JPS61238962A - Method and apparatus for forming film - Google Patents

Method and apparatus for forming film

Info

Publication number
JPS61238962A
JPS61238962A JP8051585A JP8051585A JPS61238962A JP S61238962 A JPS61238962 A JP S61238962A JP 8051585 A JP8051585 A JP 8051585A JP 8051585 A JP8051585 A JP 8051585A JP S61238962 A JPS61238962 A JP S61238962A
Authority
JP
Japan
Prior art keywords
plasma
substrate
accelerating
vessel
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8051585A
Other languages
Japanese (ja)
Other versions
JPS644591B2 (en
Inventor
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Taketoshi Yonezawa
米澤 武敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8051585A priority Critical patent/JPS61238962A/en
Publication of JPS61238962A publication Critical patent/JPS61238962A/en
Publication of JPS644591B2 publication Critical patent/JPS644591B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a high-hardness carbon film, etc., having uniform quality with high efficiency in an optional range with the less elevation of base body temp. by exciting a carrier gas and gaseous monomer to the plasma state and injecting the plasma to the base body while accelerating the ion seeds in the plasma. CONSTITUTION:The base body 11 to be formed with the film is disposed in the 2nd vacuum vessel 2 and the inside of the 1st vacuum vessel 1 made of a non-magnetic material and the vessel 2 are evacuated to a vacuum. The carrier gas 5 and the gaseous monomer 6 are introduced into the vessel 1 when the degree of vacuum attains a prescribed value. After the inside of the vessel 1 is regulated to the prescribed gaseous pressure, high-frequency electric power is impressed to an excitation coil 3, then the gas in the vessel 1 is excited to form plasma. The ions in the plasma are accelerated toward the base body 11 when a prescribed potential difference is provided between an acceleration electrode 9 and the base body 11 disposed in the vessel 1. The ions are injected from a plasma injection part 13 and collide against the surface of the base body 11. The electrons, neutral seeds and active seeds in the plasma arrive together with the ions in the viscous flow state of the gaseous plasma at the surface of the base body 11.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はキャリアガスとモノマーガスの単体もしくは混
合ガスをプラズマ化し、プラズマ中のイオン種を加速し
つつ基体に噴射して膜を形成するプラズマCVD法及び
その製造装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a plasma CVD method in which a single gas or a mixture of a carrier gas and a monomer gas is turned into plasma, and ion species in the plasma are accelerated and injected onto a substrate to form a film. and its manufacturing equipment.

従来の技術 急速に進歩しており、高分子薄膜の形成やシリコンウェ
ハのエツチングは工業的に実用化されている。最近では
硬度、摩擦係数、熱伝導率、光透過率、比抵抗等の諸特
性がダイヤモンドに近い特性を示す高硬度炭素膜を、プ
ラズマを利用して形成することも報告されている。(瀬
高他「応用物理学会学術講演会予稿集昭57年秋J30
p−Y−8他)高硬度炭素膜は諸特性がダイヤモンドに
近いことから固体潤滑膜、半導体のパッシベーション膜
BACKGROUND OF THE INVENTION Conventional technology is rapidly progressing, and the formation of polymer thin films and etching of silicon wafers have been put into practical use industrially. Recently, it has been reported that plasma is used to form a high-hardness carbon film that exhibits properties such as hardness, coefficient of friction, thermal conductivity, light transmittance, and specific resistance that are close to those of diamond. (Setaka et al., Proceedings of the Japan Society of Applied Physics Academic Lectures, Autumn 1982 J30
p-Y-8, etc.) High-hardness carbon films are used as solid lubricant films and passivation films for semiconductors because their properties are similar to those of diamond.

光学部品の保護膜等への応用が期待されるが、まだ研究
室の試作段階で実用化にはいたっていない。
Although it is expected to be applied as a protective film for optical components, it is still in the laboratory prototype stage and has not yet been put into practical use.

以下に高硬度炭素膜の形成を例にとって従来の方法及び
装置について説明する。
Conventional methods and apparatus will be described below, taking the formation of a high-hardness carbon film as an example.

従来から報告されているプラズマを利用した硬高度炭素
膜形成方法はPVD法とCVD法に大別される。第4図
にCVD法の一例であるプラズマCVD法の従来例を示
す。(手塚他[第45回応用物理学会学術講演会予稿集
J、1984年、 I)214 )この従来例ではモノ
マーガスとしてアセチレンガス21を使用し、ガラス管
14内に導入して適当な圧力に保持する。負電極16と
正電極1了との間に直流電源19により直流電圧を印加
し直流グロー放電プラズマを発生させると共に、フィラ
メント16によるアセチレンガス21の熱分解およびフ
ィラメント16から放出される熱電子とによってプラズ
マ化を促進している。この従来例では基体18上で熱エ
ネルギにより炭素−水素結合を分解し形成膜中の残留水
素を減らして膜特性を向上させるために、基体加熱用電
源20により基体18をSOO〜1ooQ℃に通電加熱
している。
Conventionally reported methods for forming hard carbon films using plasma are broadly classified into PVD methods and CVD methods. FIG. 4 shows a conventional example of the plasma CVD method, which is an example of the CVD method. (Tezuka et al. [Proceedings of the 45th Japan Society of Applied Physics Academic Conference J, 1984, I) 214] In this conventional example, acetylene gas 21 is used as the monomer gas, and it is introduced into the glass tube 14 and brought to an appropriate pressure. Hold. A DC voltage is applied between the negative electrode 16 and the positive electrode 19 by the DC power source 19 to generate DC glow discharge plasma, and the thermal decomposition of the acetylene gas 21 by the filament 16 and thermionic electrons emitted from the filament 16 generate a DC glow discharge plasma. Promoting plasma formation. In this conventional example, in order to decompose carbon-hydrogen bonds using thermal energy on the substrate 18, reduce residual hydrogen in the formed film, and improve film properties, the substrate 18 is energized to SOO~1ooQ°C by the substrate heating power source 20. It's heating up.

またこの従来例で形成する膜の成膜速度は約400A/
min である。
In addition, the film forming speed of this conventional example is approximately 400A/
It is min.

第6図にPVD法の一例であるイオン化蒸着法の概略を
示す。(熊田他「応用物理学会学術講演予稿集」昭66
年秋、9a−T−4)。この従来ス 例ではモノマーガとしてメタンガスを使用し、加1熱し
たフィラメント26及びフィラメント26が放出する熱
電子により熱分解、イオン化を行なう。
FIG. 6 shows an outline of the ionization vapor deposition method, which is an example of the PVD method. (Kumada et al., Proceedings of the Academic Lectures of Japan Society of Applied Physics, 1986)
Autumn, 9a-T-4). In this conventional example, methane gas is used as a monomer gas, and thermal decomposition and ionization are performed by the heated filament 26 and thermionic electrons emitted by the filament 26.

この時フィラメント26の外部に設けた外部コイル27
で磁界を発生させることにより熱電子はら旋状に運動す
るためイオン化は促進する。こうしてイオン化された粒
子は上部の網目状電極24に負のバイアスを印加するこ
とで加速され、基体29上に膜を形成する。本従来例に
おいても形成膜中の残留水素を取り除くために基体29
をヒーター22により加熱している。加えて高速に加速
されたイオン粒子が基体29に衝突することでも基体2
9温度は上昇し、400〜700 ’Cにも達する。
At this time, an external coil 27 provided outside the filament 26
By generating a magnetic field, thermionic electrons move in a spiral pattern, promoting ionization. The ionized particles are accelerated by applying a negative bias to the upper mesh electrode 24 to form a film on the base 29. In this conventional example, the base 29 is also used to remove residual hydrogen in the formed film.
is heated by a heater 22. In addition, the ion particles accelerated at high speed collide with the base 29, causing the base 2 to
9 Temperatures rise, reaching as much as 400-700'C.

発明が解決しようとする問題点 従来の高硬度炭素膜形成方法の中には、極めてダイヤモ
ンドに近い特性、構造をもった膜の形成が報告されてい
る。しかしいずれも研究室段階のレベルであり、実用化
については数々の問題点がある。以下にその問題点を述
べる。
Problems to be Solved by the Invention Among the conventional methods for forming high-hardness carbon films, it has been reported that films having properties and structures extremely similar to those of diamond are formed. However, all of these are at the laboratory stage, and there are many problems with practical application. The problems are described below.

第1の問題点は基体の温度上昇である。これはCVD法
、PVD法に共通した問題で、特にCVD法では先に述
べたように熱エネルギによりC−H結合を熱分解する必
要があり、通電加熱、ヒーターあるいはフィラメント等
により基体温度を700℃以上に加熱昇温しでいる。ま
だPVD法でも形成膜中の残留水素を減らす手段として
基体の加熱昇温を行なっているか、あるいはPVD法の
多くは基体もしくは基体付近に設けた電極に負のバイア
ス電圧を印加してイオン化した粒子を基体方向に加速さ
せており、加速した粒子が基体に衝突することで必然的
に基体温度は上昇する。このように従来の方法では基体
温度が高くなるため使用で、きる基体材料は限定され、
応用分野は極めて狭くなる。
The first problem is an increase in temperature of the substrate. This is a problem common to both CVD and PVD methods. In particular, in the CVD method, as mentioned above, it is necessary to thermally decompose the C-H bond using thermal energy, and the substrate temperature is lowered to 700°C using electrical heating, a heater, a filament, etc. The temperature has already risen above ℃. Even in the PVD method, the temperature of the substrate is still increased as a means of reducing residual hydrogen in the formed film, or in many PVD methods, a negative bias voltage is applied to the substrate or an electrode provided near the substrate to ionize particles. are accelerated toward the substrate, and as the accelerated particles collide with the substrate, the temperature of the substrate inevitably increases. In this way, the conventional method increases the substrate temperature, so the substrate materials that can be used are limited.
The field of application will be extremely narrow.

第2の問題点は成膜速度が小さいことである。The second problem is that the film formation rate is low.

従来の高硬度炭素膜形成方法では外部コイルによる磁場
の印加、フィラメントの熱電子利用等によりプラズマ化
を促進しているが、その成膜速度は数10〜数100 
、A/’minがほとんどで、最大のものでも1000
A/’min であり工業化には苦しい。
In the conventional method of forming a high-hardness carbon film, plasma formation is promoted by applying a magnetic field using an external coil, using thermoelectrons from a filament, etc., but the film forming speed is several tens to several hundreds.
, A/'min is the most, and the maximum is 1000.
A/'min, making it difficult for industrialization.

第3の問題点はキャリアガスとして水素を使用すること
である。従来の方法では形成膜中の残留水素の除却、プ
ラズマ中の活性種の反応促進、ダイヤモンドの成長と同
時に進行する黒鉛状炭素の抑制などを目的として水素ガ
スを導入する。水素ガスは酸素ガスとの反応で爆発する
危険性があり、真空容器からの漏れ、残留空気等の管理
を十分に行なわなければならず、排気処理も「不活性ガ
スを混入して爆発濃度以下にして排気するjなどの特殊
処理が必要となる。
A third problem is the use of hydrogen as a carrier gas. In the conventional method, hydrogen gas is introduced for the purpose of removing residual hydrogen in the formed film, promoting the reaction of active species in the plasma, and suppressing graphitic carbon that progresses at the same time as diamond growth. Hydrogen gas has the danger of exploding when it reacts with oxygen gas, so leaks from vacuum containers and residual air must be carefully controlled, and exhaust treatment must be done by mixing inert gas to ensure that the concentration is below explosive. Special treatment such as evacuation is required.

第4の問題点は装置構成が複雑になることである。先に
述べたように水素という爆発性のある気体を使用するた
め防爆対策などの特殊構造が必要になる。また、PvD
法ではプラズマ中のイオンを十分加速させるため少なく
とも10Ton以上の高真空装置が必要となる。CVD
法では先に述べたように基板加熱用装置(例えばヒータ
ー)が必要になるなど装置構成が複雑になる。以上のよ
うに従来の高硬度炭素膜形成装置では構成が複雑になり
工業化には適していない。
The fourth problem is that the device configuration becomes complicated. As mentioned earlier, since hydrogen, an explosive gas, is used, special structures such as explosion-proof measures are required. Also, PvD
In this method, a high vacuum device of at least 10 tons or more is required to sufficiently accelerate the ions in the plasma. CVD
As mentioned above, in this method, a device for heating the substrate (for example, a heater) is required, making the device configuration complicated. As described above, the conventional high-hardness carbon film forming apparatus has a complicated structure and is not suitable for industrialization.

また、従来の装置では基体全体をプラズマ中にさらすだ
め局部的に成膜することはむずかしく、しかも既存の真
空装置(例えば蒸着装置、スパンタリング装置等)にそ
の機能をそこなうことなく応用設置することができない
。そのため既存の生産ラインに高硬度炭素膜形成工程を
導入する場合には、全く新しい専用の真空装置が必要と
なり模大な設備費用が必要となる。
In addition, with conventional equipment, it is difficult to locally form a film because the entire substrate is exposed to plasma, and it is difficult to apply it to existing vacuum equipment (e.g., evaporation equipment, sputtering equipment, etc.) without damaging its function. I can't. Therefore, when introducing a high-hardness carbon film forming process to an existing production line, a completely new dedicated vacuum device is required, resulting in a huge equipment cost.

以上の問題点を解決するために、我々は新しい高硬度炭
素膜の形成方法及びその装置を考案した。
In order to solve the above problems, we have devised a new method and apparatus for forming a high-hardness carbon film.

これは一つの真空容器内にプラズマ発生部、プラズマ中
のイオンを加速するプラズマ加速部、加速したイオンを
含むプラズマを基体に噴射するプラズマ噴射部を備え、
プラズマ発生部、プラズマ噴射部に少なくとも一つ以上
の加速電極を設けて、加速電極と基体・基体設置台間も
しくは、加速電極間に電位差を設けた構成の加速方法に
よシプラズマ中のイオンを加速し基体に噴射するもので
ある。この時真空容器中のプラズマ流が粘性流であるた
め、加速イオンと共に電子、中性種、活性種も噴射され
膜を形成する。我々はこの成膜方法をプラズマ・インジ
ェクションCVD法と称している(以下P l−CVD
と略称する)・第6図にPI−CVD法の実施例を示す
。キャリアガスとしてアルゴンガス、モノマーガスとし
て炭化水素ガス(例えばCH4ガス)を使用し、これを
第1真空容器31中に導入する。第1真空容器31の外
部に巻回した励起コイル3oに高周波電源3アから高周
波電力を印加することにより導入ガスをプラズマ化する
。プラズマ発生部又は噴射部に設けた加速電極33と基
体34又は基体設置台35との間に、加速電極33が接
地電位、基体34・基体設置台35が負電位の電位差を
もうけ、プラズマ中のイオンを基体34方向に加速する
。この時第1真空容器31中のプラズマ流は粘性流のた
め、電子、中性種を含んだプラズマが加速されたイオン
とともに基体34に噴射され膜を形成する。この方法で
形成された膜は基体34・基体設置台35の負電位値に
より膜質が大きく変化し、第7図に示すように負電位値
が大きいほど硬くなる。加速電極4と基体39間の電位
状態を第8図に示す。電位勾配は加速電極(接地電位)
41と基体39との間で一定ではなく基体39の近傍で
急激に犬きくなる。(一般に電位勾配が急激に大きくな
る領域をシース域と称している)。
This is equipped with a plasma generation section, a plasma acceleration section that accelerates ions in the plasma, and a plasma injection section that sprays plasma containing accelerated ions onto a substrate in one vacuum container.
Ions in the plasma are accelerated by an acceleration method in which at least one or more acceleration electrodes are provided in the plasma generation section and the plasma injection section, and a potential difference is provided between the acceleration electrode and the substrate/substrate installation stand or between the acceleration electrodes. It is sprayed onto the substrate. At this time, since the plasma flow in the vacuum container is a viscous flow, electrons, neutral species, and active species are also injected together with accelerated ions to form a film. We call this film-forming method the plasma injection CVD method (hereinafter referred to as Pl-CVD).
Figure 6 shows an example of the PI-CVD method. Argon gas is used as a carrier gas, and hydrocarbon gas (for example, CH4 gas) is used as a monomer gas, and these are introduced into the first vacuum container 31. By applying high frequency power from a high frequency power source 3a to an excitation coil 3o wound outside the first vacuum container 31, the introduced gas is turned into plasma. A potential difference is created between the accelerating electrode 33 provided in the plasma generation section or the injection section and the base 34 or the base mount 35, with the accelerating electrode 33 being at a ground potential and the base 34 and the base mount 35 being at a negative potential. The ions are accelerated in the direction of the substrate 34. At this time, since the plasma flow in the first vacuum container 31 is a viscous flow, plasma containing electrons and neutral species is injected onto the substrate 34 together with accelerated ions to form a film. The quality of the film formed by this method changes greatly depending on the negative potential value of the substrate 34 and the substrate mounting table 35, and as shown in FIG. 7, the film becomes harder as the negative potential value becomes larger. The potential state between the accelerating electrode 4 and the base 39 is shown in FIG. Potential gradient is accelerating electrode (ground potential)
It is not constant between 41 and the base body 39, but sharply increases in the vicinity of the base body 39. (Generally, the region where the potential gradient increases rapidly is called the sheath region).

従ってプラズマ中のイオンも基体39近傍で急激に吸引
加速され基板34に衝突して膜を形成する。
Therefore, ions in the plasma are also rapidly attracted and accelerated near the base 39 and collide with the substrate 34 to form a film.

しかしながらこの方法でも下記に述べる問題点があった
。第1の問題点は、負電位を印加する基体34・基体設
置台36が第2真空容器32中に設置されるため、加速
電極33と同電位である第2真空容器内壁と基体34・
基体設置台35との間に放電が発生しやすくなり、十分
な負電位を印加することが困難になることである。第2
の問題点は成膜速度が遅くなることである。これは励起
コイル30とプラズマ噴射部38との間に加速電極33
が設置されるため、高周波電力は噴射部38に届かずこ
れによるプラズマも発生しないことに加え、プラズマ発
生部で生じたプラズマ中のイオン、中性種等の一部が加
速電極33にトラップされるだめである。
However, this method also has the following problems. The first problem is that since the base 34 and base mounting table 36 to which a negative potential is applied are installed in the second vacuum vessel 32, the inner wall of the second vacuum vessel and the base 34, which are at the same potential as the accelerating electrode 33,
Discharge is likely to occur between the substrate mounting table 35 and it becomes difficult to apply a sufficient negative potential. Second
The problem with this is that the film formation rate is slow. This is because an accelerating electrode 33 is placed between the excitation coil 30 and the plasma injection section 38.
is installed, the high-frequency power does not reach the injection part 38 and no plasma is generated thereby, and some of the ions, neutral species, etc. in the plasma generated in the plasma generation part are trapped in the accelerating electrode 33. It's useless.

本発明は前記問題点−を解決するもので、先に説明した
P l−CVD法の利点を生かしつつ、基体・基体設置
台と第2真空容器内壁との間の放電を発生しにくくシ、
成膜速度のより速い新しいPI−CVD法及び装置を提
供するものである。
The present invention solves the above-mentioned problems, and makes use of the advantages of the Pl-CVD method described above, while also making it difficult to generate electric discharge between the substrate/substrate installation stand and the inner wall of the second vacuum container.
The present invention provides a new PI-CVD method and apparatus with faster film formation speed.

問題点を解決するだめの手段 上記問題点を解決する本発明の技術的手段は、2つの真
空容器からなる装置構成とし、非磁性材料で構成した第
1真空容器中に、炭化水素ガス。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to provide an apparatus consisting of two vacuum containers, in which a hydrocarbon gas is contained in the first vacuum container made of a non-magnetic material.

アルゴンガスを主成分とする混合ガスを励起するプラズ
マ発生部と、プラズマ中のイオンを加速する加速部と、
第2真空容器中に設置した基体にプラズマを噴射するプ
ラズマ噴射部を備えたことであり、加速電極と基体との
間に励起コイルの少なくとも一部が位置する構成の加速
手段によシ、加速されたイオンを含むプラズマ流をもれ
なく基体に噴射することで高硬度炭素膜等を形成するも
のである。
a plasma generation section that excites a mixed gas containing argon gas as a main component; an acceleration section that accelerates ions in the plasma;
The invention is equipped with a plasma injection unit that injects plasma onto a substrate placed in a second vacuum container, and is accelerated by an accelerating means configured such that at least a part of an excitation coil is located between an accelerating electrode and the substrate. A high-hardness carbon film or the like is formed by completely injecting a plasma stream containing the ions onto the substrate.

作  用 本発明は上記装置構成にすることで、プラズマ発生部で
励起されたプラズマ中のイオンを加速しつつ基体にプラ
ズマを損失なく噴射することにより高能率で均質な高硬
度炭素膜等を形成することができる。また基板全体がプ
ラズマにさらされないため基体温度上昇が少なく、プラ
ズマ噴射部の形状を変えることで任意の範囲で成膜する
ことができる。また第1真空容器内にプラズマ発生部。
Function The present invention has the above-mentioned device configuration, thereby forming a highly efficient and homogeneous high-hardness carbon film etc. by injecting the plasma onto the substrate without loss while accelerating the ions in the plasma excited in the plasma generation section. can do. Furthermore, since the entire substrate is not exposed to plasma, the temperature of the substrate increases little, and by changing the shape of the plasma injection part, it is possible to form a film in any desired range. Further, a plasma generation section is provided within the first vacuum container.

プラズマ加速部、プラズマ噴射部を備えることで、2つ
の真空容器を分離可能にしておけば第1真空容器を単一
ユニットとして取扱うことが可能となり、既存の真空装
置にもその機能を損うことなく簡単に応用設置すること
ができる。
By providing a plasma acceleration section and a plasma injection section, if the two vacuum vessels can be separated, the first vacuum vessel can be handled as a single unit, and the function of existing vacuum equipment will not be impaired. It can be easily applied and installed.

実施例 第1図は本発明のP l−CVD装置の実施例を示す概
略図である。第2真空容器2の内部の基体設置台12に
膜を形成しようとする基体11を配置し、ニードルパル
プ7a 、7bを閉じた状態で真空ポンプを作動させ、
非磁性材料からなる第1真空容器および第2真空容器の
内部を真空に排気する。真空度が少なくとも10Pa程
度に達しだ後に、プラズマ化しようとするガス(キャリ
アガス5.モノマーガス6)を第1真空容器1内に導入
する。実施例においてはキャリアガスとしてアルゴンガ
ス、モノマーガスとして炭化水素ガスを使用し、必要に
応じてニードルパルプ7a、7bを調節することにより
単独もしくは同時に供給することができる。所定のガス
導入により第1真空容器内のガス圧を10〜20Pa程
度の圧力とした後、高周波電力8から励起コイル3に高
周波電力を印加すると、誘導結合によって第1真空容器
1内のガスが励起されプラズマ化する。
Embodiment FIG. 1 is a schematic diagram showing an embodiment of the Pl-CVD apparatus of the present invention. Place the substrate 11 on which a film is to be formed on the substrate installation stand 12 inside the second vacuum container 2, operate the vacuum pump with the needle pulps 7a and 7b closed,
The insides of a first vacuum container and a second vacuum container made of non-magnetic material are evacuated. After the degree of vacuum reaches at least about 10 Pa, gas to be turned into plasma (carrier gas 5, monomer gas 6) is introduced into the first vacuum container 1. In the embodiment, argon gas is used as the carrier gas and hydrocarbon gas is used as the monomer gas, and they can be supplied singly or simultaneously by adjusting the needle pulps 7a and 7b as necessary. After setting the gas pressure in the first vacuum container to a pressure of about 10 to 20 Pa by introducing a predetermined gas, when high-frequency power is applied from the high-frequency power 8 to the excitation coil 3, the gas in the first vacuum container 1 increases due to inductive coupling. It is excited and turns into plasma.

この状態で直流電源1oによシ第1真空容器1内に配置
された加速電極9(例えば網目状の電極)と基体11・
基体設置台12との間に数百7以上の電位差を設けると
、プラズマ中のイオンが基体11に向って加速され、プ
ラズマ噴射部から噴射されて基体11表面に衝突する。
In this state, the DC power supply 1o is connected to the acceleration electrode 9 (for example, a mesh electrode) arranged in the first vacuum container 1 and the base 11.
When a potential difference of several hundreds 7 or more is provided between the plasma and the substrate installation table 12, ions in the plasma are accelerated toward the substrate 11, are ejected from the plasma injection part, and collide with the surface of the substrate 11.

この時、プラズマガスは粘性流の状態であり、イオンと
共にプラズマ中の電子、中性種、活性種も同時に基体1
1の表面に到達する。
At this time, the plasma gas is in a viscous flow state, and along with ions, electrons, neutral species, and active species in the plasma also flow into the substrate 1.
Reach the surface of 1.

第1真空容器1内の加速電極8は、励起コイル3の少な
くとも一部が加速電極8とプラズマ噴射部13との間に
位置するように配置するのが望ましい。これは加速電極
9を励起コイル3とプラズマ噴射部13の間に位置する
よう配置した時、加速電極9とプラズマ噴射部13の間
では加速電極9により高周波がしゃ断され\ガスが励起
されにくくなるとともに、励起コイル3で生じたプラズ
マ中のイオン、活性種の一部が加速電極9にトラップさ
れることで成膜速度が遅くなることを防5ぐためである
。第2図に本実施例において例えばアルゴンガス圧5.
0Pa、炭化水素ガス5.OPa、加速電極9と基体1
1との間の電位差をo、sKVに設定し、加速電極9の
位置を変えた時の高周波電力と成膜速度との関係を示す
It is desirable that the accelerating electrode 8 in the first vacuum vessel 1 be arranged such that at least a portion of the excitation coil 3 is located between the accelerating electrode 8 and the plasma injection section 13. This is because when the accelerating electrode 9 is placed between the excitation coil 3 and the plasma injection section 13, the high frequency is cut off by the accelerating electrode 9 between the accelerating electrode 9 and the plasma injection section 13, making it difficult for the gas to be excited. This is also to prevent part of the ions and active species in the plasma generated by the excitation coil 3 from becoming trapped in the accelerating electrode 9, which would slow down the film formation rate. FIG. 2 shows, for example, the argon gas pressure 5.
0Pa, hydrocarbon gas5. OPa, acceleration electrode 9 and substrate 1
The relationship between the high-frequency power and the film-forming rate when the position of the accelerating electrode 9 is changed by setting the potential difference between 1 and 1 at o and sKV is shown.

第2図から明らかなように、加速電極9を励起コイル3
とプラズマ噴射部13との間に配〔セる場合、高周波電
力を増加しても成膜速度は変化しな−いのに対し、励起
コイル3の少なくとも一部が加速電極9とプラズマ噴射
部13との間に位置するように加速電極9を配置すると
、高周波電力の増加に伴なって成膜速度は大きくなり数
十W以上で一定となる。この時の成膜速度は、加速電極
9を励起コイル3とプラズマ噴射部13との間に配置す
る構成に比べ約1.5 倍になる。
As is clear from FIG. 2, the acceleration electrode 9 is connected to the excitation coil 3.
If the excitation coil 3 is disposed between the acceleration electrode 9 and the plasma injection section 13, the deposition rate will not change even if the high frequency power is increased. When the accelerating electrode 9 is placed between the power source 13 and the power source 13, the deposition rate increases as the high frequency power increases and becomes constant at several tens of W or more. The film formation rate at this time is approximately 1.5 times as high as that in the configuration in which the accelerating electrode 9 is disposed between the excitation coil 3 and the plasma injection section 13.

また、加速電極9と基体11または基体設置台12との
間に電位差を設ける時、基体11.基体設置台12は接
地電位が望ましい。これは先に述べたように、基体11
・基体設置台12が負■電位をもつと第2真空容器2内
壁との間で放電が発生しやすくなり、加速電極9との電
位差を十分に設定できないからである。第3図に、加速
電極9と基体11との間に基体11を接地電位として電
位差を設けた時の電位勾配を示す。励起コイル3で発生
したプラズマ中のイオンは、シース域で加速電極9との
クーロン反発力により基体11方向へ急激に加速され、
その後エネルギーを徐々に損失しつつも基体11に衝突
する。また、この時プラズマガスは粘性流の状態であり
、イオンの加速にも助長されイオンと共にプラズマ中の
電子。
Furthermore, when a potential difference is provided between the accelerating electrode 9 and the base 11 or the base 12, the base 11. The base mounting table 12 is preferably at ground potential. As mentioned earlier, this is the base 11
- If the substrate mounting table 12 has a negative potential, electric discharge is likely to occur between it and the inner wall of the second vacuum container 2, making it impossible to set a sufficient potential difference with the accelerating electrode 9. FIG. 3 shows a potential gradient when a potential difference is provided between the accelerating electrode 9 and the base 11 with the base 11 at ground potential. Ions in the plasma generated by the excitation coil 3 are rapidly accelerated toward the base 11 by the Coulomb repulsion with the accelerating electrode 9 in the sheath region.
Thereafter, it collides with the base 11 while gradually losing energy. In addition, at this time, the plasma gas is in a viscous flow state, which is also helped by the acceleration of the ions, and the electrons in the plasma together with the ions.

中性種、活性種も同時に基体11の表面に到達し成膜す
る。このようにアルゴン、炭化水素の混合ガスのプラズ
マをプラズマ中のイオンを加速しつつ基体11の表面に
噴射すると、基体11上にはアルゴン、水素を微量に含
む炭素膜が形成され、その結合は巨視的に見れば非晶質
であるが微視的にはダイヤモンドに近い結合を含み、極
めて高い硬度を有する。本実施例においてはマイクロビ
ッカース硬さ3000 kLj/、−以上の高硬度炭素
膜を形成することができた。また膜は透明で屈折率2.
0〜2.4(波長6328人)であった。
The neutral species and the active species simultaneously reach the surface of the substrate 11 and form a film. When plasma of a mixed gas of argon and hydrocarbon is injected onto the surface of the base 11 while accelerating the ions in the plasma, a carbon film containing trace amounts of argon and hydrogen is formed on the base 11, and the bond between them is Macroscopically it is amorphous, but microscopically it contains bonds similar to diamond and has extremely high hardness. In this example, a high-hardness carbon film having a micro-Vickers hardness of 3000 kLj/- or more could be formed. The film is transparent and has a refractive index of 2.
It was 0 to 2.4 (wavelength 6328 people).

成膜速度は先に述べたように2000〜3000V分で
、従来のCVD法、PVD法に対して2〜1゜倍程度高
くなっており、成膜処理中の基体11は温度上昇がほと
んど認められず(10分間の成膜時間で約5℃上昇)室
温状態を保っている。本実施例では混合ガスのプラズマ
化の手段として高周波による誘導結合を用いたが、他に
直流グロー放電、マイクロ波放電でもかまわない。
As mentioned earlier, the film formation rate is 2000 to 3000V, which is about 2 to 1° higher than that of conventional CVD and PVD methods, and there is almost no temperature rise in the substrate 11 during the film formation process. The temperature was maintained at room temperature (the temperature rose by about 5° C. in 10 minutes of film formation). In this embodiment, inductive coupling using high frequency waves is used as a means for turning the mixed gas into plasma, but DC glow discharge or microwave discharge may also be used.

以上のようにこの実施例では高硬度炭素膜の形成にづい
て説明したが、他にも気体状態から膜を形成する(例え
ばS I H4ガス+CH4ガス→SiC膜、TLCt
ガス十NH3ガス→Ti3N4膜など)場合には本発明
のP I −CVD法は有効である。
As mentioned above, in this example, the formation of a high-hardness carbon film has been explained, but there are other ways to form a film from a gaseous state (for example, S I H4 gas + CH4 gas → SiC film, TLCt
The P I -CVD method of the present invention is effective in cases where the film is formed using a gas (e.g., NH3 gas → Ti3N4 film, etc.).

発明の効果 以上述べたように、本発明によれば高硬度炭素膜を基体
を加熱することなくかつ高能率で形成することができる
と共に、既存の真空装置にその機能を損なうことなく容
易に設置することができ、実用的に極めて有用である。
Effects of the Invention As described above, according to the present invention, a high-hardness carbon film can be formed with high efficiency without heating the substrate, and it can be easily installed in existing vacuum equipment without impairing its function. It is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における膜形成装置の原理図、
第2図は同実施例を用いて実験を行なった時の一結果を
示す特性図、第3図は同実施例における第1真空容器中
の電位状態を示す特性図、第4図は従来のCVD装置の
一例を示す原理図、第5図は従来のPVD装置の一例を
示す原理図、第6図は従来のP l−CVD装置の一実
施例を示す原理図、第7図は従来のP l−CVD装置
の実施例を用いて実験を行なった時の一結果を示す特性
図、第8図は従来のP l−CVD装置の実施例におけ
る第1真空容器中の電位状態を示す特性図である。 1・・・・・・第1真空容器、2・・・・・・第2真空
容器、3・・・・・・励起コイル、9・・・・・・加速
電極、11・・・・・・基体、13・・・・・・プラズ
マ噴射部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 高周波電力(Wン 第4図 第5図 第 6 区 真空ポンプへ 第7図 基本6番体設置台電位(KV) 第8図 (1岡111」=ヒノ
FIG. 1 is a principle diagram of a film forming apparatus in an embodiment of the present invention;
Fig. 2 is a characteristic diagram showing the results of an experiment using the same example, Fig. 3 is a characteristic diagram showing the potential state in the first vacuum vessel in the same example, and Fig. 4 is a characteristic diagram showing the potential state in the first vacuum vessel in the same example. FIG. 5 is a principle diagram showing an example of a conventional PVD device. FIG. 6 is a principle diagram showing an example of a conventional Pl-CVD device. FIG. 7 is a principle diagram showing an example of a conventional PVD device. A characteristic diagram showing a result of an experiment using an example of a Pl-CVD apparatus. FIG. 8 is a characteristic diagram showing the potential state in the first vacuum vessel in an example of a conventional Pl-CVD apparatus. It is a diagram. DESCRIPTION OF SYMBOLS 1...First vacuum container, 2...Second vacuum container, 3...Excitation coil, 9...Acceleration electrode, 11... -Base body, 13...Plasma injection part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 High-frequency power (W) Figure 4 Figure 5 Figure 6 To the vacuum pump Figure 7 Basic 6th body installation table potential (KV) Figure 8 (1 Oka 111'' = Hino

Claims (6)

【特許請求の範囲】[Claims] (1)キャリアガス、モノマーガスをイオン種、ラジカ
ル種、中性種及び電子を含むプラズマ状態に励起し、プ
ラズマ中のイオン種を加速しつつ基体に噴射し膜を形成
する膜形成方法。
(1) A film forming method in which a carrier gas and a monomer gas are excited into a plasma state containing ion species, radical species, neutral species, and electrons, and the ion species in the plasma are accelerated and injected onto a substrate to form a film.
(2)イオン種の加速方法としてクーロン反撥力を利用
する特許請求の範囲第1項記載の膜形成方法。
(2) The film forming method according to claim 1, which utilizes Coulomb repulsion as a method for accelerating ion species.
(3)第1真空容器と、この第1真空容器の外部に巻回
した励起コイルと、前記第1真空容器に導入するキャリ
アガス及びモノマーガスを高周波の誘導結合によりプラ
ズマ化するプラズマ発生部と、このプラズマ発生部で発
生したプラズマ中のイオン種を加速する加速手段と、第
2真空容器とこの第2真空容器中に設置した基体にプラ
ズマを噴射するための基体と対向するプラズマ噴射口と
を備えた膜形成装置。
(3) a first vacuum vessel, an excitation coil wound around the outside of the first vacuum vessel, and a plasma generation unit that converts carrier gas and monomer gas introduced into the first vacuum vessel into plasma by high-frequency inductive coupling; , an accelerating means for accelerating ion species in the plasma generated in the plasma generating section; a plasma injection port facing the second vacuum container and the substrate for injecting the plasma onto the substrate installed in the second vacuum container; A film forming device equipped with
(4)プラズマ中のイオン種を加速する加速手段が、プ
ラズマ発生部中にプラズマ噴射口と対向する加速電極を
設け、この加速電極と基体又は基体設置台との間に加速
電極が高電位となるよう電位差を設ける構成の特許請求
の範囲第3項記載の膜形成装置。
(4) The accelerating means for accelerating ion species in the plasma includes an accelerating electrode facing the plasma injection port in the plasma generation section, and the accelerating electrode is connected to a high potential between the accelerating electrode and the base or the base mounting table. 4. The film forming apparatus according to claim 3, wherein a potential difference is provided such that the film forming apparatus has a structure such that a potential difference is provided.
(5)加速電極と基体又は基体設置台との間に、励起コ
イルの少なくとも一部が位置するよう加速電極を配置す
る構成の特許請求の範囲第4項記載の膜形成装置。
(5) The film forming apparatus according to claim 4, wherein the accelerating electrode is arranged so that at least a part of the excitation coil is located between the accelerating electrode and the substrate or the substrate mounting table.
(6)基体又は基体設置台を接地電位に設定した特許請
求の範囲第4項記載の膜形成装置。
(6) The film forming apparatus according to claim 4, wherein the substrate or the substrate mounting table is set to a ground potential.
JP8051585A 1985-04-16 1985-04-16 Method and apparatus for forming film Granted JPS61238962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8051585A JPS61238962A (en) 1985-04-16 1985-04-16 Method and apparatus for forming film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8051585A JPS61238962A (en) 1985-04-16 1985-04-16 Method and apparatus for forming film

Publications (2)

Publication Number Publication Date
JPS61238962A true JPS61238962A (en) 1986-10-24
JPS644591B2 JPS644591B2 (en) 1989-01-26

Family

ID=13720449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8051585A Granted JPS61238962A (en) 1985-04-16 1985-04-16 Method and apparatus for forming film

Country Status (1)

Country Link
JP (1) JPS61238962A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530155A (en) * 2008-08-04 2011-12-15 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Plasma source and method for depositing thin film coatings using plasma enhanced chemical vapor deposition
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521515A (en) * 1978-07-31 1980-02-15 Oyo Kagaku Kenkyusho Surface treatment
JPS58112045A (en) * 1981-12-02 1983-07-04 Konishiroku Photo Ind Co Ltd Formation of thin film
JPS59205471A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Method for forming black film on surface of article to be treated
JPS60116781A (en) * 1983-11-28 1985-06-24 Kyocera Corp Production of boron nitride film having high hardness
JPS61130487A (en) * 1984-11-29 1986-06-18 Matsushita Electric Ind Co Ltd Plasma injection cvd device
JPS61136678A (en) * 1984-12-06 1986-06-24 Matsushita Electric Ind Co Ltd Formation of high-hardness carbon film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521515A (en) * 1978-07-31 1980-02-15 Oyo Kagaku Kenkyusho Surface treatment
JPS58112045A (en) * 1981-12-02 1983-07-04 Konishiroku Photo Ind Co Ltd Formation of thin film
JPS59205471A (en) * 1983-05-02 1984-11-21 Kowa Eng Kk Method for forming black film on surface of article to be treated
JPS60116781A (en) * 1983-11-28 1985-06-24 Kyocera Corp Production of boron nitride film having high hardness
JPS61130487A (en) * 1984-11-29 1986-06-18 Matsushita Electric Ind Co Ltd Plasma injection cvd device
JPS61136678A (en) * 1984-12-06 1986-06-24 Matsushita Electric Ind Co Ltd Formation of high-hardness carbon film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017214651A (en) * 2008-08-04 2017-12-07 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source and method for depositing thin film coating using plasma-reinforced chemical vapor deposition
US20140216343A1 (en) 2008-08-04 2014-08-07 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150004330A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US20150002021A1 (en) 2008-08-04 2015-01-01 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2016006771A (en) * 2008-08-04 2016-01-14 エージーシー フラット グラス ノース アメリカ,インコーポレイテッドAgc Flat Glass North America,Inc. Plasma source and method for depositing thin film coating using plasma enhanced chemical vapor deposition
US9478401B2 (en) 2008-08-04 2016-10-25 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
JP2011530155A (en) * 2008-08-04 2011-12-15 エージーシー フラット グラス ノース アメリカ,インコーポレイテッド Plasma source and method for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580625B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10438778B2 (en) 2008-08-04 2019-10-08 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US10580624B2 (en) 2008-08-04 2020-03-03 Agc Flat Glass North America, Inc. Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
US11875976B2 (en) 2014-12-05 2024-01-16 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10755901B2 (en) 2014-12-05 2020-08-25 Agc Flat Glass North America, Inc. Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
US10586685B2 (en) 2014-12-05 2020-03-10 Agc Glass Europe Hollow cathode plasma source
US20170309458A1 (en) 2015-11-16 2017-10-26 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10559452B2 (en) 2015-11-16 2020-02-11 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US9721764B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Method of producing plasma by multiple-phase alternating or pulsed electrical current
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
US10242846B2 (en) 2015-12-18 2019-03-26 Agc Flat Glass North America, Inc. Hollow cathode ion source

Also Published As

Publication number Publication date
JPS644591B2 (en) 1989-01-26

Similar Documents

Publication Publication Date Title
US5712000A (en) Large-scale, low pressure plasma-ion deposition of diamondlike carbon films
US4576829A (en) Low temperature growth of silicon dioxide on silicon
JPS63210099A (en) Preparation of diamond film
KR890002286A (en) Plasma Enhanced Silicon Oxide Attachment Method and Vacuum System
JPH0635323B2 (en) Surface treatment method
JPH0544041A (en) Film forming device and film formation
JPH02281734A (en) Treating method of surface by plasma
JPS61238962A (en) Method and apparatus for forming film
JP2000068227A (en) Method for processing surface and device thereof
JPH02167891A (en) Gas-phase synthetic device of diamond film
JPS61136678A (en) Formation of high-hardness carbon film
JP2687129B2 (en) Method and apparatus for producing diamond-like thin film
JPS6350463A (en) Method and apparatus for ion plating
GB2212520A (en) Ion source
JPS6267822A (en) Plasma processor
JPH0530500B2 (en)
JPH04314864A (en) Method for plasma-cleaning substrate surface
JP2687468B2 (en) Thin film forming equipment
JPS63475A (en) Hybrid ion plating device
JPS6187870A (en) Coating film and its formation
JP2567843B2 (en) Hybrid ion plating method and apparatus
JPS63210006A (en) Formation of thin amorphous carbon film
JPH02213481A (en) Thin film forming device
Wertheimer et al. Microwave and Dual Frequency Plasma Processing
JPH02111695A (en) Production of diamond carbon thin film