JPS62243770A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS62243770A
JPS62243770A JP8493986A JP8493986A JPS62243770A JP S62243770 A JPS62243770 A JP S62243770A JP 8493986 A JP8493986 A JP 8493986A JP 8493986 A JP8493986 A JP 8493986A JP S62243770 A JPS62243770 A JP S62243770A
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
boron
high hardness
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8493986A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8493986A priority Critical patent/JPS62243770A/en
Publication of JPS62243770A publication Critical patent/JPS62243770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To stably produce and deposit high hardness cubic boron nitride by irradiating excimer laser light on a gaseous starting material to decompose the starting material and by bringing the resulting excited boron and nitrogen atoms into a reaction on a heated substrate. CONSTITUTION:A reaction chamber 5 is evacuated and a gaseous starting material contg. boron and nitrogen atoms is introduced into the chamber 5 from a gas feeding system 3 through a gas feeding pipe 4. A substrate 8 is heated to about 300-2,000 deg.C with a heater 7 and then laser light is introduced into the chamber 5 from excimer laser device 1 through the window 2 to decompose the gaseous starting material. The resulting excited boron and nitrogen atoms are brought into a reaction on the substrate 8 to produce and deposit a cubic boron nitride film. By this method, high hardness boron nitride giving a high quality film of a uniform thickness can be synthesized.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は立方晶窒化ホウ素を気相より基材表面に析出さ
せる、新規な高硬度窒化ホウ素の合成方法に関する。立
方晶窒化ホウ素は非常に硬度を有するのみならず、熱伝
導性に富み、化学的に安定であるに加えて、ダイヤモン
ドとは異なり鉄族金属に対する耐性にも優れるところか
ら、例えば切削工具、耐摩工具等の工具材料、さらには
ヒートシンク等の電子材料として用いて非常に優れたも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel method for synthesizing high-hardness boron nitride, in which cubic boron nitride is deposited on the surface of a substrate from a gas phase. Cubic boron nitride is not only extremely hard, but also highly thermally conductive, chemically stable, and unlike diamond, has excellent resistance to iron group metals, making it useful for example in cutting tools and wear-resistant materials. It is extremely suitable for use as tool materials such as tools, and furthermore as electronic materials such as heat sinks.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素を気相から合成する方法としては、例
えば次の三つの公知技術がある。
As methods for synthesizing cubic boron nitride from the gas phase, there are, for example, the following three known techniques.

1、 特公昭6G−181262号公報に記載される、
ホウ素を含有する蒸発源から基体上にホウ素を蒸着させ
ると共に、少なくとも窒素を含むイオン種を発生するイ
オン発生源から基体上に該イオン種を照射して、該基体
上に窒化ホウ素を生成させる立方晶窒化ホウ素膜の製造
方法。
1. Described in Japanese Patent Publication No. 6G-181262,
Boron is evaporated onto the substrate from an evaporation source containing boron, and the substrate is irradiated with ion species containing at least nitrogen from an ion generation source to generate boron nitride on the substrate. Method for manufacturing crystalline boron nitride film.

2、H!+N冨プラズマによるボロンの化学輸送を行う
ことによって、基体上に立方晶窒化ホウ素を生成する方
法〔文献1:コマツ外、ジャーナル オン マテリアル
ズ サイエンスレターズ、Journal of ma
terials 5cianceletters、4(
19E15)p、51〜54]。
2.H! A method for producing cubic boron nitride on a substrate by chemically transporting boron using +N-rich plasma [Reference 1: Komatsu et al., Journal on Materials Science Letters, Journal of Ma
terials 5ciance letters, 4(
19E15) p, 51-54].

五 HCD、(Hol’low Cathode Di
scharge  ホロー陰極放電)ガンにてボロンを
蒸発させながら、ホロー陰極からN2  をイオン化し
て基板に放射し、基板には高周波を印加してセルフバイ
アス効果を°持たせ、該基板上に立方晶窒化ホウ素を生
成する方法〔文献2:イナガワ外、フロシーディンゲス
 オン 9ス シンポジウム オン イオ/ ソース 
イオ、ンアシステッド チクノロシイ、Proceed
ingaof 9th 87mp081um On工o
n 5ource IonAsgigted Tech
nology 、  ’ B 5 、東京、 p−29
9〜302.(1985)]。
5 HCD, (Hol'low Cathode Di
While evaporating boron with a charge (hollow cathode discharge) gun, N2 is ionized from the hollow cathode and radiated onto the substrate, a high frequency is applied to the substrate to create a self-bias effect, and cubic nitriding is performed on the substrate. Method for producing boron [Reference 2: Inagawa et al., Flossiedinges on 9th Symposium on Io/Source
Io, Assisted Chikunoroshii, Proceed
ingaof 9th 87mp081um Onko
n 5source IonAsgigted Tech
nology, 'B5, Tokyo, p-29
9-302. (1985)].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記1の方法はイオンと−ムの発生装置
及び集束装置が高価であるという欠点を有する。前記2
の方法は高出力のRFプラズマを成膜に利用しているた
め、反応系からの不純物が混入しやすいという欠点を有
する。前記3の方法は1の方法と同じくイオンビームの
発生装置及び集束装置が高価であるに加え、不活性ガス
の原子が析出した窒化ホウ素に取り込まれるという欠点
を有している。
However, method 1 has the disadvantage that the ion generator and focusing device are expensive. Said 2
Since the method uses high-power RF plasma for film formation, it has the disadvantage that impurities from the reaction system are likely to be mixed in. Like method 1, method 3 has the drawback that the ion beam generator and focusing device are expensive, and in addition, atoms of the inert gas are incorporated into the deposited boron nitride.

本発明はこのような従来方法の欠点を解消し、より安価
な装置で高純度の立方晶窒化ホウ素を基材表面に生成・
析出できる新規な高硬度窒化ホウ素の合成方法を意図し
念ものである。
The present invention eliminates the drawbacks of these conventional methods and enables the production and production of highly pure cubic boron nitride on the surface of a substrate using less expensive equipment.
This study aims to develop a new method for synthesizing high-hardness boron nitride that can be precipitated.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、短波長領域で高出力を有するエキシマレ
ーザ−を使用することにより、原料ガスを分解、励起し
、一方基板を加熱しておくことKより、気相から基板上
に立方晶窒化ホウ素を析出させることを考えつき、本発
明に到達した。
The present inventors decomposed and excited the raw material gas by using an excimer laser with high output in the short wavelength region, and by heating the substrate, we created cubic crystals from the gas phase on the substrate. We came up with the idea of precipitating boron nitride and arrived at the present invention.

すなわち、本発明はホウ素原子含有ガス及び窒素原子含
有ガスからなる原料ガスにエキシマレーザ−光を照射し
て分解励起状態とし、該ガスを加熱された基板表面上で
反応させて、それにより該基板表面に立方晶窒化ホウ素
を析出させることを特徴とする高硬度窒化ホウ素の合成
方法である。
That is, the present invention irradiates a raw material gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas with excimer laser light to bring it into a decomposed and excited state, and causes the gas to react on the heated substrate surface, thereby causing the substrate to react. This is a method for synthesizing high hardness boron nitride, which is characterized by precipitating cubic boron nitride on the surface.

本発明の特に好ましい実施態様としては、ホウ素原子含
有ガス中のホウ素原子数と窒素原子含有ガス中の窒素原
子数との比B / Nが、[11≦B / N≦10で
ある上記方法およびエキシマレーザ−光を基板に対して
平行に照射する上記方法が挙げられる。
A particularly preferred embodiment of the present invention includes the above method, wherein the ratio B/N of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is [11≦B/N≦10; The above-mentioned method includes irradiating the substrate with excimer laser light in parallel.

以下、図面を参照して本発明を具体的に説明する。第1
図は本発明の実施態様を説明する図であって、反応室5
内の雰囲気を排気ポンプ11及び排気口12によ〕排気
し、原料ガスであるホウ素原子含有ガス及び窒素原子含
有ガスを、ガス供給系3から原料ガス供給管4を経て、
該反応室5内に導入する。該反応室5内の、基板支持台
6上には基板8を載置しておく。該基板8はヒーター7
により300〜2000Cの範囲に加熱されている。こ
のような状態において、エキシマレーザ−装置1よす、
レーサー光導入窓2を介して、該反応室5内にレーザー
光   ゛を入射すると、原料ガスは分解し、励起状の
ホウ素原子及び窒素原子を生じ、加熱された基板8上に
立方晶窒化ホク素膜が析出する。
Hereinafter, the present invention will be specifically explained with reference to the drawings. 1st
The figure is a diagram illustrating an embodiment of the present invention, and shows a reaction chamber 5.
The atmosphere inside is exhausted by the exhaust pump 11 and the exhaust port 12], and the boron atom-containing gas and the nitrogen atom-containing gas, which are raw material gases, are passed from the gas supply system 3 through the raw material gas supply pipe 4,
into the reaction chamber 5. A substrate 8 is placed on a substrate support stand 6 in the reaction chamber 5 . The substrate 8 is the heater 7
is heated to a temperature in the range of 300 to 2000C. In such a state, the excimer laser device 1,
When a laser beam is introduced into the reaction chamber 5 through the laser beam introduction window 2, the source gas is decomposed to produce excited boron atoms and nitrogen atoms, and cubic nitride atoms are deposited on the heated substrate 8. An elementary film is deposited.

なおヒーターに、よる加熱にかえて、第2図に示すよう
に赤外線ランプ9からの赤外線を赤外線導入窓10t−
通して反応室内に導入し加熱してもよい。第2図におい
て符番1〜6および8の意味するところは第1図と同じ
である。
Note that instead of heating with a heater, as shown in FIG.
It may also be introduced into the reaction chamber through the reactor and heated. In FIG. 2, the meanings of numbers 1 to 6 and 8 are the same as in FIG.

本発明に用いる原料ガスのホウ素原子含有ガスとしては
、例えばBIB@ 、  BCl2 g  BBrs。
Examples of the boron atom-containing raw material gas used in the present invention include BIB@, BCl2 g BBrs.

BIN3H@  等が挙げられる。また窒素原子含有ガ
スとしては、例えばN!、MHI  等が挙げられる。
Examples include BIN3H@. Further, examples of the nitrogen atom-containing gas include N! , MHI, etc.

本発明においては、上記のようなホウ素原子含有ガス及
び窒素原子含有ガスにエキシマレーザ−を入射すること
で、原料ガスを分解し、励起状のホウ素原子及び窒素原
子を生成させる。
In the present invention, an excimer laser is applied to the boron atom-containing gas and the nitrogen atom-containing gas as described above to decompose the raw material gas and generate excited boron atoms and nitrogen atoms.

エキシマレーザ−は、2dOnm〜400nmという短
波長(紫外線)領域に発振波長を有する。光エネルギー
Eは、 E=h  − λ (hニブランク定数、C:光速、λ:波長)の式で表さ
れるので、エキシマレーザ−の光子エネルギーは大であ
る。例えばエキシマレーザ−の一種であるArFレーザ
ーの光子エネルギーは147.2 Kcal/ mob
であるに対し、よプ長波長の赤外域で高出力を有するC
O!レーザーの光子エネルギーは2.7 Kcal/m
obと非常に近かい。
Excimer lasers have an oscillation wavelength in the short wavelength (ultraviolet) region of 2 dOnm to 400 nm. Since the light energy E is expressed by the formula: E=h - λ (h is a blank constant, C: speed of light, λ: wavelength), the photon energy of an excimer laser is large. For example, the photon energy of ArF laser, which is a type of excimer laser, is 147.2 Kcal/mob.
In contrast, C has high output in the infrared region with longer wavelengths.
O! The photon energy of the laser is 2.7 Kcal/m
Very close to ob.

従って、CO,レーザーよりもエキシマレーザ−の方が
、1個の光子によって、分子間結合を切断する力が大で
ある。
Therefore, an excimer laser has a greater power to break intermolecular bonds with a single photon than a CO laser.

本発明において用いるエキシマレーザ−の出力は1〜1
00Wの範囲が好ましい。出力が1Wより小さいと、成
膜速度が非常に小さくなシ、成膜に要する時間が長大に
なる。また、出力が100Wより大きいと、媒質ガスの
寿命が短かくなるため、出力減衰が顕著となり、安定出
力が得にくい。本発明において用いるエキシマレーザ−
の媒質ガスとしては、例えばArF 、 KrF 。
The output of the excimer laser used in the present invention is 1 to 1
A range of 00W is preferred. If the output is less than 1 W, the film formation rate will be very low and the time required for film formation will be long. Furthermore, if the output is greater than 100 W, the lifetime of the medium gas will be shortened, so the output attenuation will be significant and it will be difficult to obtain a stable output. Excimer laser used in the present invention
Examples of the medium gas include ArF and KrF.

IP!  ガス等が挙げられる。IP! Examples include gas.

なお、レーザーの入射方向は第1図又は第2図に示した
ように基板に対して平行とすることが好ましい。これは
、レーザーが基板に入射して基板を損傷することを避け
るためである。
Note that the direction of incidence of the laser is preferably parallel to the substrate as shown in FIG. 1 or 2. This is to prevent the laser from entering the substrate and damaging the substrate.

エキシマレーザ−光入射により生成した励起状ホウ素原
子及び窒素原子は、加熱された基板からの熱エネルギー
の助けを得て、互にsp”結合を形成し、該基板上に立
方晶窒化ホウ素が析出する。このときの基板温度は50
0〜2000℃の範囲が好ましい。基板温度300℃未
満では、sps結合を形成するための熱エネルギーとし
て不足であり、2000℃を超えると、形成された窒化
ホウ素膜が分解して、窒素が抜は出るからである。
Excited boron atoms and nitrogen atoms generated by the excimer laser beam incidence form sp" bonds with each other with the help of thermal energy from the heated substrate, and cubic boron nitride is precipitated on the substrate. The substrate temperature at this time is 50
A range of 0 to 2000°C is preferred. This is because if the substrate temperature is less than 300° C., there is insufficient thermal energy to form an sps bond, and if it exceeds 2000° C., the formed boron nitride film will decompose and nitrogen will be extracted.

また本発明において、ホウ素原子含有ガス中のホウ素原
子数と窒素原子含有ガス中の窒素原子数との比B / 
Mはα1≦B / N≦10の範囲が好ましい。B /
 N (α1であると、非晶質状窒化ホウ素膜が析出し
やす<、B/N>10であるとホウ素が過剰となシ、非
晶質状のホウ素が形成されやすいからである。
Further, in the present invention, the ratio of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is B /
M is preferably in the range α1≦B/N≦10. B/
This is because if N (α1), an amorphous boron nitride film is likely to precipitate, and if B/N>10, boron becomes excessive and amorphous boron is likely to be formed.

なお本発明では水素ガスの存在は要しない。Note that the present invention does not require the presence of hydrogen gas.

水素ガスの存在は、B−M結合よりB−H結合の方が結
合しやすいために、0BII(立方晶窒化ホウ素)膜の
El  8P’結合に水素が入シ込んでcI3N作成の
阻害要因となるが、本発明はこのような水素ガスを要せ
ずK c B Nを製造できる点で有利である。
The presence of hydrogen gas causes hydrogen to enter the El 8P' bonds of the 0BII (cubic boron nitride) film and inhibit the formation of cI3N, since B-H bonds are easier to bond than B-M bonds. However, the present invention is advantageous in that K c BN can be produced without requiring such hydrogen gas.

本発明において用いられる基板としては特に限定される
ところはなく、例えばシリコン基板、モリブデン基板、
WCC超超硬合金の他の合金基板等多種の基板が用いら
れる。
The substrate used in the present invention is not particularly limited, and includes, for example, a silicon substrate, a molybdenum substrate,
Various types of substrates can be used, including alloy substrates other than WCC cemented carbide.

本発明は成膜手段として、一度発振するとそのパワーが
一定しているレーザー光を用いるので、プラズマO’V
D法のような例えば圧力、アース・マツチングといった
外的影響を受けやすい方法に比して、非常に安定に成膜
することができる。またレーザー光としては、1個の光
子エネルギーが大きいエキシマレーザ−を用いるので、
CO,レーザーのように大出力は要せず、1〜100W
という低出力で立方晶窒化ホウ素を製造できる。したが
って、装置寿命の延長が可能となる。
Since the present invention uses a laser beam whose power remains constant once it oscillates as a film forming means, plasma O'V
Compared to methods such as D method, which are susceptible to external influences such as pressure and earth matching, it is possible to form a film very stably. In addition, as the laser beam, we use an excimer laser with a large photon energy, so
Does not require high power like CO, laser, 1~100W
Cubic boron nitride can be produced at such low output. Therefore, it is possible to extend the life of the device.

[実施ff1J ] 実施例1 第1図の構成により、基板としてはシリコンウェハーを
用い、反応原料ガスとしてジボラン1cc / mtn
及び窒素4■/ winを流し、反応管内圧力は、Q、
I Torr  に調整し、基板温度は800℃とした
。エキシマレーザ−としては、ムrF’レーザーを用い
て、出力10Wで、3時間反応を続けた結果、基板表面
に厚さ約(18μmの窒化ホウ素膜が生成した。
[Implementation ff1J] Example 1 According to the configuration shown in FIG. 1, a silicon wafer was used as the substrate, and 1 cc/mtn of diborane was used as the reaction raw material gas.
and nitrogen 4/win, and the pressure inside the reaction tube was Q,
I Torr was adjusted, and the substrate temperature was 800°C. As the excimer laser, a MurF' laser was used and the reaction was continued for 3 hours at an output of 10 W. As a result, a boron nitride film with a thickness of approximately (18 μm) was formed on the substrate surface.

得られた窒化ホウ素膜について、0uKa線でX線回折
を行ったところ、2θが43°付近に(1,1,1)ピ
ークを検出したことから、該膜が立方晶窒化ホウ素であ
ると同定できた。
When the obtained boron nitride film was subjected to X-ray diffraction using 0uKa rays, a (1,1,1) peak was detected near 2θ of 43°, which identified the film as cubic boron nitride. did it.

実施例2 第1図の構成により、基板としてモリブデン基板を用い
、反応原料ガスとしてジボラン1cc/ min及び窒
素4 CC/ minを流し、反応管内圧力は[12T
orr  に調整し、基板温度を1000℃とした。エ
キシマレーザ−としてはArFレーザーを用い、出力1
5Wで、4時間反応を続けたところ、基板表面に厚さ約
1−の窒化ホウ素膜が生成した。
Example 2 According to the configuration shown in Fig. 1, a molybdenum substrate was used as the substrate, diborane 1 cc/min and nitrogen 4 cc/min were flowed as reaction raw material gases, and the pressure inside the reaction tube was [12T].
orr, and the substrate temperature was set to 1000°C. An ArF laser is used as the excimer laser, with an output of 1
When the reaction was continued for 4 hours at 5W, a boron nitride film with a thickness of about 1-1 was formed on the substrate surface.

得られた窒化ホウ素膜についてX線回折を行ったところ
、実施例1と同様に(1,1,1)のピークが検出され
、立方晶窒化ホウ素であると同定できた。
When the obtained boron nitride film was subjected to X-ray diffraction, a (1,1,1) peak was detected as in Example 1, and it was identified as cubic boron nitride.

実施例5 第2図の構成により、基板としてはモリブデン基板を用
い、反応原料ガスとしてBCI、  5CC/m1n及
びNH35cc/ minを流し、反応管内圧はαI 
Torr  に調整し、基板温度を900℃になるよう
に赤外線ランプ強度を調整した。エキシマレーザーとし
てdirFレーザーを用い、出力20Wで、3時間反応
を続けたところ、基板表面に厚さ約0.9μmの窒化ホ
ウ素膜が生成した。該膜をX線回折の結果(1,1,1
)のピークが検出され、やけ9立方晶窒化ホウ素である
と同定できた。
Example 5 According to the configuration shown in Fig. 2, a molybdenum substrate was used as the substrate, BCI, 5 CC/ml, and NH 35 cc/min were flowed as the reaction raw material gas, and the reaction tube internal pressure was αI.
Torr, and the infrared lamp intensity was adjusted so that the substrate temperature was 900°C. When a dirF laser was used as an excimer laser and the reaction was continued for 3 hours at an output of 20 W, a boron nitride film with a thickness of about 0.9 μm was formed on the substrate surface. The film was subjected to X-ray diffraction (1, 1, 1
) was detected, and it was identified as 9-cubic boron nitride.

以上の実施列マないし30条件で立方晶窒化ホウ素を得
ることができたので、これを用いてチップにコーティン
グを行い、得られた立方晶11化ホウ素コーテイングチ
ツプについて切削テストを行った。また、比較として、
コーティングなしのチップ及びOVD法によりAj!O
,コーティングしたチップについても切削テストを行っ
た。
Since cubic boron nitride could be obtained under the above implementation conditions, a chip was coated with it, and a cutting test was conducted on the resulting cubic boron 11-decide coated chip. Also, for comparison,
Aj! by uncoated chip and OVD method! O
, Cutting tests were also conducted on the coated chips.

なお、チップとしては材質がWCC超超硬合金工So 
M−10グレード)であるTNMG 532  の切削
チップを用い、コーティング層を有するものについては
いずれも、該層厚を3μm とした。
The material of the chip is WCC cemented carbide.
A cutting tip of TNMG 532 (M-10 grade) was used, and the thickness of the coating layer was 3 μm in all cases.

切削テスト条件を表1に、その結果を表2にまとめて示
す。
The cutting test conditions are summarized in Table 1, and the results are summarized in Table 2.

表2の結果から、本発明によシ製造した立方晶窒化ホウ
素を被覆層として切削チップに用いた場合、非常に耐摩
耗性に優れていることがわかる。
From the results in Table 2, it can be seen that when the cubic boron nitride produced according to the present invention is used as a coating layer in a cutting tip, it has very excellent wear resistance.

表1 表2 〔発明の効果〕 以上説明したように、本発明は光子エネルギーの大きい
エキシマレーザ−を用い低出力で立方晶窒化ホウ素を安
定に水素ガスを要せずに製造できるため、高品質で膜厚
の均一な立方晶窒化ホウ素を装置コスト、生産コスト共
に従来法よシ低減して得ることができる。また、外的影
響を受けに〈〈出力の安定し九レーザーi#4tnるの
で、加熱・励起手段として種々の手段の選択が可能な点
も有利である。
Table 1 Table 2 [Effects of the Invention] As explained above, the present invention uses an excimer laser with high photon energy to stably produce cubic boron nitride at low output without requiring hydrogen gas, resulting in high quality. Thus, cubic boron nitride having a uniform film thickness can be obtained with lower equipment costs and production costs than conventional methods. Further, since the output of the laser beam is stable regardless of external influences, it is advantageous that various heating and excitation means can be selected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する図で、ヒーターに
より加熱する例を示す概略の断面図である。 第2図は本発明の別の実施M様であって、赤外線により
加熱する例を示す概略の断面図である。
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a schematic cross-sectional view showing an example of heating with a heater. FIG. 2 is a schematic cross-sectional view showing another embodiment M of the present invention, in which heating is performed using infrared rays.

Claims (3)

【特許請求の範囲】[Claims] (1)ホウ素原子含有ガス及び窒素原子含有ガスからな
る原料ガスにエキシマレーザー光を照射して分解励起状
態とし、該ガスを加熱された基板表面上で反応させて、
それにより該基板表面に立方晶窒化ホウ素を析出させる
ことを特徴とする高硬度窒化ホウ素の合成方法。
(1) A raw material gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is irradiated with an excimer laser beam to bring it into a decomposed and excited state, and the gas is reacted on the heated substrate surface,
A method for synthesizing high hardness boron nitride, which comprises depositing cubic boron nitride on the surface of the substrate.
(2)ホウ素原子含有ガス中のホウ素原子数と窒素原子
含有ガス中の窒素原子数との比B/Nが、0.1≦B/
N≦10である特許請求の範囲第(1)項に記載の高硬
度窒化ホウ素の合成方法。
(2) The ratio B/N of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is 0.1≦B/
The method for synthesizing high hardness boron nitride according to claim (1), wherein N≦10.
(3)エキシマレーザー光を基板に対して平行に照射す
る特許請求の範囲第(1)項に記載の高硬度窒化ホウ素
の合成方法。
(3) The method for synthesizing high hardness boron nitride according to claim (1), wherein the excimer laser beam is irradiated parallel to the substrate.
JP8493986A 1986-04-15 1986-04-15 Method for synthesizing high hardness boron nitride Pending JPS62243770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8493986A JPS62243770A (en) 1986-04-15 1986-04-15 Method for synthesizing high hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8493986A JPS62243770A (en) 1986-04-15 1986-04-15 Method for synthesizing high hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS62243770A true JPS62243770A (en) 1987-10-24

Family

ID=13844626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8493986A Pending JPS62243770A (en) 1986-04-15 1986-04-15 Method for synthesizing high hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS62243770A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139591A (en) * 1989-12-06 1992-08-18 General Motors Corporation Laser deposition of crystalline boron nitride films
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139591A (en) * 1989-12-06 1992-08-18 General Motors Corporation Laser deposition of crystalline boron nitride films
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5279869A (en) * 1989-12-06 1994-01-18 General Motors Corporation Laser deposition of cubic boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
EP0439135B1 (en) Method for producing boron nitride film
US4714625A (en) Deposition of films of cubic boron nitride and nitrides of other group III elements
JPS62243770A (en) Method for synthesizing high hardness boron nitride
US5286533A (en) Method of making hard boron nitride by a plasma CVD method employing beam irradiation
JPS6184379A (en) Production of high-hardness boron nitride film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPH0819523B2 (en) High hardness boron nitride synthesis method
JPS6369973A (en) Production of cubic boron nitride film
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPH0814023B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPH01104775A (en) Method for synthesizing high-hardness boron nitride
JPH04191358A (en) Production of boron nitride film
JPH03219066A (en) Method for forming boron nitride thin film
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPH04119982A (en) Production of boron nitride film
JPH06199595A (en) Method for synthesizing diamond
JPS61221371A (en) Method for synthesizing diamond
JPH04314865A (en) Method for synthesizing cubic boron nitride
JPH04341566A (en) Method for synthesizing cubic boron nitride