JPS6184379A - Production of high-hardness boron nitride film - Google Patents

Production of high-hardness boron nitride film

Info

Publication number
JPS6184379A
JPS6184379A JP20454884A JP20454884A JPS6184379A JP S6184379 A JPS6184379 A JP S6184379A JP 20454884 A JP20454884 A JP 20454884A JP 20454884 A JP20454884 A JP 20454884A JP S6184379 A JPS6184379 A JP S6184379A
Authority
JP
Japan
Prior art keywords
plasma
boron nitride
cbn
film
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20454884A
Other languages
Japanese (ja)
Other versions
JPH059513B2 (en
Inventor
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20454884A priority Critical patent/JPS6184379A/en
Publication of JPS6184379A publication Critical patent/JPS6184379A/en
Publication of JPH059513B2 publication Critical patent/JPH059513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce efficiently a high-hardness BN film on the surface of a base body by installing the base body in a reaction chamber, introducing a gas for forming BN into the chamber, generating plasma and projecting laser light thereby accelerating the bond between B and N. CONSTITUTION:An N-contg. gas such as N2 is introduced through the 1st introducing pipe 4 into the reaction chamber 1 in which a magnetic field is applied by a coil 2 for an electromagnet. A microwave is introduced at the same instant through a waveguide 3 into the chamber to generate the plasma. A voltage is impressed to the plasma by an ion accelerating electrode 13 consisting of an earth electrode 14 and a bias electrode 15 to form an ion beam in a deposition chamber 5. Said beam is irradiated to the base body 7 on a sample base 6. A B-contg. gas such as B2H6 is ejected toward the body 7 from the 2nd introducing pipe 8 at the same instart to grow the BN in a vapor phase on the body 7. The laser 10 in a 7.5-12mum wavelength region is scanned from a laser light projecting source 9 on the body 7 via an introducing window 11 and a reflecting plate 12. The high-hardness BN film consisting essentially of CBN and WBN is thus formed on the base body 7.

Description

【発明の詳細な説明】 本発明はレーザー光を利用して高硬度を達成した窒化ホ
ウ素膜(以下、窒化ホウ素をBNと略す)の製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a boron nitride film (hereinafter, boron nitride is abbreviated as BN) that achieves high hardness using laser light.

〔産業上の利用分野〕[Industrial application field]

BNには立方晶窒化ホウ素(以下、CBNと略す)、六
方最密充填窒化ホウ素(以下、WBNと略す)、六方晶
窒化ホウ素(以下、HBNと略す)の結晶構造があり、
この中でCBN及びWBNは耐熱衝撃性、熱伝導性、硬
度及び耐摩耗性、並びに高温での鉄族金属に対する耐性
にも優れているため種々の広範な用途に注目されており
、これに伴い良質のCBNやWBNの製法が研究されて
いる。
BN has the following crystal structures: cubic boron nitride (hereinafter abbreviated as CBN), hexagonal close-packed boron nitride (hereinafter abbreviated as WBN), and hexagonal boron nitride (hereinafter abbreviated as HBN).
Among these, CBN and WBN are attracting attention for a variety of wide-ranging applications due to their excellent thermal shock resistance, thermal conductivity, hardness and wear resistance, as well as resistance to iron group metals at high temperatures. Research is being conducted on manufacturing methods for high-quality CBN and WBN.

〔従来の技術〕[Conventional technology]

公知の製法技術として高価な装置を使用して数万気圧且
つ十数百度という超高圧・超高温のもとて合成できる方
法があるが、近時、気相成長法によって基体の表面に効
率的番こCBNやWBNを合成して、その薄膜を生成す
ることも研究されている。
As a well-known manufacturing method, there is a method that uses expensive equipment and can be synthesized under ultra-high pressure and ultra-high temperature of tens of thousands of atmospheres and tens of hundreds of degrees Celsius, but recently, vapor phase growth method has been used to efficiently coat the surface of the substrate. Research has also been conducted into synthesizing CBN and WBN and producing thin films thereof.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

プラズマCVD法、反応イオンブレーティング法などf
こよっては未だCBNやWBNの合成が報告されておら
ず、近時、イオン化合成法によって比較的良質なCBN
やWBNの膜が合成できたという報告があるに過ぎない
。因番こ、このイオン化合成法によればホウ素を電子衝
撃で飛ばして基体をこ蒸着させ、同時に窒素イオンを照
射することにより、この基体上にCBNやV/BNの膜
が形成できるというものである。
Plasma CVD method, reactive ion blating method, etc.
Therefore, the synthesis of CBN and WBN has not been reported yet, and recently, relatively high quality CBN has been produced using ionization synthesis method.
There are only reports that a film of or WBN could be synthesized. According to this ionization synthesis method, a CBN or V/BN film can be formed on the substrate by evaporating boron by electron bombardment and simultaneously irradiating it with nitrogen ions. be.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者は先に提案されたイオン化合成法の他にCBN
やWBHの合成に相応しい新規な気相成長法を開発する
に当り、鋭意研究の結果、電子サイクロトロン共鳴励起
プラズマを利用し且つそのプラズマにレーザー光を投光
してエネルギー供給することにより高硬度BN膜が形成
できることを見い出した。
In addition to the previously proposed ionization synthesis method, the present inventor has discovered that CBN
In developing a new vapor phase growth method suitable for the synthesis of BN and WBH, as a result of intensive research, we found that high hardness BN can be produced by utilizing electron cyclotron resonance excited plasma and supplying energy by projecting laser light into the plasma. It was discovered that a film could be formed.

本発明は上記知見により完成されたものであり、その目
的はCBNやWBI!Jの膜を効率曲番こ合成する新規
な高硬度BN膜の製法を提供することにある。
The present invention was completed based on the above knowledge, and its purpose is to support CBN and WBI! The object of the present invention is to provide a new method for producing a high hardness BN film by efficiently synthesizing the J film.

本発明の他の目的はCBNやvllBNの生成を促進し
て硬度特性を一段と向上せしめると共にこの高硬度BN
−膜を高い膜生成速度で基体上に形成させる方法を提供
するにある。
Another object of the present invention is to further improve the hardness properties by promoting the production of CBN and vllBN, and to
- To provide a method for forming a film on a substrate at a high film formation rate.

本発明によれば、内部に基体が設置された反応室にBN
生成用ガスを導入すると共に該反応室内部にプラズマを
発生させて化学気相成長法により該基体表面上にCBN
を生成させるBN膜の製法であって、前記反応室内部の
プラズマにホウ素原子と窒素原子の結合を促進させるよ
うにレーザー光を投光したことを特徴とする高硬度BN
膜の製法が提供される。
According to the present invention, BN is added to the reaction chamber in which the substrate is installed.
CBN is deposited on the surface of the substrate by chemical vapor deposition by introducing a generation gas and generating plasma inside the reaction chamber.
A method for producing a BN film that produces high hardness BN, characterized in that a laser beam is projected into the plasma inside the reaction chamber to promote the bonding of boron atoms and nitrogen atoms.
A method of making a membrane is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は第1図に示す電子サイクロトロン共鳴型放電装
置を使用してBN膜を形成し、 BN生成用ガスの導入
に伴って発生するプラズマ雰囲気に所定の波長領域を有
するレーザー光を投光してエネルギー供給することに特
徴がある。
In the present invention, a BN film is formed using an electron cyclotron resonance discharge device shown in FIG. It is characterized by the fact that it supplies energy.

第1図中反応室(1)の外部に電磁石用コイル(2)を
配置して反応室(1)内に磁場をかけ、且つマイクロ波
(2,45GHz )が導波管(3)を介してこの反応
室(1)へ導入される。本装置によればBN生成用ガス
に窒素原子含有ガス及びホウ素原子含有ガスを使用する
に当り、N2 、 NHs  などの窒素原子含有ガス
(以下、N含有ガスと略す)が第1導入管(4)を通し
て反応室(1)に導入されると同時に、電子サイクロト
ロン共鳴が生じ、電子がN含有ガスと衝突して放電し、
プラズマを発生せしめ、次いでこのプラズマにイオン加
速電圧を印加するに伴って析出室(5)にイオンビーム
を形成して試料台(6)に設置された基体(7)上lこ
照射し、同時にこの基体(7)へ向けて、BIH6、(
C2Hb)aB 、 BCJa 、 ”BBrsなどの
ホウ素原子含有ガス(以下、B含有ガスと略す)を、析
出室(5)の一部番こ設けられた第2導入管(8)を介
して噴出させるとCBN及びW’BNがこの基体(7)
の上沓こ気相成長される。そして、この気相成長に際し
てレーザー投光源(9)より所定の波長領域を有するレ
ーザー光αωをレーザー光導入窓(111を介して析出
室(5)内部へ導入し、そしてこのレーザー光0■をプ
ラズマ雰囲気(こ照射するについては走査機能編有する
反射板[13により反射させて基体(7)の表面上に走
査するとよい。
In Figure 1, an electromagnetic coil (2) is placed outside the reaction chamber (1) to apply a magnetic field inside the reaction chamber (1), and microwaves (2.45 GHz) are transmitted through the waveguide (3). The lever is introduced into the reaction chamber (1). According to this device, when using a nitrogen atom-containing gas and a boron atom-containing gas as the BN generating gas, a nitrogen atom-containing gas such as N2 or NHs (hereinafter abbreviated as N-containing gas) is introduced into the first inlet pipe (4). ) is introduced into the reaction chamber (1) at the same time, electron cyclotron resonance occurs, and the electrons collide with the N-containing gas and discharge,
A plasma is generated, and an ion accelerating voltage is applied to the plasma to form an ion beam in the deposition chamber (5), and the ion beam is irradiated onto the substrate (7) placed on the sample stage (6). BIH6, (
A boron atom-containing gas (hereinafter abbreviated as B-containing gas) such as C2Hb)aB, BCJa, and ``BBrs'' is ejected through a second introduction pipe (8) provided in one part of the precipitation chamber (5). and CBN and W'BN are this substrate (7)
This is grown in the vapor phase. During this vapor phase growth, laser light αω having a predetermined wavelength range is introduced from the laser light source (9) into the precipitation chamber (5) through the laser light introduction window (111), and this laser light 0 Plasma atmosphere (for irradiation, it is preferable to scan the surface of the substrate (7) by reflecting it with a reflection plate [13] having a scanning function.

即ち、電子のサイクロトロン周波数fは、電荷、B:磁
束密度とする)に基いて、サイクロトロン運動を起こし
、この周波数fがマイクロ波(2,45GHz )の周
波数と一致すると共鳴し、その結果、電子がN含有ガス
の分子、イオン及びラジカルと衝突して高励起状態の放
電現象が著しく増大し、プラズマ中のイオン化率が一層
大きくなる。
That is, the cyclotron frequency f of electrons causes cyclotron motion based on the electric charge (B: magnetic flux density), and when this frequency f matches the frequency of microwaves (2.45 GHz), it resonates, and as a result, the electron collides with molecules, ions, and radicals of the N-containing gas, and the highly excited state discharge phenomenon increases significantly, further increasing the ionization rate in the plasma.

このようにプラズマイオン密度が大きいためにガスの圧
力を10  乃至10  torr  に設定すること
ができ、イオン化合成法に比べて著しく減圧することが
できるため高純度且つイオン密度の大きいプラズマが発
生する。
Since the plasma ion density is thus high, the gas pressure can be set to 10 to 10 torr, and the pressure can be significantly reduced compared to the ionization synthesis method, so a plasma of high purity and high ion density is generated.

本発明においては、上記の如く反応室(1)内に発生し
たプラズマを析出室(5)内でイオンビームにして試料
台(6)に設置された基体(7)に衝突させると同時に
、B含有ガスを所定の流量で基体(7)へ向けて噴出さ
せることが重要である。つまり、イオン加速電極11(
支)にバイアス電圧をかけることに伴い、プラズマにイ
オン加速電圧を印加させるが、このイオン加速電極(向
は反応室(1)の内壁に設けられたアース電極計及び反
応室(1)と析出室(5)とを隔壁すると共にイオンビ
ームの発射場所となる多孔状のバイアス電極(113か
ら構成され、バイアス電極(1!ilを負として両電極
卸(1男の間に50乃至5000 Vの範囲で印加させ
るとよい。このバイアス電圧が50v未満であるとCB
NやWBNの生成に必要な窒素源が不足して基体上に形
成されたBN膜中にCBN及びWBNの特性が小さくな
り、5000 V  を超えると成膜速度が低下して生
産効率が劣化する。従って、このバイアス電圧は50乃
至5000 V 、好ましくは200乃至1000 V
がよい。そして、プラズマの正イオンが基体(7)に対
してイオンビーム照射されることによってCBN @W
BN生成用の窒素源が高エネルギーとなり、基体(7)
に衝突すると同時番こ、B含有ガスが第2導入管(8)
を介して基体(7)に噴出されると、CBN 、 WB
Nが合成されるべくN原子及びB原子のそれぞれがSP
混成軌道をもった高励起状態となる。
In the present invention, the plasma generated in the reaction chamber (1) as described above is turned into an ion beam in the deposition chamber (5) and is made to collide with the substrate (7) installed on the sample stage (6). It is important to blow out the contained gas toward the substrate (7) at a predetermined flow rate. In other words, the ion accelerating electrode 11 (
By applying a bias voltage to the ion accelerating electrode (support), an ion accelerating voltage is applied to the plasma. It consists of a porous bias electrode (113) that partitions the room (5) and serves as the ion beam emission site. It is recommended to apply the bias voltage within the range.If this bias voltage is less than 50V, the CB
The characteristics of CBN and WBN in the BN film formed on the substrate become small due to a lack of nitrogen source necessary for the generation of N and WBN, and when the voltage exceeds 5000 V, the film formation rate decreases and production efficiency deteriorates. . Therefore, this bias voltage is between 50 and 5000 V, preferably between 200 and 1000 V.
Good. Then, the positive ions of the plasma are irradiated with an ion beam onto the base (7), thereby forming a CBN@W
The nitrogen source for BN production becomes high energy, and the substrate (7)
At the same time, the B-containing gas flows into the second inlet pipe (8).
When ejected onto the base (7) through CBN, WB
In order for N to be synthesized, each of the N atom and B atom is SP
It becomes a highly excited state with a hybrid orbital.

かかるSP 混成軌道をもったN原子及びB原子から効
率よ< CBNやWBNが合成されるためには反応室(
1)及び析出室(5)のそれぞれに導入されるN含有ガ
ス及びB含有ガスのそれぞれに含まれるN原子及びB原
子の原子比率を特定することが重要であり、当該B原子
憂こ対するN原子の原子比率を1/10乃至10  の
範囲となるように設定することが好ましく、この設定範
囲から外れると析出中、CBNやWBNの含有率がかな
り少なくなる。この最適条件は1/2乃至3の範囲であ
ることが実験上確かめられている。
In order to efficiently synthesize CBN and WBN from N atoms and B atoms with such SP hybrid orbitals, a reaction chamber (
It is important to specify the atomic ratio of N atoms and B atoms contained in each of the N-containing gas and B-containing gas introduced into 1) and the precipitation chamber (5). It is preferable to set the atomic ratio of atoms to be in the range of 1/10 to 10 2 , and if it deviates from this setting range, the content of CBN or WBN will be considerably reduced during precipitation. It has been experimentally confirmed that this optimum condition is in the range of 1/2 to 3.

基体(7)はBNの析出中、所定範囲内の温度に維持さ
れていることが必要であり、これにより、気相成長した
CBN及びWBNの構造を維持したまま、基体(7)に
付着せしめ、且つ嘆状(こ発達させることができる。そ
の基体温度は−100乃至500℃がよく、この範囲か
ら外れると非晶質及び六方晶BNが多くなってCBNや
WENから成る高品質なりN膜が得られず、望ましくは
0乃至250℃がよい。
The substrate (7) needs to be maintained at a temperature within a predetermined range during the precipitation of BN, so that the CBN and WBN grown in a vapor phase can be adhered to the substrate (7) while maintaining their structures. The substrate temperature is preferably between -100 and 500°C; outside this range, the amount of amorphous and hexagonal BN increases, resulting in a high-quality N film made of CBN or WEN. The temperature is preferably 0 to 250°C.

尚、(1G)はCBNやWBNの生成に不要となった排
ガスの排出口である。
Note that (1G) is an outlet for exhaust gas that is no longer needed for the production of CBN and WBN.

更に本発明においては前述した通りのSP 混成軌道を
もつN原子及びB原子からCBNやWBNを効率的lこ
合成するために所定の波長領域を有するレーザー光をプ
ラズマ雰囲気に投光することが重要である。
Furthermore, in the present invention, it is important to project a laser beam having a predetermined wavelength range into the plasma atmosphere in order to efficiently synthesize CBN and WBN from N atoms and B atoms having SP hybrid orbitals as described above. It is.

即ち、本発明者はこのレーザー光の波長領域を7.5〜
12μmの範囲内に設定すると高い膜生成速度で形成し
たBNが顕著な高硬度特性を示すことが判り、そして、
このレーザー光をプラズマ雰囲気に投光するに際して、
 BN結合に伴って被着されるべく基体(7)へ向けて
レーザー光を照射するのが望ましい。
That is, the inventor has determined that the wavelength range of this laser light is from 7.5 to
It was found that when the thickness was set within the range of 12 μm, BN formed at a high film formation rate exhibited remarkable high hardness characteristics, and
When projecting this laser light into the plasma atmosphere,
It is desirable to irradiate laser light toward the substrate (7) so that it can be deposited along with BN bonding.

斯様な波長領域は第2図tこ示す通りCBNやWBNの
赤外線吸収スペクトルの吸収ピークに相当することが判
る。従って、このレーザー光はN原子及びB原子の結合
エネルギーとなるべく供給源となり、且つその結合反応
を促進するものと考えられる。
It can be seen that such a wavelength region corresponds to the absorption peak of the infrared absorption spectrum of CBN and WBN, as shown in FIG. Therefore, it is considered that this laser light serves as a source of bonding energy for N atoms and B atoms, and promotes the bonding reaction.

このBN結合反応を第3図により説明すれば次のように
なる。
This BN bonding reaction can be explained as follows with reference to FIG.

aはSP 混成軌道をもつB原子とN原子の未結合エネ
ルギーポテンシャルを示し、レーザー光の照射多こよっ
て活性化エネルギーET  を供給するとXというエネ
ルギーポテンシャルを越えてCBNやWBNをもたらず
エネルギーポテンシャルbのBN結合になる。然るに不
適当な活性化エネルギーE;を供給するとYというエネ
ルギーポテンシャルを越えてHBNをもたらすエネルギ
ーポテンシャルCになると考えられる。言い換えればN
原子とB原子が結合してOBNやWBNを生成させるた
め1こはE7の活性化エネルギーの壁を越えることが必
要である。しかしながら、通常の励起方法、例えば加熱
、プラズマによるイオン化方法lこよると反応分子のす
べての自由度、すなわち並進運動と内部エネルギー準位
が一様1こ励起されて反応が起きてしまって、これによ
りCBNやWBNの生成以外にHBNの生成も生じるこ
と番こなる。これ番こ対して単色性の良いレーザー光を
用いると分子が励起される準位を選択できるのでレーザ
ーの光エネルギ一番こより分子の内部エネルギー準位を
直接励起することが可能となる。従って、活性化エネル
ギーE7  に相当する7、5〜12 ttmの波長領
域を有するレーザー光を照射することが必要であり、本
発明者はレーザー光の最適波長領域が9〜10μmであ
ることを実験により確かめた。
a indicates the unbonded energy potential of B atoms and N atoms with SP hybrid orbitals, and when the activation energy ET is supplied by repeated laser beam irradiation, the energy potential exceeds the energy potential of X without producing CBN or WBN. It becomes a BN bond of b. However, if inappropriate activation energy E is supplied, it is thought that the energy potential C will exceed the energy potential Y and result in HBN. In other words, N
In order for atoms and B atoms to combine to form OBN and WBN, it is necessary to overcome the activation energy barrier of E7. However, with conventional excitation methods, such as heating and plasma ionization, all degrees of freedom of the reacting molecules, i.e., translational motion and internal energy level, are uniformly excited and the reaction occurs. Therefore, in addition to the generation of CBN and WBN, HBN is also generated. On the other hand, if a laser beam with good monochromaticity is used, the level at which the molecule is excited can be selected, so it becomes possible to directly excite the internal energy level of the molecule using the laser's light energy. Therefore, it is necessary to irradiate a laser beam having a wavelength range of 7.5 to 12 ttm, which corresponds to the activation energy E7, and the present inventor has experimentally determined that the optimal wavelength range of the laser beam is 9 to 10 μm. It was confirmed by

本発明においては、前述したレーザー光として7.5〜
12μmの波長領域を有するものであればすべて用いる
ことができ、例えばCO+lガスレーザー、E(F’ガ
スL/−ザー、またPb5nTe 、 Pb5nSe 
、 Hg、CI’re 、 Pb5nSeTe 、 P
b5nsse等の半導体レーザーなどがある。
In the present invention, the above-mentioned laser beam is 7.5~
Any laser having a wavelength range of 12 μm can be used, such as CO+l gas laser, E(F' gas L/- laser, Pb5nTe, Pb5nSe
, Hg, CI're, Pb5nSeTe, P
There are semiconductor lasers such as b5nsse.

〔発明の効果〕〔Effect of the invention〕

かくして、本発明による高硬度BN膜の製造方法によれ
ば、N含有ガスに含まれるN原子を所定の原子比率に設
定しながら電子サイクロトロン共、 鳴によってガスを
電子と衝突せしめて放電させ、これにより、高純度のプ
ラズマ、を効率よく発生させると共に、このプラズマか
らビーム径の大きいイオンビームを形成して高エネルギ
の正イオンを温度設定された基体上に照射し、同時に所
定範囲のB原子を含んだB含有ガスを基体へ噴出させ、
尚且つ所定の波長領域を有するレーザー光を照射するこ
とによりCBNやWBNから成る高硬度なりN膜が高い
膜生成速度で形成されることになる。
Thus, according to the method for manufacturing a high-hardness BN film according to the present invention, while setting the N atoms contained in the N-containing gas to a predetermined atomic ratio, an electron cyclotron is used to cause the gas to collide with electrons by sounding to cause a discharge. This method efficiently generates high-purity plasma, forms an ion beam with a large beam diameter from this plasma, irradiates high-energy positive ions onto a substrate at a set temperature, and at the same time irradiates B atoms in a predetermined range. The B-containing gas contained therein is ejected to the substrate,
Furthermore, by irradiating the laser beam having a predetermined wavelength range, a highly hard N film made of CBN or WBN can be formed at a high film formation rate.

更に、イオンビーム照射により基体が加熱されたため、
基体を加熱するための熱源が不要となったばかりか、フ
ィラメントなどプラズマ発生用の熱源も使用しないため
、かかる熱源の不良によって高硬度BN膜の形成が阻害
されず、安定した製造が維持できるという利点も有し、
その結果、量産型に相応しく且つ信頼性の高い高硬度B
N膜の製法が提供できた。
Furthermore, since the substrate was heated by ion beam irradiation,
Not only is there no longer a need for a heat source to heat the substrate, but also no heat source for plasma generation such as a filament is used, so the formation of a high-hardness BN film is not hindered by defects in the heat source, and stable production can be maintained. also has
As a result, high hardness B suitable for mass production and highly reliable
We were able to provide a method for manufacturing N membrane.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

〔実施例1〕 上述した電子サイクロトロン共鳴型放電装置を使用し、
初めにN2ガスを第1導入管(4)を通して流量0.1
 m1i−にて反応室(1)へ導入した。 これにより
、反応室(1)内の圧力を常時、10  torrに設
定すると共番こ、電磁石用コイル(2)によって反応室
(1)内に磁場をかけ、且つマイクロ波(2−45GH
z )を導波管(3)を介して反応室(1)へ導入し、
電子サイクロトロン共鳴プラズマを発生させる。次いで
、イオン加速電極(j3)にバイアス電圧900vを印
加するとイオンビームが形成され、このイオンビームが
シリコンから成る基体(7)に照射されると同時lこ第
2導入管(8)より82F(6ガスを流量0.05 t
nl/mで析出室(5)へ導入した。この場合、B原子
に対するN原子の原子比率は2である。更にCO2ガス
レーザーから成るレーザー投光源(9)より9.6μF
71の波長をもつレーザー光を第1表番こ示すような出
力パワーで反射板u3へ投光し、反射板0を走査用に作
動させながら基体(7)の表面に亘ってレーザー光を走
査するよう1こした。
[Example 1] Using the above-mentioned electron cyclotron resonance type discharge device,
First, N2 gas was introduced at a flow rate of 0.1 through the first introduction pipe (4).
m1i- was introduced into the reaction chamber (1). As a result, when the pressure inside the reaction chamber (1) is always set at 10 torr, a magnetic field is applied inside the reaction chamber (1) by the electromagnetic coil (2), and a microwave (2-45GHH) is applied.
z) into the reaction chamber (1) via the waveguide (3),
Generates electron cyclotron resonance plasma. Next, by applying a bias voltage of 900 V to the ion accelerating electrode (j3), an ion beam is formed, and when this ion beam is irradiated onto the silicon substrate (7), an 82F ( 6 gases at a flow rate of 0.05 t
It was introduced into the precipitation chamber (5) at a rate of nl/m. In this case, the atomic ratio of N atoms to B atoms is 2. Furthermore, 9.6 μF is generated from the laser projection source (9) consisting of a CO2 gas laser.
A laser beam having a wavelength of 71 is projected onto the reflector u3 with the output power shown in the first table, and the laser beam is scanned over the surface of the substrate (7) while operating the reflector 0 for scanning. I strained it by 1.

かくして得られたBN膜をX線回折により分析したとこ
ろ、CBN (111)及びWBN (002)と同定
できるピークが確認でき、その存在が判明できた。
When the thus obtained BN film was analyzed by X-ray diffraction, peaks that could be identified as CBN (111) and WBN (002) were confirmed, and their existence was confirmed.

そして膜生成速度及びビッカース硬度Hvは第1表に示
す通りの結果を得た。
The film formation rate and Vickers hardness Hv were as shown in Table 1.

第1表 ・印のものは本発明の範囲外の試料である。Table 1 Samples marked with ・are outside the scope of the present invention.

第1表より明らかな通り、レーザー光を照射することに
より、試料番号9(レーザー光を照射せず、他の製作条
件は全く全じに行なった)に比べて膜生成速度及び硬度
が顕著に向上したことが判る。
As is clear from Table 1, by irradiating with laser light, the film formation speed and hardness were significantly increased compared to sample number 9 (no laser light was irradiated and all other manufacturing conditions were kept the same). It can be seen that it has improved.

〔実施例2〕 第2表に示した波長の半導体レーザーを出力パワー35
0 mw/ea lこ設定してレーザー投光源とし、他
は実施例1と全く同じ製作条件にしてBN膜を形成した
[Example 2] A semiconductor laser having the wavelength shown in Table 2 was used with an output power of 35
A BN film was formed using the same manufacturing conditions as in Example 1, except that a laser projection source was set at 0 mw/ea l.

かくして得られたBN膜をX線回折1こより分析したと
ころ、試料番号11〜14についてOBN (111)
及びWBN (002)と同定できるピークが確認でき
、その存在が判明できた。更にこれらの膜のビッカース
硬度HVは第2表番こ示す通りである。
When the BN film thus obtained was analyzed by X-ray diffraction, OBN (111) was found for sample numbers 11 to 14.
A peak that could be identified as WBN (002) was confirmed, and its existence was confirmed. Furthermore, the Vickers hardness HV of these films is as shown in Table 2.

第2表 第2表より、いずれの試料も顕著な高硬度特性を示して
おり、試料番号12.13は著しく高硬度なりN膜であ
ることが判る。
Table 2 From Table 2, it can be seen that all the samples exhibit remarkable high hardness characteristics, and sample No. 12.13 has extremely high hardness, indicating that it is an N film.

以上の通り、本発明の高硬度BN膜の製法においては電
子サイクロトロン共鳴励起プラズマを利用し、更1こレ
ーザー光による適当なエネルギー供給方法を用いること
によりOBNやWBNから成る高品質BN膜を高い膜生
成速度で基体上に形成することができた。
As described above, the method for producing a high-hardness BN film of the present invention utilizes electron cyclotron resonance excited plasma and further uses an appropriate energy supply method using laser light to produce a high-quality BN film made of OBN or WBN. The film could be formed on the substrate at the same speed.

尚、本発明は上述した電子サイクロトロン共鳴励起プラ
ズマの利用によるBN膜の製法に限定されるものではな
く、本発明の要旨を免税しない限り、イオン化合成法、
イオンブレーティング、スパッタリングなど他のBN膜
の製法にも適用できることは当業者であれば自明である
Note that the present invention is not limited to the above-mentioned method for producing a BN film using electron cyclotron resonance excited plasma, and may include ionization synthesis methods, unless the gist of the present invention is exempted.
It is obvious to those skilled in the art that this method can also be applied to other BN film manufacturing methods such as ion blating and sputtering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は立方晶窒化ホウ素(CBN)や六方最密充填窒
化ホウ素(WBN)を形成するための電子サイクロトロ
ン共鳴型放電装置の概略図、第2図はCBNやwBNの
赤外線吸収スペクトルを示す図、第3図はホウ素CB)
と窒素(N)の結合反応のエネルギーボテンシャルを表
わす図である。 (1)・・・反  応  室 (2)・・・電磁石用コイル (3)・・・導  波  管 (4)・・・第1導入管 (5)・・析 出 室 (7)・・・基    体 (8)・・・第2導入管 (9)・・・レーザー投光源
Figure 1 is a schematic diagram of an electron cyclotron resonance discharge device for forming cubic boron nitride (CBN) and hexagonal close-packed boron nitride (WBN), and Figure 2 is a diagram showing the infrared absorption spectra of CBN and wBN. , Figure 3 shows boron CB)
FIG. 2 is a diagram showing the energy potential of a bonding reaction between nitrogen (N) and nitrogen (N). (1) Reaction chamber (2) Electromagnet coil (3) Waveguide (4) First introduction pipe (5) Precipitation chamber (7)・Base (8)...Second introduction pipe (9)...Laser light source

Claims (3)

【特許請求の範囲】[Claims] (1)内部に基体が設置された反応室に窒化ホウ素生成
用ガスを導入すると共に該反応室内部にプラズマを発生
させて化学気相成長法により該基体表面上に窒化ホウ素
を生成させる窒化ホウ素膜の製法であって、前記反応室
内部のプラズマにホウ素原子と窒素原子の結合を促進さ
せるようにレーザー光を投光したことを特徴とする高硬
度窒化ホウ素膜の製法。
(1) Boron nitride, in which boron nitride generation gas is introduced into a reaction chamber in which a substrate is installed, and plasma is generated inside the reaction chamber to generate boron nitride on the surface of the substrate by chemical vapor deposition. 1. A method for producing a high hardness boron nitride film, the method comprising: projecting a laser beam into the plasma inside the reaction chamber to promote bonding between boron atoms and nitrogen atoms.
(2)前記レーザー光が7.5〜12μmの波長領域内
にあることを特徴とする特許請求の範囲第1項記載の高
硬度窒化ホウ素膜の製法。
(2) The method for producing a high hardness boron nitride film according to claim 1, wherein the laser beam is within a wavelength range of 7.5 to 12 μm.
(3)前記プラズマをマイクロ波による電子サイクロト
ロン共鳴放電により生成したことを特徴とする特許請求
の範囲第1項記載の高硬度窒化ホウ素膜の製法。
(3) The method for producing a high hardness boron nitride film according to claim 1, wherein the plasma is generated by electron cyclotron resonance discharge using microwaves.
JP20454884A 1984-09-29 1984-09-29 Production of high-hardness boron nitride film Granted JPS6184379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20454884A JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20454884A JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Publications (2)

Publication Number Publication Date
JPS6184379A true JPS6184379A (en) 1986-04-28
JPH059513B2 JPH059513B2 (en) 1993-02-05

Family

ID=16492329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20454884A Granted JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Country Status (1)

Country Link
JP (1) JPS6184379A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134662A (en) * 1986-11-22 1988-06-07 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
JPH08181075A (en) * 1994-12-26 1996-07-12 Nec Corp Thin film depositing method
JPH09180896A (en) * 1995-12-15 1997-07-11 Applied Materials Inc Plasma igniter for semiconductor manufacturing device
US5803974A (en) * 1985-09-26 1998-09-08 Canon Kabushiki Kaisha Chemical vapor deposition apparatus
DE19900437B4 (en) * 1999-01-11 2009-04-23 Ehret, Hans-P. Method and device for ion implantation in solids and / or for coating solid surfaces and the use of methods and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5803974A (en) * 1985-09-26 1998-09-08 Canon Kabushiki Kaisha Chemical vapor deposition apparatus
JPS63134662A (en) * 1986-11-22 1988-06-07 Sumitomo Electric Ind Ltd Method for synthesizing high hardness boron nitride
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5279869A (en) * 1989-12-06 1994-01-18 General Motors Corporation Laser deposition of cubic boron nitride films
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
JPH08181075A (en) * 1994-12-26 1996-07-12 Nec Corp Thin film depositing method
JPH09180896A (en) * 1995-12-15 1997-07-11 Applied Materials Inc Plasma igniter for semiconductor manufacturing device
DE19900437B4 (en) * 1999-01-11 2009-04-23 Ehret, Hans-P. Method and device for ion implantation in solids and / or for coating solid surfaces and the use of methods and apparatus

Also Published As

Publication number Publication date
JPH059513B2 (en) 1993-02-05

Similar Documents

Publication Publication Date Title
US4816286A (en) Process for synthesis of diamond by CVD
US5096740A (en) Production of cubic boron nitride films by laser deposition
JPS6184379A (en) Production of high-hardness boron nitride film
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH04959B2 (en)
JP2920203B2 (en) Method for producing sp3-bonded boron nitride
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH0420985B2 (en)
JPS61236691A (en) Vapor phase synthesis of diamond
JPH05311429A (en) Thin film forming device
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS60116781A (en) Production of boron nitride film having high hardness
JP2995339B2 (en) How to make a thin film
JPH04154970A (en) Method for synthesizing cubic boron nitride
JPS60127299A (en) Gas-phase synthesis of diamond
JP2676091B2 (en) How to make a thin film
JPS63107899A (en) Formation of thin film
JPH05255859A (en) Thin film forming equipment
JP2739286B2 (en) Plasma processing method
JPH08319568A (en) Production of hard nitrogen-containing carbon film
JPH049472A (en) Method for synthesizing cubic boron nitride
JPH06199595A (en) Method for synthesizing diamond
JPH04338197A (en) Synthesizing method for diamond
JPS63288997A (en) Formation of thin diamond film