JPH059513B2 - - Google Patents

Info

Publication number
JPH059513B2
JPH059513B2 JP20454884A JP20454884A JPH059513B2 JP H059513 B2 JPH059513 B2 JP H059513B2 JP 20454884 A JP20454884 A JP 20454884A JP 20454884 A JP20454884 A JP 20454884A JP H059513 B2 JPH059513 B2 JP H059513B2
Authority
JP
Japan
Prior art keywords
plasma
wbn
cbn
substrate
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20454884A
Other languages
Japanese (ja)
Other versions
JPS6184379A (en
Inventor
Koichi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP20454884A priority Critical patent/JPS6184379A/en
Publication of JPS6184379A publication Critical patent/JPS6184379A/en
Publication of JPH059513B2 publication Critical patent/JPH059513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はレーザー光を利用して高硬度を達成し
た窒化ホウ素膜(以下、窒化ホウ素をBNと略
す)の製法に関するものである。 〔産業上の利用分野〕 BNには立方晶窒化ホウ素(以下、CBNと略
す)、六方最密充填窒化ホウ素(以下、WBNと
略す)、六方晶窒化ホウ素(以下、HBNと略す)
の結晶構造があり、この中でCBN及びWBNは耐
熱衝撃性、熱伝導性、硬度及び耐摩耗性、並びに
高温での鉄族金属に対する耐性にも優れているた
め種々の広範な用途に注目されており、これに伴
い良質のCBNやWBNの製法が研究されている。 〔従来の技術〕 公知の製法技術として高価な装置を使用して数
方気圧且つ千数百度という超高圧・超高温のもと
で合成できる方法があるが、近時、気相成長法に
よつて基体の表面に効率的にCBNやWBNを合成
して、その薄膜を生成することを研究されてい
る。 〔発明が解決しようとする問題点〕 プラズマCVD法、反応イオンプレーテイング
法などによつて未だCBNやWBNの合成が報告さ
れておらず、近時、イオン化合成法によつて比較
的良質なCBNやWBNの膜が合成できたという報
告があるに過ぎない。因に、このイオン化合成法
によればホウ素を電子衝撃で飛ばして基体に蒸着
させ、同時に窒素イオンを照射することにより、
この基体上にCBNやWBNの膜が形成できるとい
うものである。 〔問題を解決するための手段〕 本発明者は先に提案されたイオン化合成法の他
にCBNやWBNの合成に相応しい新規な気相成長
法を開発するに当り、鋭意研究の結果、電子サイ
クロトロン共鳴励起プラズマを利用し且つそのプ
ラズマにレーザー光を投光してエネルギー供給す
ることにより高硬度BN膜が形成できることを見
い出した。 本発明は上記知見により完成されたものであ
り、その目的はCBNやWBNの膜を効率的に合成
する新規な高硬度BN膜の製法を提供することに
ある。 本発明の他の目的はCBNやWBNの生成を促進
して硬度特性を一段と向上せしめると共にこの高
硬度BN膜を高い膜生成速度で基体上に形成させ
る方法を提供するにある。 本発明によれば、内部に基体が設置された反応
室にBN生成用ガスを導入すると共に該反応室内
部にプラズマを発生させて化学気相成長法により
該基体表面上にBNを生成させるBN膜の製法で
あつて、前記反応室内部のプラズマにホウ素原子
と窒素原子の結合を促進させるようにレーザー光
を投光したことを特徴とする高硬度BN膜の製法
が提供される。 以下、本発明を詳細に説明する。 本発明は第1図に示す電子サイクロトロン共鳴
型放電装置を使用してBN膜を形成し、BN生成
用ガスの導入に伴つて発生するプラズマ雰囲気に
所定の波長領域を有するレーザー光を投光してエ
ネルギー供給することに特徴がある。 第1図中反応室1の外部に電磁石用コイル2を
配置して反応室1内に磁場をかけ、且つマイクロ
波(2.45GHzHz)が導波管3を介してこの反応室
1へ導入される。本装置によればBN生成用ガス
に窒素原子含有ガス及びホウ素原子含有ガスを使
用するに当り、N2、NH3などの窒素原子含有ガ
ス(以下、N含有ガスと略す)が第1導入管4を
通して反応室1に導入されると同時に、電子サイ
クロトロン共鳴が生じ、電子がN含有ガスと衝突
して放電し、プラズマを発生せしめ、次いでこの
プラズマにイオン加速電圧を印加するに伴つて析
出室5にイオンビームを形成して試料台6に設置
された基体7上に照射し、同時にこの基体7へ向
けて、B2H6、(C2H53B、BCl3、BBr3などのホ
ウ素原子含有ガス(以下、B含有ガスと略す)
を、析出室5の一部に設けられた第2導入管8を
介して噴出させるとCBN及びWBNがこの基体7
の上に気相成長される。そして、この気相成長に
際してレーザー投光源9より所定の波長領域を有
するレーザー光10をレーザー光導入窓11を介
して析出室5内部へ導入し、そしてこのレーザー
光10をプラズマ雰囲気に照射するについては走
査機能を有する反射板12により反射させて基体
7の表面上に走査するとよい。 即ち、電子のサイクロトロン周波数は、=
eB/2πm(但し、m:電子の質量、e:電子の電荷、 B:磁束密度とする)に基いて、サイクロトロン
運動を起こし、この周波数がマイクロ波
(2.45GHz)の周波数と一致すると共鳴し、その
結果、電子がN含有ガスの分子、イオン及びラジ
カルと衝突して高励起状態の放電現象が著しく増
大し、プラズマ中のイオン化率が一層大きくな
る。このようにプラズマイオン密度が大きいため
にガスの圧力を10-3乃至10-5torrに設定すること
ができ、イオン化合成法に比べて著しく減圧する
ことができるため高純度且つイオン密度の大きい
プラズマが発生する。 本発明においては、上記の如く反応室1内に発
生したプラズマを析出室5内でイオンビームにし
て試料台6に設置された基体7に衝突させると同
時に、B含有ガスを所定の流量で基体7へ向けて
噴出させることが重要である。つまり、イオン加
速電極13にバイアス電圧をかけることに伴い、
プラズマにイオン加速電圧を印加させるが、この
イオン加速電極13は反応室1の内壁に設けられ
たアース電極14及び反応室1と析出室5とを隔
壁すると共にイオンビームの発射場所となる多孔
状のバイアス電極15から構成され、バイアス電
極15を負として両電極14,15の間に50乃至
5000Vの範囲で印加させるとよい。このバイアス
電圧が50V未満であるとCBNやWBNの生成に必
要な窒素源が不足して基体上に形成されたBN膜
中にCBN及びWBNの特性が小さくなり、5000V
を超えると成膜速度が低下して生産効率が劣化す
る。従つて、このバイアス電圧は50乃至5000V、
好ましくは200乃至1000Vがよい。そして、プラ
ズマの正イオンが基体7に対してイオンビーム照
射されることによつてCBN・WBN生成用の窒素
源が高エネルギーとなり、基体7に衝突すると同
時に、B含有ガスが第2導入管8を介して基体7
に噴出されると、CBN・WBNが合成されるべく
N原子及びB原子のそれぞれSP3混成軌道をもつ
た高励起状態となる。 かかるSP3混成軌道をもつたN原子及びB原子
から効率よくCBNやWBNが合成されるためには
反応室1及び析出室5のそれぞれに導入されるN
含有ガス及びB含有ガスのそれぞれに含まれるN
原子及びB原子の原子比率を特定することが重要
であり、当該B原子に対するN原子の原子比率を
1/10乃至10の範囲となるように設定することが好
ましく、この設定範囲から外れると析出中、
CBNやWBNの含有率がかなり少なくなる。この
最適条件は1/2乃至3の範囲であることが実験上
確かめられている。 基体7はBNの析出中、所定範囲内の温度に維
持されていることが必要であり、これにより、気
相成長したCBN及びWBNの構造を維持したま
ま、基体7に付着せしめ、且つ膜状に発達させる
ことができる。その基体温度は−100乃至500℃が
よく、この範囲から外れると非晶質及び六方晶
BNが多くなつてCBNやWBNから成る高品質な
BN膜が得られず、望ましくは0乃至250℃がよ
い。 尚、16はCBNやWBNの生成に不要となつた
排ガスの排出口である。 更に本発明においては前述した通りのSP3混成
軌道をもつN原子及びB原子からCBNやWBNを
効率的に合成するために所定の波長領域を有する
レーザー光をプラズマ雰囲気に投光することが重
要である。 即ち、本発明者はこのレーザー光の波長領域を
7.5〜12μmの範囲内に設定すると高い膜生成速度
で形成したBNが顕著な高硬度特性を示すことが
判り、そして、このレーザー光をプラズマ雰囲気
に投光するに際して、BN結合に伴つて被着され
るべく基体7へ向けてレーザー光を照射するのが
望ましい。 斯様な波長領域は第2図に示す通りCBNや
WBNの赤外線吸収スペクトルの吸収ピークに相
当することが判る。従つて、このレーザー光はN
原子及びB原子の結合エネルギーとなるべく供給
源となり、且つその結合反応を促進するものと考
えられる。 このBN結合反応を第3図により説明すれば次
のようになる。 aはSP3混成軌道をもつB原子とN原子の未結
合エネルギーポテンシヤルを示し、レーザー光の
照射によつて活性化エネルギーE* 1を供給すると
Xというエネルギーポテンシヤルを越えてCBN
やWBNをもたらすエネルギーポテンシヤルbの
BN結合になる。然るに不適当な活性化エネルギ
ーE* 2を供給するとYというエネルギーポテンシ
ヤルを越えてHBNをもたらすエネルギーポテン
シヤルcになると考えられる。言い換えればN原
子とB原子が結合してCBNやWBNを生成させる
ためにはE* 1の活性化エネルギーの壁を越えるこ
とが必要である。しかしながら、通常の励起方
法、例えば加熱、プラズマによるイオン化方法に
よると反応分子のすべての自由度、すなわち並進
運動と内部エネルギー準位が一様に励起されて反
応が起きてしまつて、これによりCBNやWBNの
生成以外にHBNの生成も生じることになる。こ
れに対して単色性の良いレーザー光を用いると分
子が励起される準位を選択できるのでレーザー光
の光エネルギーにより分子の内部エネルギー準位
を直接励起することが可能となる。従つて、活性
化エネルギーE* 1に相当する7.5〜12μmの波長領域
を有するレーザー光を照射することが必要であ
り、本発明者はレーザー光の最適波長領域が9〜
10μmであることを実験により確かめた。 本発明においては、前述したレーザー光として
7.5〜12μmの波長領域を有するものであればすべ
て用いることができ、例えばCO2ガスレーザー、
HFガスレーザー、またPbSnTe、PbSnSe、
HgCdTe、PbSnSeTe、PbSnSSe等の半導体レ
ーザーなどがある。 〔発明の効果〕 かくして、本発明による高硬度BN膜の製造方
法によれば、N含有ガスに含まれるN原子を所定
の原子比率に設定しながら電子サイクロトロン共
鳴によつてガスを電子と衝突せしめて放電させ、
これにより、高純度のプラズマを効率よく発生さ
せると共に、このプラズマからビーム径の大きい
イオンビームを形成して高エネルギーの正イオン
を温度設定された基体上に照射し、同時に所定範
囲のB原子を含んだB含有ガスを基体へ噴出さ
せ、尚且つ所定の波長領域を有するレーザー光を
照射することによりCBNやWBNから成る高硬度
なBN膜が高い膜生成速度で形成されることにな
る。 更に、イオンビーム照射により基体が加熱され
たため、基体を加熱するための熱源が不要となつ
たばかりか、フイラメントなどプラズマ発生用の
熱源も使用しないため、かかる熱源の不良によつ
て高硬度BN膜の形成が阻害されず、安定した製
造が維持できるという利点も有し、その結果、量
産型に相応しく且つ信頼性の高い高硬度BN膜の
製法が提供できた。 次に本発明の実施例について述べる。 実施例 1 上述した電子サイクロトロン共鳴型放電装置を
使用し、初めにN2ガスを第1導入管4を通して
流量0.1ml/minにて反応室1へ導入した。これ
により、反応室1内の圧力を常時、10-4torrに設
定すると共に、電磁石用コイル2によつて反応室
1内に磁場をかけ、且つマイクロ波(2.45GHz)
を導波管3を介して反応室1へ導入し、電子サイ
クロトロン共鳴プラズマを発生させる。次いで、
イオン加速電極13にバイアス電圧900Vを印加
するとイオンビームが形成され、このイオンビー
ムがシリコンから成る基体7に照射されると同時
に第2導入管8よりB2H6ガスを流量0.05ml/min
で析出室5へ導入した。この場合、B原子に対す
るN原子の原子比率は2である。更にCO2ガスレ
ーザーからなるレーザー投光源9より9.6μmの波
長をもつレーザー光を第1表に示すような出力パ
ワーで反射板12へ投光し、反射板12を走査用
に作動させながら基体7の表面に亘つてレーザー
光を走査するようにした。 かくして得られたBN膜をX線回折により分析
したところ、CBN(111)及びWBN(002)と同定
できるピークが確認でき、その存在が判明でき
た。そして膜生成速度及びビツカース硬度Hvは
第1表に示す通りの結果を得た。
The present invention relates to a method for producing a boron nitride film (hereinafter, boron nitride is abbreviated as BN) that achieves high hardness using laser light. [Industrial Application Fields] BN includes cubic boron nitride (hereinafter abbreviated as CBN), hexagonal close-packed boron nitride (hereinafter abbreviated as WBN), and hexagonal boron nitride (hereinafter abbreviated as HBN).
Among these, CBN and WBN are attracting attention for a variety of wide-ranging applications due to their excellent thermal shock resistance, thermal conductivity, hardness and wear resistance, as well as resistance to iron group metals at high temperatures. As a result, methods for producing high-quality CBN and WBN are being researched. [Prior art] There is a known manufacturing method that uses expensive equipment and can be synthesized under several atmospheric pressures and extremely high temperatures of several thousand degrees Celsius. Research is being conducted on the efficient synthesis of CBN and WBN on the surface of substrates to produce thin films of them. [Problems to be solved by the invention] Synthesis of CBN and WBN by plasma CVD method, reactive ion plating method, etc. has not yet been reported, and recently, relatively high quality CBN has been produced by ionization synthesis method. There are only reports that a film of or WBN could be synthesized. Incidentally, according to this ionization synthesis method, boron is evaporated onto the substrate by electron bombardment, and at the same time, by irradiation with nitrogen ions,
A film of CBN or WBN can be formed on this substrate. [Means for Solving the Problem] In developing a new vapor phase growth method suitable for the synthesis of CBN and WBN in addition to the previously proposed ionization synthesis method, the present inventor conducted extensive research and found that the electron cyclotron We have discovered that a highly hard BN film can be formed by using resonance-excited plasma and supplying energy by projecting laser light into the plasma. The present invention was completed based on the above findings, and its purpose is to provide a novel method for producing a high-hardness BN film that efficiently synthesizes CBN and WBN films. Another object of the present invention is to provide a method for further improving hardness characteristics by promoting the production of CBN and WBN, and for forming a highly hard BN film on a substrate at a high film formation rate. According to the present invention, a BN generating gas is introduced into a reaction chamber in which a substrate is installed, and plasma is generated inside the reaction chamber to generate BN on the surface of the substrate by chemical vapor deposition. The present invention provides a method for producing a highly hard BN film, characterized in that a laser beam is projected into the plasma inside the reaction chamber so as to promote the bonding of boron atoms and nitrogen atoms. The present invention will be explained in detail below. In the present invention, a BN film is formed using an electron cyclotron resonance discharge device shown in FIG. It is characterized by the fact that it supplies energy. In FIG. 1, an electromagnetic coil 2 is placed outside the reaction chamber 1 to apply a magnetic field inside the reaction chamber 1, and microwaves (2.45 GHzHz) are introduced into the reaction chamber 1 via a waveguide 3. . According to this device, when using nitrogen atom-containing gas and boron atom-containing gas as the BN generating gas, nitrogen atom-containing gases such as N 2 and NH 3 (hereinafter abbreviated as N-containing gas) are introduced into the first introduction pipe. 4 into the reaction chamber 1, electron cyclotron resonance occurs, and the electrons collide with the N-containing gas and discharge, generating plasma. Then, as an ion accelerating voltage is applied to this plasma, the electrons enter the reaction chamber 1. 5, an ion beam is formed and irradiated onto the substrate 7 placed on the sample stage 6, and at the same time, ion beams such as B 2 H 6 , (C 2 H 5 ) 3 B, BCl 3 , BBr 3 , etc. Boron atom-containing gas (hereinafter abbreviated as B-containing gas)
is ejected through a second introduction pipe 8 provided in a part of the precipitation chamber 5, CBN and WBN are released into this substrate 7.
is grown in a vapor phase on top of the During this vapor phase growth, laser light 10 having a predetermined wavelength range is introduced from the laser light source 9 into the precipitation chamber 5 through the laser light introduction window 11, and the plasma atmosphere is irradiated with this laser light 10. It is preferable to scan the surface of the base 7 by reflecting the light by a reflection plate 12 having a scanning function. That is, the cyclotron frequency of the electron is =
eB/2πm (where m: mass of electron, e: charge of electron, B: magnetic flux density) causes cyclotron motion, and when this frequency matches the frequency of microwave (2.45GHz), resonance occurs. As a result, electrons collide with molecules, ions, and radicals of the N-containing gas, and the highly excited state discharge phenomenon increases significantly, further increasing the ionization rate in the plasma. Because of the high plasma ion density, the gas pressure can be set at 10 -3 to 10 -5 torr, which allows for a significantly lower pressure than the ionization synthesis method, resulting in high purity plasma with high ion density. occurs. In the present invention, the plasma generated in the reaction chamber 1 as described above is turned into an ion beam in the deposition chamber 5 and is made to collide with the substrate 7 installed on the sample stage 6, while at the same time supplying B-containing gas to the substrate at a predetermined flow rate. It is important to eject it towards 7. In other words, by applying a bias voltage to the ion accelerating electrode 13,
An ion accelerating voltage is applied to the plasma, and the ion accelerating electrode 13 includes a ground electrode 14 provided on the inner wall of the reaction chamber 1, a porous electrode that partitions the reaction chamber 1 and the precipitation chamber 5, and serves as a place for emitting the ion beam. It is composed of a bias electrode 15 of
It is recommended to apply within the range of 5000V. If this bias voltage is less than 50V, the nitrogen source necessary for the generation of CBN and WBN will be insufficient, and the characteristics of CBN and WBN will be reduced in the BN film formed on the substrate.
If it exceeds 100%, the film formation rate decreases and production efficiency deteriorates. Therefore, this bias voltage is 50 to 5000V,
Preferably it is 200 to 1000V. Then, as positive ions of the plasma are irradiated with an ion beam onto the substrate 7, the nitrogen source for CBN/WBN generation becomes high energy and collides with the substrate 7, and at the same time, the B-containing gas flows into the second introduction pipe 8. through the base 7
When ejected, N atoms and B atoms become highly excited states with SP 3 hybrid orbitals, respectively, in order to synthesize CBN and WBN. In order to efficiently synthesize CBN and WBN from N atoms and B atoms having such SP 3 hybrid orbitals, it is necessary to introduce N into each of the reaction chamber 1 and the precipitation chamber 5.
N contained in each of the containing gas and B-containing gas
It is important to specify the atomic ratio of N atoms and B atoms, and it is preferable to set the atomic ratio of N atoms to B atoms in the range of 1/10 to 10. If it deviates from this setting range, precipitation may occur. During,
The content of CBN and WBN is considerably reduced. It has been experimentally confirmed that this optimum condition is in the range of 1/2 to 3. It is necessary that the temperature of the substrate 7 is maintained within a predetermined range during the precipitation of BN. This allows the CBN and WBN grown in a vapor phase to adhere to the substrate 7 while maintaining their structure, and to form a film. can be developed. The substrate temperature is preferably -100 to 500℃, and if it is outside this range, it will become amorphous and hexagonal.
As the number of BN increases, high-quality products consisting of CBN and WBN
Since a BN film cannot be obtained, the temperature is preferably 0 to 250°C. Incidentally, 16 is an outlet for exhaust gas that is no longer needed for the production of CBN or WBN. Furthermore, in the present invention, it is important to project a laser beam having a predetermined wavelength range into the plasma atmosphere in order to efficiently synthesize CBN and WBN from N atoms and B atoms having SP 3 hybrid orbitals as described above. It is. That is, the inventor has determined that the wavelength range of this laser light is
It was found that when the thickness is set within the range of 7.5 to 12 μm, BN formed at a high film formation rate exhibits remarkable high hardness properties. It is desirable to irradiate the laser beam toward the base 7 as much as possible. Such a wavelength range is shown in Figure 2 by CBN and
It can be seen that this corresponds to the absorption peak of the infrared absorption spectrum of WBN. Therefore, this laser light is N
It is thought that it serves as a source of bonding energy between atoms and B atoms, and promotes the bonding reaction. This BN bonding reaction can be explained as follows using Figure 3. a indicates the unbonded energy potential of B atoms and N atoms with SP 3 hybrid orbitals, and when activation energy E * 1 is supplied by laser light irradiation, CBN exceeds the energy potential X.
energy potential b that brings about
It becomes a BN bond. However, if an inappropriate activation energy E * 2 is supplied, it is thought that the energy potential c will exceed the energy potential Y and result in HBN. In other words, in order for N atoms and B atoms to combine to form CBN or WBN, it is necessary to overcome the activation energy barrier of E * 1 . However, with conventional excitation methods, such as heating and plasma ionization, all degrees of freedom of the reactant molecules, that is, translational motion and internal energy levels, are uniformly excited and the reaction occurs. In addition to WBN generation, HBN generation also occurs. On the other hand, when a laser beam with good monochromaticity is used, it is possible to select the level at which the molecule is excited, so it becomes possible to directly excite the internal energy level of the molecule with the optical energy of the laser beam. Therefore, it is necessary to irradiate a laser beam having a wavelength range of 7.5 to 12 μm, which corresponds to the activation energy E * 1 , and the present inventor believes that the optimal wavelength range of laser light is 9 to
It was confirmed through experiments that the thickness was 10 μm. In the present invention, as the laser beam mentioned above,
Anything with a wavelength range of 7.5 to 12 μm can be used, such as CO 2 gas laser,
HF gas laser, also PbSnTe, PbSnSe,
There are semiconductor lasers such as HgCdTe, PbSnSeTe, and PbSnSSe. [Effects of the Invention] Thus, according to the method for producing a highly hard BN film according to the present invention, while setting the N atoms contained in the N-containing gas to a predetermined atomic ratio, the gas is caused to collide with electrons by electron cyclotron resonance. to discharge the
As a result, high-purity plasma is efficiently generated, an ion beam with a large beam diameter is formed from this plasma, and high-energy positive ions are irradiated onto the temperature-set substrate, and at the same time, B atoms in a predetermined range are emitted. A highly hard BN film made of CBN or WBN is formed at a high film formation rate by blowing out the B-containing gas contained in the substrate and irradiating it with a laser beam having a predetermined wavelength range. Furthermore, since the substrate is heated by ion beam irradiation, not only is there no need for a heat source to heat the substrate, but also a heat source for plasma generation such as a filament is not used, so defects in such heat sources may cause problems in the production of high-hardness BN films. It also has the advantage that formation is not inhibited and stable production can be maintained, and as a result, we were able to provide a method for producing a highly reliable high-hardness BN film that is suitable for mass production. Next, embodiments of the present invention will be described. Example 1 Using the above-described electron cyclotron resonance discharge device, N 2 gas was first introduced into the reaction chamber 1 through the first introduction pipe 4 at a flow rate of 0.1 ml/min. As a result, the pressure inside the reaction chamber 1 is always set at 10 -4 torr, a magnetic field is applied inside the reaction chamber 1 by the electromagnetic coil 2, and a microwave (2.45 GHz)
is introduced into the reaction chamber 1 via the waveguide 3 to generate electron cyclotron resonance plasma. Then,
When a bias voltage of 900 V is applied to the ion accelerating electrode 13, an ion beam is formed, and the ion beam is irradiated onto the silicon substrate 7. At the same time, B 2 H 6 gas is introduced from the second introduction tube 8 at a flow rate of 0.05 ml/min.
was introduced into the precipitation chamber 5. In this case, the atomic ratio of N atoms to B atoms is 2. Furthermore, a laser beam with a wavelength of 9.6 μm is emitted from a laser light source 9 consisting of a CO 2 gas laser to a reflector plate 12 with an output power as shown in Table 1, and while the reflector plate 12 is operated for scanning, the substrate is The laser beam was scanned over the surface of 7. When the thus obtained BN film was analyzed by X-ray diffraction, peaks that could be identified as CBN (111) and WBN (002) were confirmed, and their existence was confirmed. The film formation rate and Vickers hardness Hv were as shown in Table 1.

【表】【table】

【表】 *印のものは本発明の範囲外の試料であ
る。
第1表より明らかな通り、レーザー光を照射す
ることにより、試料番号9(レーザー光を照射せ
ず、他の製作条件は全く全じに行なつた)に比べ
て膜生成速度及び硬度が顕著に向上したことが判
る。 実施例 2 第2表に示した波長の半導体レーザーを出力パ
ワー350mW/cm2に設定してレーザー投光源とし、
他は実施例1と全く同じ製作条件にしてBN膜を
形成した。 かくして得られたBN膜をX線回折により分析
したところ、試料番号11〜14についてCBN(111)
及びWBN(002)と同定できるピークが確認で
き、その存在が判明できた。更にこれらの膜のピ
ツカース硬度Hvは第2表に示す通りである。
[Table] Samples marked with * are outside the scope of the present invention.
As is clear from Table 1, by irradiating with laser light, the film formation speed and hardness are remarkable compared to sample number 9 (no laser light was irradiated and all other manufacturing conditions were kept the same). It can be seen that this has improved. Example 2 A semiconductor laser with the wavelength shown in Table 2 was set to an output power of 350 mW/cm 2 and used as a laser projection source.
A BN film was formed under the same manufacturing conditions as in Example 1 except for the following. When the thus obtained BN film was analyzed by X-ray diffraction, CBN (111) was found for sample numbers 11 to 14.
A peak that could be identified as WBN (002) was confirmed, and its existence was confirmed. Furthermore, the Pickkers hardness Hv of these films is as shown in Table 2.

【表】 第2表より、いずれの試料も顕著な高硬度特性
を示しており、試料番号12、13は著しく高硬度な
BN膜であることが判る。 以上の通り、本発明の高硬度BN膜の製法にお
いては電子サイクロトロン共鳴励起プラズマを利
用し、更にレーザー光による適当なエネルギー供
給方法を用いることによりCBNやWBNから成る
高品質BN膜を高い膜生成速度で基体上に形成す
ることができた。 尚、本発明は上述した電子サイクロトロン共鳴
励起プラズマの利用によるBN膜の製法に限定さ
れるものではなく、本発明の要旨を免脱しない限
り、イオン化合成法、イオンプレーテイング、ス
パツタリングなど他のBN膜の製法にも適用でき
ることは当業者であれば自明である。
[Table] From Table 2, all samples show remarkable high hardness characteristics, and sample numbers 12 and 13 have remarkable high hardness.
It can be seen that it is a BN film. As described above, the method for producing a high-hardness BN film of the present invention utilizes electron cyclotron resonance excited plasma and further uses an appropriate energy supply method using laser light to produce a high-quality BN film composed of CBN or WBN. could be formed on the substrate at high speed. It should be noted that the present invention is not limited to the above-mentioned method for producing a BN film using electron cyclotron resonance excited plasma, and may be applied to other BN films such as ionization synthesis method, ion plating, sputtering, etc., unless the gist of the present invention is departed from. It is obvious to those skilled in the art that the present invention can also be applied to membrane manufacturing methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は立方晶窒化ホウ素(CBN)や六方最
密充填窒化ホウ素(WBN)を形成するための電
子サイクロトロン共鳴型放電装置の概略図、第2
図はCBNやWBNの赤外線吸収スペクトルを示す
図、第3図はホウ素(B)と窒素(N)の結合反応のエネ
ルギーポテンシヤルを表わす図である。 1…反応室、2…電磁石用コイル、3…導波
管、4…第1導入管、5…析出室、7…基体、8
…第2導入管、9…レーザー投光源。
Figure 1 is a schematic diagram of an electron cyclotron resonance discharge device for forming cubic boron nitride (CBN) and hexagonal close-packed boron nitride (WBN).
The figure shows the infrared absorption spectra of CBN and WBN, and Figure 3 shows the energy potential of the bonding reaction between boron (B) and nitrogen (N). DESCRIPTION OF SYMBOLS 1... Reaction chamber, 2... Electromagnetic coil, 3... Waveguide, 4... First introduction tube, 5... Precipitation chamber, 7... Substrate, 8
...Second introduction pipe, 9...Laser projection source.

Claims (1)

【特許請求の範囲】 1 内部に基体が設置された反応室に窒化ホウ素
生成用ガスを導入すると共に該反応室内部にプラ
ズマを発生させて化学気相成長法により該基体表
面上に窒化ホウ素を生成させる窒化ホウ素膜の製
法であつて、前記反応室内部のプラズマにホウ素
原子と窒素原子の結合を促進させるようにレーザ
ー光を投光したことを特徴とする高硬度窒化ホウ
素膜の製法。 2 前記レーザー光が7.5〜12μmの波長領域内に
あることを特徴とする特許請求の範囲第1項記載
の高硬度窒化ホウ素膜の製法。 3 前記プラズマをマイクロ波による電子サイク
ロトロン共鳴放電により生成したことを特徴とす
る特許請求の範囲第1項記載の高硬度窒化ホウ素
膜の製法。
[Claims] 1. A boron nitride generating gas is introduced into a reaction chamber in which a substrate is installed, and plasma is generated inside the reaction chamber to deposit boron nitride on the surface of the substrate by chemical vapor deposition. A method for producing a high-hardness boron nitride film, the method comprising: projecting a laser beam into the plasma inside the reaction chamber to promote bonding between boron atoms and nitrogen atoms. 2. The method for producing a high hardness boron nitride film according to claim 1, wherein the laser beam is within a wavelength range of 7.5 to 12 μm. 3. The method for producing a high hardness boron nitride film according to claim 1, wherein the plasma is generated by electron cyclotron resonance discharge using microwaves.
JP20454884A 1984-09-29 1984-09-29 Production of high-hardness boron nitride film Granted JPS6184379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20454884A JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20454884A JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Publications (2)

Publication Number Publication Date
JPS6184379A JPS6184379A (en) 1986-04-28
JPH059513B2 true JPH059513B2 (en) 1993-02-05

Family

ID=16492329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20454884A Granted JPS6184379A (en) 1984-09-29 1984-09-29 Production of high-hardness boron nitride film

Country Status (1)

Country Link
JP (1) JPS6184379A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2635021B2 (en) * 1985-09-26 1997-07-30 宣夫 御子柴 Deposition film forming method and apparatus used for the same
JPH0819523B2 (en) * 1986-11-22 1996-02-28 住友電気工業株式会社 High hardness boron nitride synthesis method
US5227318A (en) * 1989-12-06 1993-07-13 General Motors Corporation Method of making a cubic boron nitride bipolar transistor
US5330611A (en) * 1989-12-06 1994-07-19 General Motors Corporation Cubic boron nitride carbide films
US5264296A (en) * 1989-12-06 1993-11-23 General Motors Corporation Laser depositon of crystalline boron nitride films
US5232862A (en) * 1990-07-16 1993-08-03 General Motors Corporation Method of fabricating a transistor having a cubic boron nitride layer
JPH08181075A (en) * 1994-12-26 1996-07-12 Nec Corp Thin film depositing method
JP2847056B2 (en) * 1995-12-15 1999-01-13 アプライド マテリアルズ インコーポレイテッド Plasma igniter for semiconductor manufacturing equipment
DE19900437B4 (en) * 1999-01-11 2009-04-23 Ehret, Hans-P. Method and device for ion implantation in solids and / or for coating solid surfaces and the use of methods and apparatus

Also Published As

Publication number Publication date
JPS6184379A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US6660342B1 (en) Pulsed electromagnetic energy method for forming a film
US4816286A (en) Process for synthesis of diamond by CVD
US4986214A (en) Thin film forming apparatus
US5096740A (en) Production of cubic boron nitride films by laser deposition
EP0304201A1 (en) Process for making diamond doped diamond and diamond-cubic boron nitride composite films
CA2018886A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
JPH059513B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH04959B2 (en)
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPH0420984B2 (en)
JPH0420985B2 (en)
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0524992B2 (en)
JP2680574B2 (en) Method for producing cubic boron nitride film
JPH05311429A (en) Thin film forming device
JPS63107899A (en) Formation of thin film
JPS61227163A (en) Production of high hardness boron nitride film
JP2995339B2 (en) How to make a thin film
JP2739286B2 (en) Plasma processing method
JP3212719B2 (en) CVD method using low pressure inductively coupled plasma
JP2769977B2 (en) Plasma processing method
JPS63288997A (en) Formation of thin diamond film
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JPH0254758A (en) Thin film-forming equipment