JP2007169743A - Coated member - Google Patents

Coated member Download PDF

Info

Publication number
JP2007169743A
JP2007169743A JP2005371234A JP2005371234A JP2007169743A JP 2007169743 A JP2007169743 A JP 2007169743A JP 2005371234 A JP2005371234 A JP 2005371234A JP 2005371234 A JP2005371234 A JP 2005371234A JP 2007169743 A JP2007169743 A JP 2007169743A
Authority
JP
Japan
Prior art keywords
boron nitride
boron
compound film
layer
covering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371234A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005371234A priority Critical patent/JP2007169743A/en
Publication of JP2007169743A publication Critical patent/JP2007169743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated member capable of reducing the residual compressive stress in a boron nitride coating film, and enhancing the wear resistance of the coated member under a service environment requesting the wear resistance. <P>SOLUTION: In the coated member, a compound coating film consisting of boron, nitrogen and oxygen is coated on a surface of a base material. The compound coating film has a tissue structure with amorphous boron nitride being dispersed in crystalline boron nitride. The sectional area of a zone of the amorphous boron nitride in the section of the compound coating film is replaced by the area of a circle, and the diameter of the circle is obtained as the diameter of the equivalent circle. In this case, the diameter is below 10 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、窒化硼素を被覆した被覆部材に関する。   The present invention relates to a covering member coated with boron nitride.

窒化硼素皮膜の残留圧縮応力を低減させるための改善検討が、以下の特許文献1から3に提案されている。   Improvement studies for reducing the residual compressive stress of the boron nitride film are proposed in the following Patent Documents 1 to 3.

特開平8−11004号公報JP-A-8-11004 特開2002−167205号公報JP 2002-167205 A 特開2005−297142号公報JP 2005-297142 A

特許文献1は、窒化硼素皮膜としてcBN、hBN、wBN、アモルファスBN等をTiN等の皮膜との2層により、基体との密着性を高めた例が、特許文献2は、窒化硼素皮膜そのものの残留圧縮応力を低減させ、特許文献3は、2層の例が開示されている。本願発明は、窒化硼素皮膜の残留圧縮応力を低減させ、耐摩耗性が要求される使用環境化において、更に被覆部材の耐摩耗性を改善することが可能な被覆部材を提供することである。   Patent Document 1 shows an example in which cBN, hBN, wBN, amorphous BN, and the like as a boron nitride film are two-layered with a film such as TiN, and the adhesion to the substrate is improved. Patent Document 2 describes the boron nitride film itself. The residual compressive stress is reduced, and Patent Document 3 discloses an example of two layers. An object of the present invention is to provide a covering member capable of reducing the residual compressive stress of the boron nitride film and further improving the wear resistance of the covering member in a use environment where wear resistance is required.

本願発明は、基材表面に硼素、窒素、酸素からなる化合物皮膜を被覆した部材であり、該化合物皮膜は結晶質窒化硼素内に非晶質窒化硼素が分散した組織構造を有し、且つ、該化合物皮膜の断面における非晶質窒化硼素の領域の面積を、円の面積として置き換えた場合の直径である等価円直径として求めた場合、10nm未満であることを特徴とする被覆部材である。上記の構成を採用することによって、窒化硼素の優れた特性を害することなく、該化合物皮膜の残留圧縮応力を低減させ、耐摩耗性が要求される使用環境化において、更に、被覆部材の耐摩耗性を改善することが可能である被覆部材を提供することができる。   The present invention is a member having a substrate surface coated with a compound film comprising boron, nitrogen, and oxygen, the compound film having a structure in which amorphous boron nitride is dispersed in crystalline boron nitride, and The covering member is characterized in that the area of the amorphous boron nitride region in the cross section of the compound film is less than 10 nm when calculated as an equivalent circular diameter which is a diameter when the area is replaced by a circle. By adopting the above configuration, the residual compressive stress of the compound film can be reduced without impairing the excellent characteristics of boron nitride, and in the use environment where wear resistance is required, the wear resistance of the covering member can be further reduced. The covering member which can improve property can be provided.

本願発明の化合物皮膜は、結晶質窒化硼素が六方晶及び/又は立方晶の結晶構造を有することが好ましい。また、化合物皮膜の硼素が酸化物として存在するとき、質量%で0.3%以上、10%未満であることや、硼素が単体として存在するとき、1%以上、25%未満であることが好ましい。基材と化合物皮膜との中間にA層を有し、該A層は周期律表4a、5a、6a族元素、Al、Siから選ばれる1種以上の元素の窒化物、酸化物、硼化物、硫化物、炭化物の何れか又はそれらの固溶体又は混合物からなることが好ましい。更に、化合物皮膜とA層とを2層以上、5000層未満の範囲で交互に積層することが、より好ましい。   In the compound film of the present invention, the crystalline boron nitride preferably has a hexagonal and / or cubic crystal structure. Further, when boron in the compound film is present as an oxide, it may be 0.3% or more and less than 10% by mass, or when boron is present as a simple substance, it may be 1% or more and less than 25%. preferable. An A layer is provided between the base material and the compound film, and the A layer is a nitride, oxide or boride of one or more elements selected from the periodic table 4a, 5a, and 6a group elements, Al and Si. , Sulfides, carbides, or a solid solution or a mixture thereof. Furthermore, it is more preferable to laminate | stack a compound membrane | film | coat and A layer alternately in 2 or more layers and less than 5000 layers.

本願発明の被覆部材は、窒化硼素皮膜の残留圧縮応力を低減させ、耐摩耗性が要求される使用環境化において、更に被覆部材の耐摩耗性を改善することが可能な被覆部材を提供することができた。その結果、被覆部材の耐摩耗性の改善によって、生産性向上、並びにコスト低減に極めて有効となった。   The covering member of the present invention provides a covering member capable of reducing the residual compressive stress of the boron nitride film and further improving the wear resistance of the covering member in a use environment where wear resistance is required. I was able to. As a result, the improvement in wear resistance of the covering member has become extremely effective for improving productivity and reducing cost.

窒化硼素は硬質で耐熱性に優れていること、鉄との反応性が低いことから焼入れ鋼などの材料加工用途の切削工具として有望である。窒化硼素を主体とした皮膜は、例えば物理蒸着(以下、PVDと言う。)法による成膜においては、イオン衝撃等、被覆条件による残留応力、及び基材との熱的な歪みが加わることによる残留応力が発生する。特に前者の残留応力が支配的であり、極めて高い残留圧縮応力が皮膜内部に発生し、成膜後に放置すると剥離が発生する。また、耐摩耗皮膜として使用後、早期に剥離が発生する場合が多い。従って、窒化硼素を被覆した被覆部材にについて、被覆部材の耐摩耗性を改善することが本願発明の目的である。
本願発明の被覆部材は、硼素、窒素、酸素からなる化合物皮膜を被覆した部材である。従って例えば、残部が不可避的に混入した炭素、ナトリウム、カルシウム、タングステン等を含む場合もある。更に、化合物皮膜は結晶質窒化硼素内に非晶質窒化硼素が分散した組織構造を有する。言い換えると、マトリックス相としての結晶質窒化硼素が分散相の非晶質窒化硼素を取り囲む組織構造で構成することが本願発明の重要な改善点である。これらの組織構造から構成される場合、高硬度を有しながら、残留圧縮応力を低減させる効果を有する。これは非晶質窒化硼素が転移の進展を抑制し、その結果として残留圧縮応力を緩和するためである。この構成により、摩耗環境下において、窒化硼素の特性を十分に発揮しながら、同時に耐剥離性に優れ、耐摩耗性を改善することができる。ここで、化合物皮膜が結晶質窒化硼素内に非晶質窒化硼素が分散した組織構造を有する状態とは、化合物皮膜の断面組織において、結晶質窒化硼素が占有する領域の総面積をP、非晶質窒化硼素が占有する領域の総面積をQとしたとき、P≧Q、を満足する状態であると言うことが出来る。この組織構造を確認するためには、皮膜断面を透過電子顕微鏡によって観察することが有効である。
本願発明の被覆部材は、非晶質窒化硼素の領域の等価円直径が10nm未満を満足する場合、特に被覆部材の耐摩耗性改善に有効である。結晶質窒化硼素内に分散した非結晶質窒化硼素の領域の等価円直径が10nmを超える場合、結晶質窒化硼素内の残留圧縮応力が十分緩和されない場合がある。そのため耐剥離性が低下する傾向にあり不都合である。
本願発明の化合物皮膜における結晶質窒化硼素の結晶構造が、六方晶(以下、hcpと言う。)及び/又は面心立方晶(以下、fccと言う。)である場合、特に耐摩耗性の改善に有効である。結晶質窒化硼素の結晶構造がhcpの場合、潤滑性改善に有効である。また、fccの場合、耐摩耗に有効であり被覆部材の寿命が向上する。hcpとfccとが共存する場合は、これらの中間的特性を示す。特に結晶質窒化硼素の結晶構造のうち、fccよりもhcpの占める割合が高い場合、被覆部材の潤滑性改善、耐摩耗性改善に有効である。より具体的な窒化硼素内の結晶質窒化硼素の比率は、hcpが60%以上、97%以下、残部がfccから構成される場合が最適な比率である。
本願発明の化合物皮膜の窒化硼素内に硼素が酸化物として、質量%で、0.3%以上、10%未満存在する場合、特に残留圧縮応力の緩和に有効であり耐剥離性を改善することができるため、好ましい。一方、硼素の酸化物が0.3%未満の場合、酸素が残留圧縮応力低減に有効な作用がない。また、10%以上存在する場合には、化合物皮膜の強度が低下する傾向にあり好ましくない。硼素の結合状態を確認する方法は、X線光電子分光分析が有効である。
本願発明の化合物皮膜の窒化硼素内に硼素が単体として、質量%で、1%以上、25%未満存在することも窒化硼素層の残留圧縮応力の低減に有効である。一方、硼素の単体が1%未満の場合、残留圧縮応力低減に有効に作用しない場合が確認される。また、25%以上存在する場合には、皮膜の強度が低下する傾向にあり好ましくない。
本願発明の被覆部材は、基材と化合物皮膜との中間にA層を有し、該A層は周期律表4a、5a、6a族元素、Al、Siから選ばれる1種以上の元素の窒化物、酸化物、硼化物、硫化物、炭化物の何れか又はそれらの固溶体又は混合物からなる場合、好ましい。A層は基材と化合物皮膜との密着性を改善すること、化合物皮膜の特性を補完することができる。例えば、耐熱性に優れた層をA層に採用することにより、耐熱性と本発明の化合物皮膜の両特性を満足する皮膜特性が得られる。またA層は必ずしも上記元素から選択される1層である必要も無く、組成が異なる複数の層を積層することも可能であり耐摩耗性を改善することが可能であり好ましい。特に好ましいA層は、例えば(AlTi)N、(AlTiSi)N、(TiSi)N、(AlCr)N、(AlCrSi)N等が挙げられる。更に、化合物皮膜とA層とを交互に2層以上、5000層未満の範囲で積層することも耐摩耗性、耐剥離性改善の観点から好ましい。各層の層厚としては、2nm以上、2μm未満の範囲において積層効果が確認される。5000層を超えると耐剥離性が低下する傾向にあるため、不都合である。
Boron nitride is promising as a cutting tool for material processing applications such as hardened steel because it is hard and has excellent heat resistance and low reactivity with iron. A film mainly composed of boron nitride, for example, is formed by physical stress (hereinafter referred to as PVD) due to the application of residual stress due to coating conditions such as ion bombardment and thermal distortion with the substrate. Residual stress is generated. In particular, the former residual stress is dominant, and an extremely high residual compressive stress is generated inside the film, and peeling occurs when left after film formation. Moreover, peeling often occurs early after use as an abrasion resistant film. Accordingly, it is an object of the present invention to improve the wear resistance of a covering member coated with boron nitride.
The coated member of the present invention is a member coated with a compound film composed of boron, nitrogen, and oxygen. Therefore, for example, the balance may contain carbon, sodium, calcium, tungsten, etc. inevitably mixed. Further, the compound film has a structure in which amorphous boron nitride is dispersed in crystalline boron nitride. In other words, it is an important improvement of the present invention that the crystalline boron nitride as the matrix phase is composed of a textured structure surrounding the amorphous boron nitride in the dispersed phase. When comprised from these structure | tissue structures, it has the effect of reducing a residual compressive stress, having high hardness. This is because amorphous boron nitride suppresses the progress of the transition and, as a result, relieves the residual compressive stress. With this configuration, it is possible to exhibit the characteristics of boron nitride sufficiently in a wear environment, and at the same time, have excellent peel resistance and improve wear resistance. Here, the state in which the compound film has a structure in which amorphous boron nitride is dispersed in crystalline boron nitride means that the total area of the region occupied by crystalline boron nitride in the cross-sectional structure of the compound film is P, non- When the total area of the region occupied by the crystalline boron nitride is Q, it can be said that P ≧ Q is satisfied. In order to confirm this structure, it is effective to observe the cross section of the film with a transmission electron microscope.
The covering member of the present invention is particularly effective for improving the wear resistance of the covering member when the equivalent circular diameter of the amorphous boron nitride region satisfies less than 10 nm. If the equivalent circular diameter of the region of amorphous boron nitride dispersed in crystalline boron nitride exceeds 10 nm, the residual compressive stress in crystalline boron nitride may not be sufficiently relaxed. Therefore, the peeling resistance tends to be lowered, which is inconvenient.
When the crystalline boron nitride crystal structure in the compound film of the present invention is a hexagonal crystal (hereinafter referred to as hcp) and / or a face-centered cubic crystal (hereinafter referred to as fcc), the wear resistance is particularly improved. It is effective for. When the crystalline structure of crystalline boron nitride is hcp, it is effective for improving lubricity. Further, in the case of fcc, it is effective for wear resistance and the life of the covering member is improved. When hcp and fcc coexist, these intermediate characteristics are exhibited. In particular, when the ratio of hcp to fcc is higher than the crystalline structure of crystalline boron nitride, it is effective for improving the lubricity and wear resistance of the covering member. More specifically, the ratio of crystalline boron nitride in boron nitride is optimum when hcp is 60% or more and 97% or less, and the balance is fcc.
When boron is present in the boron nitride of the compound film of the present invention as an oxide in an amount of 0.3% or more and less than 10%, it is particularly effective in relieving residual compressive stress and improves peeling resistance. Is preferable. On the other hand, when the boron oxide is less than 0.3%, oxygen does not have an effective action for reducing the residual compressive stress. On the other hand, the presence of 10% or more is not preferable because the strength of the compound film tends to decrease. X-ray photoelectron spectroscopy is effective as a method for confirming the bonding state of boron.
It is also effective in reducing the residual compressive stress of the boron nitride layer that boron exists as a simple substance in the boron nitride of the compound film of the present invention in an amount of 1% or more and less than 25%. On the other hand, when the amount of boron alone is less than 1%, it is confirmed that the boron does not effectively reduce the residual compressive stress. On the other hand, the presence of 25% or more is not preferable because the strength of the film tends to decrease.
The covering member of the present invention has an A layer between the base material and the compound film, and the A layer is a nitride of one or more elements selected from periodic table 4a, 5a, 6a group elements, Al, and Si. It is preferable that it is made of any one of oxides, oxides, borides, sulfides and carbides, or a solid solution or a mixture thereof. A layer can improve the adhesiveness of a base material and a compound membrane | film | coat, and can supplement the characteristic of a compound membrane | film | coat. For example, by adopting a layer having excellent heat resistance as the A layer, film characteristics satisfying both the heat resistance and the characteristics of the compound film of the present invention can be obtained. In addition, the A layer is not necessarily one layer selected from the above elements, and a plurality of layers having different compositions can be laminated, and wear resistance can be improved. Particularly preferable examples of the A layer include (AlTi) N, (AlTiSi) N, (TiSi) N, (AlCr) N, and (AlCrSi) N. Furthermore, it is also preferable to laminate the compound film and the A layer alternately in the range of 2 or more and less than 5000 layers from the viewpoint of improving wear resistance and peel resistance. As the layer thickness of each layer, the stacking effect is confirmed in the range of 2 nm or more and less than 2 μm. Exceeding 5000 layers is inconvenient because the peel resistance tends to decrease.

本願発明の被覆部材の基材は、超硬合金、サーメット、高速度鋼、セラミックス等が挙げられ、何れも本願発明の効果が確認できることから、好適である。被覆部材は、切削工具が好ましく、耐摩耗性の改善効果が顕著に確認できる。切削工具としては、エンドミル、ドリル、刃先交換式工具、リーマ、ルーター、プリント基板用小径ドリル等が挙げられる。特に工具刃部直径が1mm未満の小径回転工具に有効である。本願発明の皮膜を被覆する手段としては、特に限定するものではないがPVD法としてスパッタリング法、フィルター方式アークイオンプレーティング法、電子ビーム方式イオンプレーティング法が挙げられる。化学蒸着(以下、CVDと言う。)法として、プラズマCVD法がある。その他、RF、ECR、レーザアブレーション、マイクロ波などによるグロー放電プラズマのもとで成膜する方法により被覆することができる。以下、本願発明を実施例に基づいて説明するが、本願発明は下記実施例に限定されるものではなく、使用分野により適宜変更することができる。   Examples of the base material of the covering member of the present invention include cemented carbide, cermet, high-speed steel, ceramics, and the like, and any of them is preferable because the effects of the present invention can be confirmed. The covering member is preferably a cutting tool, and the effect of improving wear resistance can be remarkably confirmed. Examples of the cutting tool include an end mill, a drill, a blade exchangeable tool, a reamer, a router, and a small-diameter drill for a printed circuit board. This is particularly effective for a small-diameter rotating tool having a tool blade diameter of less than 1 mm. The means for coating the coating of the present invention is not particularly limited, but PVD methods include sputtering, filter-type arc ion plating, and electron beam-type ion plating. As a chemical vapor deposition (hereinafter referred to as CVD) method, there is a plasma CVD method. In addition, it can coat | cover by the method of forming into a film under the glow discharge plasma by RF, ECR, laser ablation, a microwave. Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to the following Example, It can change suitably by the field of use.

本発明例1として、窒化硼素を主体とした化合物皮膜の組織構造を評価するための基材として、Co:8重量%、Cr:0.5重量%、VC:0.2重量%、硬さがHRA94.2の微粒子超硬合金製のインサートを用いた。
上記インサートの脱脂洗浄を十分に実施した後に、高周波バイアス電源及び高周波スパッタリング電源を有した成膜装置内の冶具に配置した。窒化硼素ターゲットは、スパッタリング蒸発源に設置した。窒化硼素以外の皮膜を同時に積層する場合は、別のスパッタリング蒸発源に設置した。装置内に設置した冶具は3回転/分で自公転する。成膜装置内を3×10−4Paまで真空排気し、基材温度が500℃となるよう加熱及び排気を行った。次に、Arガスを成膜装置内に導入し、カソード電極とアノード電極の間で放電することによりArガスのイオン化を行った。このとき基材にパルス状のバイアス電圧を印加した。このパルス状のバイアス電圧は、負バイアス電圧が200V、90%、正バイアス電圧が0V、10%、パルス周期は20kHzとした。イオン化されたArイオンは被覆基材に衝突し、基材のクリーニング及び活性化処理を行う。このとき、基材のクリーニング効率や活性度をより高めるためにXe、Kr、H等のガスを複合的に用いることも有効である。Ar及び/又は必要に応じその他のガスを容器内に導入し、全体の圧力を700mPa、バイアス電圧を−100Vに設定した。容器内に複数配置したスパッタリング蒸発源のうち、2台に窒化硼素ターゲットを装着した。夫々4kWの電力を供給し、スパッタリング放電を発生させ、高周波バイアス電圧が印加された被覆基材上に総厚約1μmの皮膜を被覆した。このとき、必要に応じ中間層としてのA層を形成することも可能であり、好ましい形態である。N、C、O、S、B等を窒化硼素皮膜内に含有させる手段は、成膜時の導入ガスの圧力レベル、窒素との混合ガスとして添加することも可能である。実施例により作成した試料は、窒化硼素ターゲット内に酸素が数百ppmオーダーで含まれているものを用いており、成膜中に酸素ガスの添加は行ってない。
As Example 1 of the present invention, Co: 8 wt%, Cr: 0.5 wt%, VC: 0.2 wt%, hardness as a base material for evaluating the structure of a compound film mainly composed of boron nitride Used HRA94.2 fine grain cemented carbide inserts.
After sufficiently degreasing and cleaning the insert, it was placed on a jig in a film forming apparatus having a high frequency bias power source and a high frequency sputtering power source. The boron nitride target was installed in a sputtering evaporation source. When coating films other than boron nitride at the same time, they were installed in another sputtering evaporation source. The jig installed in the device revolves at 3 revolutions / minute. The inside of the film forming apparatus was evacuated to 3 × 10 −4 Pa, and heated and evacuated so that the substrate temperature became 500 ° C. Next, Ar gas was introduced into the film forming apparatus, and Ar gas was ionized by discharging between the cathode electrode and the anode electrode. At this time, a pulsed bias voltage was applied to the substrate. The pulsed bias voltage was set such that the negative bias voltage was 200V, 90%, the positive bias voltage was 0V, 10%, and the pulse period was 20 kHz. The ionized Ar ions collide with the coated substrate, and the substrate is cleaned and activated. At this time, it is also effective to use a combination of gases such as Xe, Kr, and H 2 in order to further increase the cleaning efficiency and activity of the substrate. Ar and / or other gas were introduced into the container as needed, the whole pressure was set to 700 mPa, and the bias voltage was set to -100V. Of the plurality of sputtering evaporation sources arranged in the vessel, two boron nitride targets were mounted. Each 4 kW of electric power was supplied to generate sputtering discharge, and a coating having a total thickness of about 1 μm was coated on the coated substrate to which a high frequency bias voltage was applied. At this time, it is possible to form an A layer as an intermediate layer as necessary, which is a preferable mode. The means for containing N, C, O, S, B, or the like in the boron nitride film can be added as a pressure level of the introduced gas during film formation or as a mixed gas with nitrogen. The sample prepared according to the example uses a boron nitride target containing oxygen in the order of several hundred ppm, and oxygen gas is not added during film formation.

本発明例1の組織構造を確認するために日本電子製、JEM−2010F型電解放射型透過電子顕微鏡を用い、加速電圧200kVで格子像の観察を実施した。皮膜の結晶構造を確認するために、制限視野回折像の撮影を行った。このときカメラ長を50cm、制限視野領域を140nmに設定した。また微小部であるナノ領域の結晶構造を確認するために極微電子線回折をカメラ長50cm、ビーム径1nmの条件のもと実施した。本発明例1の直径140nm領域の制限視野回折像を図1に示す。図1より、本発明例1の皮膜内には、非晶質相と結晶質相が混在した組織構造であることがわかる。結晶質相は、hcpからなる窒化硼素であった。その構造を明確にするために、格子像の観察を実施した。その結果を図2に示す。図2より、窒化硼素層内には、結晶質窒化硼素のマトリックス相内に部分的に10nm未満の等価円直径を有した領域の非晶質窒化硼素が存在していることがわかる。図2中の領域3、4に対応した極微電子線回折結果を図3及び図4に示す。図3より、図2のTEM像において格子像が確認される領域3は、hcp構造の窒化硼素を含んでいるものと考えられるが、回折パターンから非晶質に近い構造であるとも考えられる。図1に示す広域の電子線回折パターンと図2の格子像観察結果から、格子像が観察される領域3はhcp構造の窒化硼素を含むと考えることが妥当である。一方、図4に示す格子像が確認されない領域4は、回折パターンから非晶質構造であることを示す。従って、本発明例1はhcp窒化硼素内に非晶質窒化硼素が分散した構造である。この他に、fcc窒化硼素内に非晶質窒化硼素が分散した組織構造、hcp窒化硼素内にfcc窒化硼素及び非晶質窒化硼素が分散した組織構造、またはfcc窒化硼素内にhcp窒化硼素及び非晶質窒化硼素が分散した組織構造、であっても本願発明の効果が得られる。非晶質窒化硼素領域における等価円直径の確認は、透過電子顕微鏡写真から実測した。
本発明例1の窒化硼素を主体とした化合物皮膜の組織構造を明確にするため、PHI社製Quantum2000型の走査型X線光電子分光装置により、構成元素の定性及び硼素の結合状態について解析を実施した。測定条件は、X線源をAl−Kα(モノクロ)を用い、分析領域を直径100μm、電子中和銃を使用した。これらの条件で測定したワイドスペクトルを図5に示す。図5より、本発明例1の窒化硼素を主体とした化合物皮膜内には、硼素、窒素、酸素を含んでいることがわかる。その他、不可避的に混入した元素を含んでいる。図6にB元素の1s軌道に帰属したスペクトルを示す。図7にこのスペクトルを分離したものを示す。図7より本発明例1の窒化硼素を主体とした化合物皮膜内の硼素は、窒素との結合が約79%、酸素との結合が約5%、硼素単体同士の結合が約16%存在していることがわかる。
In order to confirm the structure of Example 1 of the present invention, a lattice image was observed with an acceleration voltage of 200 kV using a JEM-2010F type electrolytic emission transmission electron microscope manufactured by JEOL. In order to confirm the crystal structure of the film, a limited field diffraction image was taken. At this time, the camera length was set to 50 cm and the limited visual field region was set to 140 nm. In addition, in order to confirm the crystal structure of the nano area which is a minute part, micro electron diffraction was performed under the conditions of a camera length of 50 cm and a beam diameter of 1 nm. FIG. 1 shows a limited field diffraction image of the 140 nm diameter region of Example 1 of the present invention. FIG. 1 shows that the film of Example 1 of the present invention has a structure in which an amorphous phase and a crystalline phase are mixed. The crystalline phase was boron nitride consisting of hcp. In order to clarify the structure, the lattice image was observed. The result is shown in FIG. As can be seen from FIG. 2, amorphous boron nitride in a region having an equivalent circular diameter of less than 10 nm partially exists in the matrix phase of crystalline boron nitride in the boron nitride layer. The microelectron beam diffraction results corresponding to the regions 3 and 4 in FIG. 2 are shown in FIGS. From FIG. 3, it can be considered that the region 3 in which the lattice image is confirmed in the TEM image of FIG. 2 contains boron nitride having an hcp structure, but it is also considered that the structure is close to amorphous from the diffraction pattern. From the wide-area electron diffraction pattern shown in FIG. 1 and the lattice image observation result of FIG. 2, it is appropriate to think that the region 3 where the lattice image is observed contains boron nitride having an hcp structure. On the other hand, the region 4 where the lattice image shown in FIG. 4 is not confirmed indicates an amorphous structure from the diffraction pattern. Therefore, Example 1 of the present invention has a structure in which amorphous boron nitride is dispersed in hcp boron nitride. In addition, a structure in which amorphous boron nitride is dispersed in fcc boron nitride, a structure in which fcc boron nitride and amorphous boron nitride are dispersed in hcp boron nitride, or hcp boron nitride in fcc boron nitride and The effect of the present invention can be obtained even with a structure in which amorphous boron nitride is dispersed. The equivalent circular diameter in the amorphous boron nitride region was confirmed from a transmission electron micrograph.
In order to clarify the structure of the compound film mainly composed of boron nitride of Example 1 of the present invention, the qualitative elements of elements and the bonding state of boron were analyzed using a Quantum 2000 scanning X-ray photoelectron spectrometer manufactured by PHI. did. The measurement conditions were such that the X-ray source was Al-Kα (monochrome), the analysis region was 100 μm in diameter, and an electron neutralizing gun was used. A wide spectrum measured under these conditions is shown in FIG. FIG. 5 shows that the compound film mainly composed of boron nitride of Example 1 of the present invention contains boron, nitrogen, and oxygen. In addition, unavoidably mixed elements are included. FIG. 6 shows a spectrum attributed to the 1s orbital of the B element. FIG. 7 shows the separated spectrum. From FIG. 7, boron in the compound film mainly composed of boron nitride of Example 1 of the present invention has about 79% of bonds with nitrogen, about 5% of bonds with oxygen, and about 16% of bonds between single boron atoms. You can see that

本願発明の被覆部材の耐摩耗性を評価するために、切削試験用工具として、超硬合金製の2枚刃ボールエンドミルも同時に装填し、被覆した。この2枚刃ボールエンドミルは、R5mmである。基材組成は、Co:7重量%、Cr:0.7重量%、VC:0.2重量%、硬さ、HRA94.1とした。本発明例1の被覆条件に概ね準拠した皮膜を作成し、本発明例2から17を作成した。被覆条件は、製膜時の混合ガス圧力、バイアス電圧、スパッタリング蒸発源の電力等の条件に種々の変更を施した。比較例18、19は、本発明例1の被覆条件に概ね準拠し、製膜時のガス圧力、バイアス電圧、スパッタリング蒸発源の電力等の条件に種々の変更を施した。中間層の被覆方法はAIP法のほかに、スパッタリング法、プラズマCVD法等により被覆することができる。   In order to evaluate the wear resistance of the coated member of the present invention, a two-blade ball end mill made of cemented carbide was simultaneously loaded and coated as a cutting test tool. This two-blade ball end mill is R5 mm. The base material composition was Co: 7% by weight, Cr: 0.7% by weight, VC: 0.2% by weight, hardness, HRA 94.1. Films generally conforming to the coating conditions of Invention Example 1 were prepared, and Invention Examples 2 to 17 were prepared. The coating conditions were variously changed in conditions such as mixed gas pressure at the time of film formation, bias voltage, and power of the sputtering evaporation source. Comparative Examples 18 and 19 were generally based on the coating conditions of Inventive Example 1, and various changes were made to conditions such as the gas pressure during deposition, the bias voltage, and the power of the sputtering evaporation source. In addition to the AIP method, the intermediate layer can be coated by sputtering, plasma CVD, or the like.

本発明例2〜比較例19を用い、逃げ面摩耗幅が0.1mmに達した切削長又は不安定な加工状態として、例えば火花発生、異音、加工面のむしれ、焼け、折損等などの状態に達した切削長を切削寿命とした。表1、2は、100m未満を切り捨てて表示した。
(切削条件)
切削方法:高速仕上げ加工
被削材:FCD500
切り込み:軸方向、1.2mm、径方向、0.05mm
主軸回転数:40kmin−1
テーブル送り:4m/min
切削油:無し、ドライ切削
Examples 2 to 19 of the present invention are used as the cutting length or unstable machining state in which the flank wear width reaches 0.1 mm, for example, generation of sparks, abnormal noise, peeling of the machining surface, burning, breakage, etc. The cutting length that reached this condition was defined as the cutting life. Tables 1 and 2 are displayed by rounding off less than 100 m.
(Cutting conditions)
Cutting method: High-speed finishing Work material: FCD500
Cutting depth: axial direction, 1.2 mm, radial direction, 0.05 mm
Spindle speed: 40kmin- 1
Table feed: 4m / min
Cutting oil: None, dry cutting

本発明例2は、hcpの窒化硼素をマトリックス相とし非晶質窒化硼素が分散した構造であり、本発明例3は、hcpの窒化硼素をマトリックス相とし非晶質窒化硼素とfcc相の窒化硼素が分散した構造であった。本発明例2、3は比較例に比べて剥離による異常摩耗が抑制され、その結果、優れた耐摩耗性を発揮した。本発明例4は、硼素が酸化物として、0.2%存在する場合を示す。硼素が酸化物として0.3%以上存在することが潤滑性の観点から好ましかった。本発明例5は、硼素と酸素との結合比率が11%である場合を示す。硼素が酸化物として10%未満存在する場合の方がより好ましい結果となった。本発明例6は、硼素と酸素との結合比率が14.5%であることに加えて、硼素単体として0.5%の結合比率を有する場合を示す。本発明例7は、硼素単体として27%の結合比率を有する場合を示す。この結果より、硼素単体として存在する場合の好ましい結合比率範囲を、1%以上、25%未満に設定することが好ましい。本発明例8は、A層にTiN層を2μm被覆した後に、本発明例1と同様の窒化硼素主体の化合物皮膜を被覆した場合を示す。本発明例9は、A層のTiNと本発明例1の窒化硼素主体の化合物皮膜とを交互に100層積層した場合を示す。本発明例10は、(TiAl)N層をA層とした場合を示す。本発明例11は、A層の(TiAl)N層と本発明例1の窒化硼素主体の化合物皮膜とを交互に1000層被覆した場合を示す。本発明例12は、(TiAl)N層を被覆後、(TiSi)N層を被覆し、その上層に本発明例1の窒化硼素主体の化合物皮膜を積層した場合を示す。本発明例13は、A層に(AlCr)N層を被覆した場合を示す。本発明例14は、A層に(AlCrSi)N層を被覆した場合を示す。本発明例15は、A層にTi(CN)層を被覆した場合を示す。本発明例16は、A層に(TiAlSi)N層を被覆した場合を示す。上記の本発明例8から16の様に、A層を用いることにより耐摩耗性が改善された。比較例17は、hcpの窒化硼素をマトリックス相とし、非晶質窒化硼素が分散した組織構造であり、分散した非晶質窒化硼素の領域の等価円直径が10nm以上の場合を示す。これより、10nm未満の構造が必要であることがわかった。比較例18は、窒化硼素皮膜が剥離することにより、窒化硼素そのものの耐摩耗効果が殆ど確認できなかった。比較例19は、硼素が酸化物として定性されなかった。窒化硼素皮膜が極めて脆くなり、剥離進行が著しく耐摩耗性の改善には至らなかった。比較例18は、窒化硼素皮膜が剥離することにより、窒化硼素そのものの耐摩耗効果が殆ど確認できなかった。比較例19は、硼素が酸化物として定性されなかった。窒化硼素皮膜が極めて脆くなり、剥離進行が著しく耐摩耗性の改善には至らなかった。   Inventive Example 2 has a structure in which amorphous boron nitride is dispersed with hcp boron nitride as a matrix phase, and Inventive Example 3 has a nitrided amorphous boron nitride and fcc phase with hcp boron nitride as a matrix phase. It was a structure in which boron was dispersed. Inventive Examples 2 and 3, abnormal wear due to peeling was suppressed as compared with the Comparative Example, and as a result, excellent wear resistance was exhibited. Invention Example 4 shows a case where 0.2% of boron is present as an oxide. It was preferable from the viewpoint of lubricity that boron is present as an oxide in an amount of 0.3% or more. Invention Example 5 shows a case where the bond ratio of boron and oxygen is 11%. More preferable results were obtained when boron was present in an amount of less than 10% as an oxide. Invention Example 6 shows a case where the bonding ratio of boron and oxygen is 14.5%, and the bonding ratio of boron is 0.5% as a simple substance of boron. Invention Example 7 shows a case where the boron simple substance has a bond ratio of 27%. From this result, it is preferable to set the preferable bond ratio range in the case of existing as a simple boron to 1% or more and less than 25%. Inventive Example 8 shows a case where a boron nitride-based compound film similar to Inventive Example 1 is coated after the A layer is coated with a 2 μm TiN layer. Invention Example 9 shows a case where 100 layers of the TiN of the A layer and the boron nitride-based compound film of Invention Example 1 are alternately laminated. Invention Example 10 shows a case where the (TiAl) N layer is an A layer. Invention Example 11 shows a case where 1000 layers of the (TiAl) N layer of A layer and the boron nitride-based compound film of Invention Example 1 are alternately coated. Invention Example 12 shows a case where the (TiAl) N layer is coated, the (TiSi) N layer is coated, and the boron nitride-based compound film of Invention Example 1 is laminated thereon. Invention Example 13 shows the case where the A layer is coated with an (AlCr) N layer. Invention Example 14 shows the case where the A layer is coated with an (AlCrSi) N layer. Invention Example 15 shows the case where the A layer is covered with a Ti (CN) layer. Invention Example 16 shows the case where the A layer is covered with a (TiAlSi) N layer. As in Examples 8 to 16 of the present invention, the wear resistance was improved by using the A layer. Comparative Example 17 has a structure in which hcp boron nitride is used as a matrix phase and amorphous boron nitride is dispersed, and the equivalent circular diameter of the dispersed amorphous boron nitride region is 10 nm or more. From this, it was found that a structure of less than 10 nm is necessary. In Comparative Example 18, the wear resistance effect of boron nitride itself could hardly be confirmed due to peeling of the boron nitride film. In Comparative Example 19, boron was not qualified as an oxide. The boron nitride film became extremely brittle and the peeling progressed remarkably, and the wear resistance was not improved. In Comparative Example 18, the wear resistance effect of boron nitride itself could hardly be confirmed due to peeling of the boron nitride film. In Comparative Example 19, boron was not qualified as an oxide. The boron nitride film became extremely brittle and the peeling progressed remarkably, and the wear resistance was not improved.

図1は、本発明例1の直径140nm領域の制限視野回折像を示す。FIG. 1 shows a limited field diffraction image of a 140 nm diameter region of Example 1 of the present invention. 図2は、本発明例1の透過電子顕微鏡写真を示す。FIG. 2 shows a transmission electron micrograph of Example 1 of the present invention. 図3は、図2の領域3に対応した極微電子線回折像を示す。FIG. 3 shows a microelectron beam diffraction image corresponding to the region 3 of FIG. 図4は、図2の領域4に対応した極微電子線回折像を示す。FIG. 4 shows a microelectron beam diffraction image corresponding to the region 4 in FIG. 図5は、本発明例1のX線光電子分光分析によるワイドスペクトルを示す。FIG. 5 shows a wide spectrum by X-ray photoelectron spectroscopy analysis of Example 1 of the present invention. 図6は、図5のうちB元素の1s軌道に帰属したスペクトルを示す。FIG. 6 shows the spectrum attributed to the 1s orbital of the B element in FIG. 図7は、図5のスペクトルを分離した結果を示す。FIG. 7 shows the result of separating the spectrum of FIG.

Claims (5)

基材表面に硼素、窒素、酸素からなる化合物皮膜を被覆した部材であり、該化合物皮膜は結晶質窒化硼素内に非晶質窒化硼素が分散した組織構造を有し、且つ、該化合物皮膜の断面における非晶質窒化硼素の領域の面積を、円の面積として置き換えた場合の直径である等価円直径として求めた場合、10nm未満であることを特徴とする被覆部材。 A member whose surface is coated with a compound film comprising boron, nitrogen, and oxygen, the compound film having a structure in which amorphous boron nitride is dispersed in crystalline boron nitride, and the compound film A covering member, wherein the area of an amorphous boron nitride region in a cross section is less than 10 nm when calculated as an equivalent circular diameter, which is a diameter when the area is replaced by a circle. 請求項1記載の被覆部材において、該化合物皮膜の硼素が酸化物として存在し、質量%で0.3%以上、10%未満であることを特徴とする被覆部材。 The covering member according to claim 1, wherein boron in the compound film is present as an oxide and is 0.3% or more and less than 10% by mass. 請求項1又は2記載の被覆部材において、該化合物皮膜の硼素が単体として存在し、質量%で1%以上、25%未満であることを特徴とする被覆部材。 The covering member according to claim 1 or 2, wherein boron of the compound film is present as a simple substance and is 1% or more and less than 25% by mass. 請求項1乃至3何れかに記載の被覆部材において、該基材と該化合物皮膜との中間にA層を有し、該A層は周期律表4a、5a、6a族元素、Al、Siから選ばれる1種以上の元素の窒化物、酸化物、硼化物、硫化物、炭化物の何れか、又はそれらの固溶体又は混合物からなることを特徴とする被覆部材。 The covering member according to any one of claims 1 to 3, further comprising an A layer between the substrate and the compound film, wherein the A layer is composed of elements 4a, 5a, and 6a of the periodic table, Al, and Si. A covering member comprising one or more of selected nitrides, oxides, borides, sulfides, carbides, or a solid solution or a mixture thereof. 請求項4記載の被覆部材において、該化合物皮膜と該A層とを2層以上、5000層未満の範囲で交互に積層したことを特徴とする被覆部材。
The covering member according to claim 4, wherein the compound film and the A layer are alternately laminated in a range of 2 or more and less than 5000 layers.
JP2005371234A 2005-12-26 2005-12-26 Coated member Pending JP2007169743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371234A JP2007169743A (en) 2005-12-26 2005-12-26 Coated member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371234A JP2007169743A (en) 2005-12-26 2005-12-26 Coated member

Publications (1)

Publication Number Publication Date
JP2007169743A true JP2007169743A (en) 2007-07-05

Family

ID=38296682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371234A Pending JP2007169743A (en) 2005-12-26 2005-12-26 Coated member

Country Status (1)

Country Link
JP (1) JP2007169743A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148568A (en) * 1984-08-09 1986-03-10 Sumitomo Electric Ind Ltd Tool coated with multilayered hard film
JPS62207869A (en) * 1986-03-06 1987-09-12 Sumitomo Electric Ind Ltd Parts coated with hard boron nitride containing oxygen
JPH06207274A (en) * 1993-01-11 1994-07-26 Kobe Steel Ltd Synthesizing method of cubic boron nitride film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148568A (en) * 1984-08-09 1986-03-10 Sumitomo Electric Ind Ltd Tool coated with multilayered hard film
JPS62207869A (en) * 1986-03-06 1987-09-12 Sumitomo Electric Ind Ltd Parts coated with hard boron nitride containing oxygen
JPH06207274A (en) * 1993-01-11 1994-07-26 Kobe Steel Ltd Synthesizing method of cubic boron nitride film

Similar Documents

Publication Publication Date Title
JP4704335B2 (en) Surface coated cutting tool
JP2007196365A (en) Insert for milling steel
JP4967505B2 (en) Covering member
JP5257750B2 (en) Surface coated cutting tool
SE529161C2 (en) Cutting tool with composite coating for fine machining of hardened steels
JPWO2006070730A1 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP4072155B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP2008240079A (en) Coated member
JP2010131741A (en) Surface-coated cutting tool
JP2009293111A (en) Hard film layer and its forming method
KR20190142359A (en) Sheath cutting tool
JP2007119795A (en) Hard film, and coated tool with hard film
JP3963354B2 (en) Coated cutting tool
JP2007084899A (en) Coating member, and method for coating coating member
JP3586218B2 (en) Coated cutting tool
JP2005111574A (en) Multilayered film coated tool and its coating method
WO2019171653A1 (en) Surface-coated cutting tool and method for producing same
WO2019171648A1 (en) Surface-coated cutting tool and method for producing same
JP2006026783A (en) Surface covering cutting tool
WO2019035219A1 (en) Coated cutting tool
JP4916176B2 (en) Covering member
JP2007224374A (en) Coated member
JP2007222995A (en) Coating member
KR101727420B1 (en) Laminated coating film having excellent abrasion resistance
JP4080481B2 (en) Surface-coated cutting tool and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081021

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101115

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315