JPH0524992B2 - - Google Patents

Info

Publication number
JPH0524992B2
JPH0524992B2 JP58224986A JP22498683A JPH0524992B2 JP H0524992 B2 JPH0524992 B2 JP H0524992B2 JP 58224986 A JP58224986 A JP 58224986A JP 22498683 A JP22498683 A JP 22498683A JP H0524992 B2 JPH0524992 B2 JP H0524992B2
Authority
JP
Japan
Prior art keywords
substrate
cbn
wbn
plasma
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58224986A
Other languages
Japanese (ja)
Other versions
JPS60116781A (en
Inventor
Koichi Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP22498683A priority Critical patent/JPS60116781A/en
Publication of JPS60116781A publication Critical patent/JPS60116781A/en
Publication of JPH0524992B2 publication Critical patent/JPH0524992B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は電子サイクロトロン共鳴プラズマの利
用による高硬度窒化ホウ素膜(以下、窒化ホウ素
をBNと略す)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a high hardness boron nitride film (hereinafter, boron nitride is abbreviated as BN) using electron cyclotron resonance plasma.

立方晶窒化ホウ素(以下、CBNと略す)及び
六方最密充填窒化ホウ素(以下、WBNと略す)
は耐熱衝撃性、熱伝導性、硬度及び耐摩耗性、並
びに高温での鉄族金属に対する耐性にも優れてい
るため、切削部材、耐摩耗部材及び耐熱部材など
種々の広範な用途に注目されており、これに伴
い、良質のCBNやWBNの製法が研究されてい
る。
Cubic boron nitride (hereinafter abbreviated as CBN) and hexagonal close-packed boron nitride (hereinafter abbreviated as WBN)
Because it has excellent thermal shock resistance, thermal conductivity, hardness and wear resistance, as well as resistance to iron group metals at high temperatures, it is attracting attention for a wide variety of applications such as cutting parts, wear-resistant parts, and heat-resistant parts. Along with this, research is being conducted into methods for producing high-quality CBN and WBN.

公知の製法技術として、高価な装置を使用して
超高圧・高温のもとで合成できる方法があるが、
その他、気相成長法によつて、効率的にCBN膜
及びWBN膜を合成することも研究されている。
即ち、プラズマCVD法、反応イオンプレーテイ
ング法などによつても未だCBNやWBNの合成が
報告されておらず、近時、イオン化合成法によつ
て比較的良質なCBNが合成できたという報告が
あるに過ぎない。
As a known manufacturing technology, there is a method that can be synthesized under ultra-high pressure and high temperature using expensive equipment.
In addition, research has also been conducted into efficiently synthesizing CBN films and WBN films by vapor phase growth.
That is, the synthesis of CBN and WBN by plasma CVD method, reactive ion plating method, etc. has not yet been reported, and recently there have been reports that CBN of relatively high quality can be synthesized by ionization synthesis method. It just exists.

因に、このイオン化合成法によれば、ホウ素を
電子衝撃で飛ばして基体に蒸着させ、同時に窒素
イオンを照射することにより、この基体上に
CBN膜が形成できるというものである。
Incidentally, according to this ionization synthesis method, boron is evaporated onto the substrate by electron bombardment, and at the same time, nitrogen ions are irradiated to deposit the boron on the substrate.
This means that a CBN film can be formed.

本発明者は先に提案されたイオン化合成法の他
に、CBN及びWBNの合成に相応しい新規な気相
成長法を開発するに当り、鋭意研究の結果、電子
サイクロトロン共鳴プラズマによつてプラズマの
発生率を大きくした後、このプラズマからイオン
ビームを形成して基体上に照射する方法をおこな
うことによつて、良質のCBN及びWBNが形成で
きることを見い出した。
In addition to the previously proposed ionization synthesis method, the present inventor has conducted intensive research to develop a new vapor phase growth method suitable for the synthesis of CBN and WBN. We discovered that high-quality CBN and WBN can be formed by increasing the rate and then forming an ion beam from this plasma and irradiating it onto the substrate.

本発明は上記知見に基づき完成されたものであ
り、良質のCBN膜及びWBN膜を広範囲且つ効率
的に合成する新規な高硬度BN膜の製造方法を提
供することにある。
The present invention was completed based on the above findings, and an object of the present invention is to provide a novel method for producing a high-hardness BN film that can efficiently synthesize high-quality CBN films and WBN films over a wide range of areas.

本発明による高硬度BN膜の製造方法は、窒素
原子含有ガスを反応室に導入すると共に、該反応
室内部に電子サイクロトロン共鳴プラズマを発生
させ、次いで、イオン加速電圧の印加に伴つて該
プラズマからイオンビームを形成して該反応室か
ら析出室内の基体上に照射すると同時に、該析出
室にホウ素原子含有ガスを導入し、この基体上に
CBNやWBNを気相成長させることを特徴とする
ものである。
The method for producing a highly hard BN film according to the present invention involves introducing a nitrogen atom-containing gas into a reaction chamber, generating an electron cyclotron resonance plasma inside the reaction chamber, and then removing the plasma from the plasma by applying an ion accelerating voltage. At the same time, an ion beam is formed and irradiated from the reaction chamber onto the substrate in the deposition chamber, and at the same time, a boron atom-containing gas is introduced into the deposition chamber and the ion beam is irradiated onto the substrate in the deposition chamber.
It is characterized by growing CBN or WBN in a vapor phase.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

図はCBN膜及びWBN膜を形成するための電子
サイクロトロン共鳴型放電装置であり、図中、反
応室1の外部に電磁石用コイル2を配置して反応
室1内に磁場をかけ、且つマイクロ波(2.45G
Hz)が導波管3を介してこの反応室1へ導入され
る。そして、N2、NH3、などの窒素原子含有ガ
ス(以下、N含有ガスと略す)が第1導入管4を
通して反応室1に導入されると同時に、電子サイ
クロトロン共鳴が生じ、電子がN含有ガスと衝突
して放電し、プラズマを発生せしめ、次いで、こ
のプラズマにイオン加速電圧を印加するに伴つて
析出室5にイオンビームを形成して試料台6に設
置された基体7上に照射し、同時にこの基板7へ
向けて、B2H6、(C2H53B、BCl3、BBr3などの
ホウ素原子含有ガス(以下、B含有ガスと略す)
を、析出室5の一部に設けられた第2導入管8を
介して噴出させると、CBN及びWBNがこ基体7
の上に気相成長される。
The figure shows an electron cyclotron resonance discharge device for forming CBN films and WBN films. (2.45G
Hz) is introduced into this reaction chamber 1 via a waveguide 3. Then, at the same time that a nitrogen atom-containing gas such as N 2 or NH 3 (hereinafter abbreviated as N-containing gas) is introduced into the reaction chamber 1 through the first introduction pipe 4, electron cyclotron resonance occurs, and electrons are transferred to the N-containing gas. It collides with gas to generate a discharge and generate plasma, and then, as an ion accelerating voltage is applied to this plasma, an ion beam is formed in the deposition chamber 5 and is irradiated onto the substrate 7 placed on the sample stage 6. , At the same time, a boron atom-containing gas (hereinafter abbreviated as B-containing gas) such as B 2 H 6 , (C 2 H 5 ) 3 B, BCl 3 , BBr 3 is directed toward the substrate 7.
When CBN and WBN are ejected through a second introduction pipe 8 provided in a part of the precipitation chamber 5, CBN and WBN are released into the base 7.
is grown in a vapor phase on top of the

即ち、電子のサイクロトロン周波数は、=
eB/2πm(但し、m:電子の質量、e:電子の電荷、 B:磁束密度とする)に基いて、サイクロトロン
運動を起こし、この周波数がマイクロ波
(2.45GHz)の周波数と一致すると共鳴し、その
結果、電子がN含有ガスの分子、イオン及びラジ
カルと衝突して高励起状態の放電現象が著しく増
大し、プラズマ中のイオン化率が一層大きくな
る。このようにプラズマイオン密度が大きいため
に、ガスの圧力を10-3乃至10-5torrに設定するこ
とができ、イオン化合成法に比べて著しく減圧す
ることができるため、高純度且つイオン密度の大
きいプラズマが発生する。
That is, the cyclotron frequency of the electron is =
eB/2πm (where m: mass of electron, e: charge of electron, B: magnetic flux density) causes cyclotron motion, and when this frequency matches the frequency of microwave (2.45GHz), resonance occurs. As a result, electrons collide with molecules, ions, and radicals of the N-containing gas, and the highly excited state discharge phenomenon increases significantly, further increasing the ionization rate in the plasma. Because of the high plasma ion density, the gas pressure can be set at 10 -3 to 10 -5 torr, which is significantly lower than the ionization synthesis method, resulting in high purity and low ion density. A large plasma is generated.

本発明においては、上記の如く反応室1内に発
生したプラズマを析出室5内でイオンビームにし
て試料台6に設置された基体7に衝突させると同
時に、B含有ガスを所定の流量で基体7へ向けて
噴出させることが重要である。つまり、イオン加
速電極9にバイアス電圧をかけることに伴い、プ
ラズマにイオン加速電圧を印加させるが、このイ
オン加速電極9は、反応室1の内壁に設けられた
アース電極10、及び反応室1と析出室5とを隔
壁すると共に、イオンビームの発射場所となる多
孔状のバイアス電極11から構成され、バイアス
電極11負として両電極10,11の間に50乃至
5000Vの範囲で印加させるとよい。このバイアス
電圧が50V未満であるとCBNやWBNの生成に必
要な窒素源が不足して基体上に形成されたBN膜
中にCBN及びWBNの特性が小さくなり、5000V
を超えると成膜速度が低下して生産効率が劣化す
る。従つて、このバイアス電圧は50乃至5000V、
好ましくは200乃至1000Vがよい。そして、プラ
ズマの正イオンが基体7に対してイオンビーム照
射されることによつてCBNやWBN生成用の窒素
源が高エネルギとなり、基体7に衝突すると同時
に、B含有ガスが第2導入管8を介して基体7に
噴出されると、CBNやWBNが合成されるべくN
原子及びB原子のそれぞれがSP3混成軌道をもつ
た高励起状態となる。
In the present invention, the plasma generated in the reaction chamber 1 as described above is turned into an ion beam in the deposition chamber 5 and is made to collide with the substrate 7 installed on the sample stage 6, while at the same time supplying B-containing gas to the substrate at a predetermined flow rate. It is important to eject it towards 7. In other words, by applying a bias voltage to the ion accelerating electrode 9, an ion accelerating voltage is applied to the plasma. It is composed of a porous bias electrode 11 that partitions the deposition chamber 5 and serves as an ion beam emission site.
It is recommended to apply within the range of 5000V. If this bias voltage is less than 50V, the nitrogen source necessary for the generation of CBN and WBN will be insufficient, and the characteristics of CBN and WBN will be reduced in the BN film formed on the substrate.
If it exceeds 100%, the film formation rate decreases and production efficiency deteriorates. Therefore, this bias voltage is 50 to 5000V,
Preferably it is 200 to 1000V. When positive ions of the plasma are irradiated with an ion beam onto the substrate 7, the nitrogen source for CBN and WBN generation becomes high energy and collides with the substrate 7, and at the same time, the B-containing gas flows into the second introduction pipe 8. When ejected to the base 7 through the
Each of the atoms and B atoms becomes a highly excited state with an SP 3 hybrid orbital.

かかるSP3混成軌道をもつたN原子及びB原子
から効率よくCBNやWBNが合成されるために
は、反応室1及び析出室5のそれぞれに導入され
るN含有ガス及びB含有ガスのそれぞれに含まれ
るN原子及びB原子の原子比率を特定することが
重要であり、当該B原子に対するN原子の原子比
率を1/10乃至10の範囲となるように設定すること
が好ましく、この設定範囲から外れると析出中、
CBNやWBNの含有率がかなり少なくなる。この
最適条件は1/2乃至3の範囲であることが実験上
確かめられている。
In order to efficiently synthesize CBN and WBN from N atoms and B atoms having such SP 3 hybrid orbitals, it is necessary to It is important to specify the atomic ratio of N atoms and B atoms contained, and it is preferable to set the atomic ratio of N atoms to the B atoms in the range of 1/10 to 10. If it comes off, it will be precipitated,
The content of CBN and WBN is considerably reduced. It has been experimentally confirmed that this optimum condition is in the range of 1/2 to 3.

CBN膜及びWBN膜が形成される基体7は、析
出中、所定範囲内の温度に維持されていることが
必要であり、これにより、気相成長したCBNや
WBNの構造を維持したまま、基体7に付着せし
め、且つ膜状に発達させることができる。その基
体温度は−100乃至500℃がよく、この範囲から外
れると非晶質及び六方晶BNが多くなつて良質な
CBN膜及びWBN膜が得られず、望ましくは0乃
至250℃がよい。
The substrate 7 on which the CBN film and WBN film are formed needs to be maintained at a temperature within a predetermined range during the deposition.
While maintaining the WBN structure, it can be attached to the substrate 7 and developed into a film. The temperature of the substrate is preferably -100 to 500℃, and if it is outside this range, amorphous and hexagonal BN will be present and the quality will be poor.
Since a CBN film and a WBN film cannot be obtained, the temperature is preferably 0 to 250°C.

尚、12はこのCBNやWBNの生成に不要とな
つた排ガスの排出口である。
Note that 12 is an outlet for exhaust gas that is no longer needed for the production of CBN or WBN.

かくして、本発明による高硬度BN膜の製造方
法によれば、N含有ガスに含まれるN原子を所定
の原子比率に設定しながら電子サイクロトロン共
鳴によつてガスを電子と衝突せしめて放電させ、
これにより、高純度のプラズマを効率よく発生さ
せると共に、このプラズマからビーム径の大きい
イオンビームを形成して高エネルギの正イオンを
温度設定された基体上に照射し、同時に所定範囲
のB原子を含んだB含有ガスを基体へ噴出させる
と、非常に良質なCBN膜及びWBN膜が広範囲に
形成されることになる。
Thus, according to the method for producing a high hardness BN film according to the present invention, while setting the N atoms contained in the N-containing gas to a predetermined atomic ratio, the gas is caused to collide with electrons by electron cyclotron resonance to cause discharge,
As a result, high-purity plasma is efficiently generated, an ion beam with a large beam diameter is formed from this plasma, and high-energy positive ions are irradiated onto the temperature-set substrate, and at the same time B atoms in a predetermined range are emitted. When the B-containing gas is ejected onto the substrate, very high quality CBN and WBN films are formed over a wide area.

次に本発明の実施例について述べる。 Next, examples of the present invention will be described.

〔実施例〕〔Example〕

上述した電子サイクロトロン共鳴型放電装置を
使用し、初めにN2ガスを第1導入管4を通して
流量0.1ml/minにて反応室1へ導入した。これ
により、反応室1内の圧力を常時、10-4torrに設
定すると共に、電磁石用コイル2によつて反応室
1内に磁場をかけ、且つマイクロ波(2.45GHz)
を導波管3を介して反応室1へ導入し、電子サイ
クロトロン共鳴プラズマを発生させる。次いで、
イオン加速電極9にバイアス電圧900Vを印加す
るとイオンビームが形成され、このイオンビーム
が、例えば、シリコン、サフアイア、モリブデ
ン、アルミナ多結晶などから成る基体7に照射さ
れると同時に、第2導入管8よりB2H6ガスを流
量0.05ml/minで析出室5へ導入した。この場
合、B原子に対するN原子の原子比率は2であ
る。この条件を2時間続けると、厚さ2μmの縁
がかつたBN膜が基体7上に形成された。
Using the above-described electron cyclotron resonance discharge device, N 2 gas was first introduced into the reaction chamber 1 through the first introduction tube 4 at a flow rate of 0.1 ml/min. As a result, the pressure inside the reaction chamber 1 is always set at 10 -4 torr, a magnetic field is applied inside the reaction chamber 1 by the electromagnetic coil 2, and a microwave (2.45 GHz)
is introduced into the reaction chamber 1 via the waveguide 3 to generate electron cyclotron resonance plasma. Then,
When a bias voltage of 900 V is applied to the ion accelerating electrode 9, an ion beam is formed, and at the same time this ion beam is irradiated onto the substrate 7 made of silicon, sapphire, molybdenum, polycrystalline alumina, etc. Then, B 2 H 6 gas was introduced into the precipitation chamber 5 at a flow rate of 0.05 ml/min. In this case, the atomic ratio of N atoms to B atoms is 2. When these conditions were continued for 2 hours, a 2 μm thick BN film with edges was formed on the substrate 7.

かくして得られたBN膜をX線回析により分析
したところ、CBN(111)及びWBN(002)と固定
できるピークが確認でき、その存在が判明でき
た。
When the BN film thus obtained was analyzed by X-ray diffraction, peaks that could be fixed as CBN (111) and WBN (002) were confirmed, and their existence was confirmed.

上述の実施例から明らかなように、本発明によ
る高硬度BN膜の製造方法によれば、N含有ガス
から電子サイクロトロン共鳴プラズマを効率よく
発生させると共に、このプラズマからイオンビー
ムを基体へ照射し、且つこの基板へ向けてB含有
ガスを噴出させたため、非常に良質なCBNや
WBN膜が基体上に形成できた。
As is clear from the above-mentioned examples, according to the method for manufacturing a high hardness BN film according to the present invention, an electron cyclotron resonance plasma is efficiently generated from a N-containing gas, and an ion beam is irradiated from this plasma to a substrate. Moreover, since B-containing gas was ejected towards this substrate, very high quality CBN and
A WBN film could be formed on the substrate.

更に、イオンビーム照射により基体が加熱され
たため、基体を加熱するための熱源が不要となつ
たばかりか、フイラメントなどプラズマ発生用の
熱源も使用しないため、かかる熱源の不良によつ
て高硬質BN膜の形成が阻害されず、安定した製
造が維持できるという利点も有し、その結果、量
産型に相応しく、且つ信頼性の高い高硬度BN膜
の製造方法が提供できた。
Furthermore, since the substrate is heated by ion beam irradiation, not only is there no need for a heat source to heat the substrate, but also a heat source for plasma generation such as a filament is not used, so a defect in such a heat source may cause the formation of a high hard BN film. It also has the advantage that formation is not inhibited and stable production can be maintained, and as a result, a method for producing a highly reliable high-hardness BN film that is suitable for mass production can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図は立方晶窒化ホウ素及び六方最密充填窒化ホ
ウ素を形成するための電子サイクロトロン共鳴型
放電装置の概略図である。 1……反応室、2……電磁石用コイル、3……
導波管、4……第1導入管、5……析出室、7…
…基体、8……第2導入管、9……イオン加速電
極。
The figure is a schematic diagram of an electron cyclotron resonance type discharge device for forming cubic boron nitride and hexagonal close-packed boron nitride. 1...Reaction chamber, 2...Electromagnetic coil, 3...
Waveguide, 4...first introduction pipe, 5...precipitation chamber, 7...
...Substrate, 8...Second introduction tube, 9...Ion accelerating electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 窒素原子含有ガスを反応室に導入すると共
に、該反応室内部に電子サイクロトロン共鳴プラ
ズマを発生させ、次いで、イオン加速電圧の印加
に伴つて該プラズマからイオンビームを形成して
該反応室から析出室内の基体上に照射すると同時
に、該析出室にホウ素原子含有ガスを導入し、こ
の基体上に立方晶窒化ホウ素や六方最密充填窒化
ホウ素を気相成長させることを特徴とする高硬度
窒化ホウ素膜の製造方法。
1. Introducing a nitrogen atom-containing gas into a reaction chamber and generating an electron cyclotron resonance plasma inside the reaction chamber, then forming an ion beam from the plasma with the application of an ion accelerating voltage to deposit from the reaction chamber. High-hardness boron nitride characterized by irradiating a substrate in the chamber and simultaneously introducing a boron atom-containing gas into the precipitation chamber to grow cubic boron nitride or hexagonal close-packed boron nitride on the substrate in a vapor phase. Membrane manufacturing method.
JP22498683A 1983-11-28 1983-11-28 Production of boron nitride film having high hardness Granted JPS60116781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22498683A JPS60116781A (en) 1983-11-28 1983-11-28 Production of boron nitride film having high hardness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22498683A JPS60116781A (en) 1983-11-28 1983-11-28 Production of boron nitride film having high hardness

Publications (2)

Publication Number Publication Date
JPS60116781A JPS60116781A (en) 1985-06-24
JPH0524992B2 true JPH0524992B2 (en) 1993-04-09

Family

ID=16822303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22498683A Granted JPS60116781A (en) 1983-11-28 1983-11-28 Production of boron nitride film having high hardness

Country Status (1)

Country Link
JP (1) JPS60116781A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238962A (en) * 1985-04-16 1986-10-24 Matsushita Electric Ind Co Ltd Method and apparatus for forming film
DE3546113A1 (en) * 1985-12-24 1987-06-25 Santrade Ltd COMPOSITE POWDER PARTICLES, COMPOSITE BODIES AND METHOD FOR THE PRODUCTION THEREOF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS57133636A (en) * 1981-02-13 1982-08-18 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma at low temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155535A (en) * 1980-05-02 1981-12-01 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma
JPS57133636A (en) * 1981-02-13 1982-08-18 Nippon Telegr & Teleph Corp <Ntt> Film forming device utilizing plasma at low temperature

Also Published As

Publication number Publication date
JPS60116781A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
JPH0346436B2 (en)
JPS58110494A (en) Synthesizing method for diamond
JPH04958B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH04959B2 (en)
JPH0259862B2 (en)
JPH059513B2 (en)
JP4109356B2 (en) Method for forming a crystalline carbon nitride film
JPH0524992B2 (en)
JPH0420984B2 (en)
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS59232991A (en) Production of thin diamond film
JPH0259864B2 (en)
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0420985B2 (en)
JPH0524991B2 (en)
JPS63210010A (en) Production of carbon
JPS61236691A (en) Vapor phase synthesis of diamond
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS60181262A (en) Production of boron nitride film having high hardness
JPH0377870B2 (en)
JPS593098A (en) Synthesizing method of diamond
JPH0135799B2 (en)
JP2739286B2 (en) Plasma processing method