラズマを発
生させた。(チップの温度は約qso0a>、s時間被
覆して約5μの被覆膜を得た。試料をX線回折で調べた
ところ、立方晶の窒化硼素が検出されだ。この試料で以
下の条件で切削試験を行った。
Remaining H2, gas introduced at 90 Torr, ttoo w's ill! ; Plasma was generated using GHz microwaves. (The temperature of the chip was about qso0a>, and a coating film of about 5μ was obtained by coating for s hours. When the sample was examined by X-ray diffraction, cubic boron nitride was detected. With this sample, the following conditions were applied. A cutting test was conducted.

被削材 SCM≠/!; (HRc −5ざ)切削速度
  10om/= 送       リ       O,/ m篤/re
v切り込み  as朋 ホルダー  FN//R−#≠A 切削材  水溶性切削材使用 70分間切削してフランク摩耗はo、or asであっ
た。
Work material SCM≠/! ; (HRc -5) Cutting speed 10om/= Feed rate O,/m depth/re
v Notch as holder FN//R-#≠A Cutting material Flank wear was o, or as after cutting for 70 minutes using a water-soluble cutting material.

なおN20を導入しないで、他はこれと同じようにして
作った試料は、この条件では2分31r秒しか切削出来
なかった。比較のため未被覆の超硬合金母材で同様に切
削したところ、32秒間で刃先が溶は落ちてしまった。
Note that a sample made in the same manner as above without introducing N20 could be cut for only 2 minutes and 31 r seconds under these conditions. For comparison, when an uncoated cemented carbide base material was similarly cut, the cutting edge was melted away in 32 seconds.

(実施例2) 第11Nのイオンブレーティング装置(1は真空槽、2
は陰極、3は基材、4はイオン電極、5は水冷ルツボ(
硼素金属を入れである)、6は電子銃、7は排気孔、8
はAr+N2.のガス導入孔、9は0ユガス導入孔、1
0は導波管、11はマイクロ波発振器、 12.13は
直流電J、)において、県内の02分圧を種々調整し、
窒化硼素をSi基板上に被覆した。
(Example 2) 11th N ion brating device (1 is a vacuum chamber, 2
is a cathode, 3 is a base material, 4 is an ion electrode, and 5 is a water-cooled crucible (
), 6 is an electron gun, 7 is an exhaust hole, 8
is Ar+N2. gas introduction hole, 9 is 0 gas introduction hole, 1
0 is a waveguide, 11 is a microwave oscillator, 12.13 is a direct current electric J,), variously adjust the 02 partial pressure in the prefecture,
Boron nitride was coated onto a Si substrate.

なお、イオン化電圧は+SOV、バイアス電圧は一1、
、5’ kV 、導入ガスはNLj□vo1%、系内の
圧カバ1、!; Xlo−JTorrで、基板温度はg
so°C2また、02ガスは24’3 GHzのマイク
ロ波放電にてプラズマ化すレるものである。
In addition, the ionization voltage is +SOV, the bias voltage is -1,
, 5' kV, introduced gas is NLj□vo1%, pressure cover in the system is 1,! ; At Xlo-JTorr, the substrate temperature is g
02 gas is turned into plasma by microwave discharge at 24'3 GHz.

系内の02分圧と、得られた膜中のO1情、およびrt
uulの結果を表−2に示す。
O2 partial pressure in the system, O1 information in the obtained membrane, and rt
The uul results are shown in Table 2.

表−2 (発明の効果) 硬質窒化硼素を合成、被覆する際、該被覆膜中に所定量
の酸素を含有させると、被覆膜中に存在する立方晶およ
びウルツ型結晶構造を有する硬質窒化硼素の存在量を著
しく増大せしめる効果がある。
Table 2 (Effects of the invention) When synthesizing and coating hard boron nitride, if a predetermined amount of oxygen is contained in the coating film, the hard boron nitride with cubic and Wurtzian crystal structures present in the coating film This has the effect of significantly increasing the amount of boron nitride present.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いたイオンブレーティング
装置の説明図である。 1・・・真空槽、2・・イを極、3・・・基材、4・・
・イオン化電極、5・・・水冷ルツボ(硼素金属を入れ
である)、6・・・電子銃、γ・・・排気孔、8・・・
Ar+Nエガス導入孔、9・・・0ユガス導入孔、10
・・・導波管、11・・・マイクロ波発振器、12.1
3・・・直流電源。
FIG. 1 is an explanatory diagram of an ion blating apparatus used in an embodiment of the present invention. 1... Vacuum chamber, 2... A is the pole, 3... Base material, 4...
- Ionization electrode, 5... Water-cooled crucible (contains boron metal), 6... Electron gun, γ... Exhaust hole, 8...
Ar+N gas introduction hole, 9...0 Yugas introduction hole, 10
...Waveguide, 11...Microwave oscillator, 12.1
3...DC power supply.

Claims (1)

【特許請求の範囲】[Claims] 1、気相から被覆膜を基材表面上に析出させて被覆した
硬質窒化硼素被覆部品において、該硬質窒化被覆膜中に
、酸素が原子比で、窒素と酸素の合量の0.01%〜3
0%含有されることを特徴とする酸素含有硬質窒化硼素
被覆部品。
1. In a hard boron nitride-coated part in which a coating film is deposited on the surface of a base material from a gas phase, oxygen is present in the hard nitride coating film in an atomic ratio of 0.5% of the total amount of nitrogen and oxygen. 01%~3
An oxygen-containing hard boron nitride coated part characterized by containing 0% oxygen.
JP61050007A 1986-03-06 1986-03-06 Parts coated with hard boron nitride containing oxygen Pending JPS62207869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050007A JPS62207869A (en) 1986-03-06 1986-03-06 Parts coated with hard boron nitride containing oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050007A JPS62207869A (en) 1986-03-06 1986-03-06 Parts coated with hard boron nitride containing oxygen

Publications (1)

Publication Number Publication Date
JPS62207869A true JPS62207869A (en) 1987-09-12

Family

ID=12846938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050007A Pending JPS62207869A (en) 1986-03-06 1986-03-06 Parts coated with hard boron nitride containing oxygen

Country Status (1)

Country Link
JP (1) JPS62207869A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024386A3 (en) * 2004-09-02 2006-05-18 Karlsruhe Forschzent Layered composite comprising cubic boron nitride
JP2007169743A (en) * 2005-12-26 2007-07-05 Hitachi Tool Engineering Ltd Coated member
WO2007124890A1 (en) * 2006-04-28 2007-11-08 Forschungszentrum Karlsruhe Gmbh Multifunctional hard material layers

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024386A3 (en) * 2004-09-02 2006-05-18 Karlsruhe Forschzent Layered composite comprising cubic boron nitride
EP1784524A2 (en) * 2004-09-02 2007-05-16 Forschungszentrum Karlsruhe GmbH Layered composite comprising cubic boron nitride
JP2008511751A (en) * 2004-09-02 2008-04-17 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Laminated composite material with cubic boron nitride
US7914903B2 (en) 2004-09-02 2011-03-29 Forschungszentrum Karlsruhe Gmbh Layered composite including cubic boron nitride
JP2007169743A (en) * 2005-12-26 2007-07-05 Hitachi Tool Engineering Ltd Coated member
WO2007124890A1 (en) * 2006-04-28 2007-11-08 Forschungszentrum Karlsruhe Gmbh Multifunctional hard material layers
US8110296B2 (en) 2006-04-28 2012-02-07 Forschungszentrum Karlsruhe Gmbh Multifunctional hard material coating

Similar Documents

Publication Publication Date Title
US5306530A (en) Method for producing high quality thin layer films on substrates
US5624719A (en) Process for synthesizing diamond in a vapor phase
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH0259862B2 (en)
JP2909248B2 (en) Boron nitride coated member
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPS6134173A (en) Production of high-hardness boron nitride film
JPS6395200A (en) Production of hard boron nitride film
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH0481552B2 (en)
JPH0794081B2 (en) Hard carbon coated parts
JPS62224675A (en) Synthesizing method for hard boron nitride
JPH08158039A (en) Formation of thin carbon nitride film
JPS62280364A (en) Method for synthesizing hard boron nitride
JP2861753B2 (en) Substrate coated with boron nitride containing film
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPH0623437B2 (en) Method for producing carbon and boron nitride
JPH04120265A (en) Boron nitride coated member