JPS59232991A - Production of thin diamond film - Google Patents

Production of thin diamond film

Info

Publication number
JPS59232991A
JPS59232991A JP58108215A JP10821583A JPS59232991A JP S59232991 A JPS59232991 A JP S59232991A JP 58108215 A JP58108215 A JP 58108215A JP 10821583 A JP10821583 A JP 10821583A JP S59232991 A JPS59232991 A JP S59232991A
Authority
JP
Japan
Prior art keywords
zone
base material
diamond film
thin diamond
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58108215A
Other languages
Japanese (ja)
Inventor
Takeshi Yoshioka
剛 吉岡
Akira Doi
陽 土居
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58108215A priority Critical patent/JPS59232991A/en
Publication of JPS59232991A publication Critical patent/JPS59232991A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To synthesize efficiently a thin diamond film in which free carbon does not exist mixedly on a base material by installing the base material heated to a specific temp. in a vacuum vessel and passing and introducing the gaseous raw material to be introduced through a tungsten filament zone and a high frequency electric field zone. CONSTITUTION:A base material heated to 150-500 deg.C is installed in a vacuum vessel maintained under 10<-5>-1Torr in production a thin diamond film by a vapor phase synthesis method. The gaseous raw material (>=1 kind among methane and ethane) to be introduced is then passed through an activation zone using a high temp. tungsten filament of >=1,500 deg.C installed in the vessel and further through an ionization zone by the high frequency applied from the outside of the vessel or the DC electrolysis, thereby forming the thin diamond film on the base material.

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は、気相合成法によるダイヤモンド薄膜の製造法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field The present invention relates to a method for producing a diamond thin film by vapor phase synthesis.

(ロ)技術の背景 ダイヤモンド又は疑似ダイヤモンド気相合成虱 は数十年に延り各国で研究されている。その合成法は主
として下記の通りに2大別される。
(b) Background of the technology The vapor phase synthesis of diamond or pseudo-diamond has been researched in many countries for several decades. The synthesis methods are mainly divided into two as follows.

■ CVD法:メタン等の炭化水素を水素をキャリヤー
として600°C以上に加熱した炉内に導入し、炉内に
予め設置したダイヤモンド種結晶、Si単結晶、シリカ
、或いは多結晶Mo等の上にダイヤモンド又は疑似ダイ
ヤモンドの微結晶粒子又はそれ等の集合で構成された数
ミクロンの膜を炭化水素の熱分解により形成せしめる方
法。
■CVD method: Hydrocarbons such as methane are introduced into a furnace heated to 600°C or higher using hydrogen as a carrier, and are deposited on diamond seed crystals, Si single crystals, silica, polycrystalline Mo, etc. that have been placed in the furnace in advance. A method in which a film of several microns consisting of microcrystalline particles of diamond or pseudodiamond or an aggregation thereof is formed by thermal decomposition of hydrocarbons.

■ PVD法:所謂イオンビーム蒸着法を用い、カーボ
ンをArイオン等でスパッターし、スパッターされたカ
ーボン・イオン等を数百乃至数千ボルトに加速し、蒸着
用の基材にぶつつけ蒸着しながら、同時にArイオンを
同様に加速し基材にぶつつけ、5P2−5P3の電子軌
道変転を生せしめることにより数ミクロン以下の厚みの
ダイヤモンド又は疑似ダイヤモンドの薄膜を形成せしめ
る方法。これ等の方法は、夫々に長所と欠点を有してい
る。例えばCVD法は設備が簡素で安価に出来る長所が
あるが原料ガスの活性化機構を欠く為、ダイヤ又は疑似
ダイヤモンドに遊離炭素が混在し易い欠点や、600°
C以下の低温では合成出来ず、従って基材材質が限定さ
れる欠点もある。一方、後者のpvD法は独自−の活性
化機構を有する為、低温での蒸着が可能な為基材材質の
耐熱性を問題にしない長所はあるが、設備は高真空容器
にイオンスパッター銃を取付けた高価なものとなり、ま
た蒸着が基材の特定面にのみ選択的に行われ付きまわり
が悪い欠点も有する。
■ PVD method: Using the so-called ion beam evaporation method, carbon is sputtered with Ar ions, etc., and the sputtered carbon ions are accelerated to hundreds to thousands of volts and are bombarded against the substrate for vapor deposition. , At the same time, Ar ions are accelerated in the same way and hit the base material, causing a 5P2-5P3 electron orbit change, thereby forming a thin film of diamond or pseudodiamond with a thickness of several microns or less. Each of these methods has its own advantages and disadvantages. For example, the CVD method has the advantage that the equipment is simple and inexpensive, but because it lacks a raw material gas activation mechanism, it has the disadvantage that free carbon is likely to be mixed in the diamond or pseudo-diamond, and that the 600°
It also has the drawback that it cannot be synthesized at low temperatures below C, and therefore the base material is limited. On the other hand, the latter PVD method has a unique activation mechanism and has the advantage of not having to worry about the heat resistance of the base material because it can be deposited at low temperatures, but the equipment is an ion sputter gun in a high vacuum chamber. It is expensive to install, and also has the disadvantage that the deposition is selectively carried out only on specific surfaces of the substrate, resulting in poor coverage.

ぐ9 発明の開示 う・本発明は、上記の両方法のイアする長所を生かし、
短所を改善した方法を提供するものである。
9 Disclosure of the Invention The present invention takes advantage of the advantages of both of the above methods.
This method provides a method that improves the shortcomings.

本発明は、気相合成法によるダイヤモンド薄膜の製造法
に関するもので、真空容器内に150〜500°Cに加
熱した基材を設備し、導入原料ガスが加熱されたタング
不テーンフィラメントのゾーンと高周波電界もしくは、
直流電界をかけたゾーンを通過するところにある。また
タングステンフィラメントの温度は1500°C以上で
あり原料ガスがメタン、エタンの1種以上よりなり真空
容器内の圧力が、10−5〜1 torrであることを
特徴とするものである。なお本願でいう基材とは、ダイ
ヤモンド薄膜がその上に形成される物質のことを意味す
る。CVD法では熱分解せしめるのに高温が必要な為基
板が制限される欠点と原料ガスの活性化過程がない為に
遊離炭素が生成され易い欠点を、本発明では15006
C以上に加熱されたタングステンフィラメントからの熱
電子放射と高周波もしくは直流電界付加によるガスのイ
オン化によって原料ガスを活性化せしめることにより解
消せしめたことにある。尚、こうすることにより、イオ
ンビーム法で採用していたスパッターガンや加速用グリ
ッド等の高価な部品や電源を使用する事が避けられる。
The present invention relates to a method for producing a diamond thin film by vapor phase synthesis, in which a base material heated to 150 to 500°C is installed in a vacuum container, and raw material gas introduced into the heated tung-free filament zone. High frequency electric field or
It is located where it passes through a zone where a DC electric field is applied. Further, the temperature of the tungsten filament is 1500° C. or higher, the raw material gas is one or more of methane and ethane, and the pressure inside the vacuum container is 10 −5 to 1 torr. Note that the term "substrate" as used herein means a substance on which a diamond thin film is formed. In the present invention, 15006
This problem was solved by activating the raw material gas by thermionic radiation from a tungsten filament heated above C and ionization of the gas by applying a high frequency or DC electric field. By doing so, it is possible to avoid using expensive parts and power supplies such as sputter guns and acceleration grids that are used in the ion beam method.

本発明は、基材表面に蒸着する方式のダイヤモンド気相
合成法であり真空容器内に基材を設置し、150°C以
上500°C以下の温度領域で外部よりCH4もしくは
C2H6の炭化水素ガスとその他のガスの総圧が10−
5〜1torrの範囲で導入するが、その原料が容器内
に設置した1500°C以上の高温タングステンフィラ
メントによる活性化ゾーンを通過しさらに、容器外部か
ら付加した高周波もしくは直流電界によるイオン化ゾー
ンを通過し、その後基板へ到達する方式を採用する。」
1記活性化ゾーンとイオン化ゾーンの通過順序は限定し
ないが、どちらかといえば、活性化ゾーンを先にする方
が良好である。上記反応ガスをこの2つの活性化ゾーン
を連続して通過せしめることにより、基材上に効率良く
、しかも遊離炭素の混在しないダイヤモンCH4or 
C2H6炭化水素ガスをタングステンフィラメント及び
高周波もしくは直流電界によって活性化させるのは、原
料ガスの反応性が向上すると共に、スス状の遊離炭素の
生成を抑制したり、たとCH4−C+2H2)等の反応
により生え1度生成しても(。2H6−+2c+3H5
− 成するイオン化したH2ガスが、遊離炭素を選択的にエ
ツチング除去し、ダイヤモンド膜の合成を効率的に促進
する為をこ不可欠な条件である。その他のガスは、上記
CH4、C2H6のキャリア、反応促進ガスとして利用
される。この種のガスは不活性ガスや還元性ガスが望ま
しい。又、この際、同原料ガスの活性化には加熱された
タングステンフィラメントからの熱電子放射が重要なf
aCtorとなるが、その4温度が1500°C以下で
は放射される熱電子量が少なく、合成されるダイヤモン
ド膜にも多少遊離炭素が含まれる。次に原料ガスに、メ
タン、エタンが含まれるとした理由については、エチレ
ン系もしくはアセチレン系などの他の炭化水素系ガスを
用いた場合、等モル中の炭素が占める重量比率が大なる
為遊離炭素が多く混入する為であり、同じメタン系でも
プロパン以上の高分子量ガスになると同じ活性条件化で
も、炭素原子の活性化されるレベルが低く遊離炭素が生
成しゃすくなる為である。尚、真空容器中の総ガス圧を
1o−5〜1torr基板温度を150′〜500°C
に限定した理由に6一 ついては合成効率が理由である。即ち、10− ” t
orr以下の低圧及び150°C以下の低温下ではダイ
ヤモンド膜の成長速度が0.01μm//11r以下と
極めて遅い為、収率が極めて悪い。一方1torr以上
の高圧もしくは500°C以上の高温では間膜の成長速
度は秀れるが、反応ガスの活性化は十分行なわれず遊離
炭素の生成割合が増加するからである。
The present invention is a diamond vapor phase synthesis method in which vapor deposition is performed on the surface of a base material. and the total pressure of other gases is 10-
The raw material is introduced at a pressure in the range of 5 to 1 torr, but the raw material passes through an activation zone created by a high-temperature tungsten filament of 1500°C or higher installed inside the container, and then passes through an ionization zone created by a high frequency or DC electric field applied from outside the container. , and then reaches the substrate. ”
1. The order of passage through the activation zone and ionization zone is not limited, but it is better to pass the activation zone first. By passing the reaction gas continuously through these two activation zones, diamond CH4or can be efficiently deposited on the substrate without the presence of free carbon.
Activating C2H6 hydrocarbon gas with a tungsten filament and high frequency or DC electric field improves the reactivity of the raw material gas, suppresses the generation of soot-like free carbon, and promotes reactions such as CH4-C+2H2). Even if it grows once and generates it (.2H6-+2c+3H5
- This is an essential condition for the ionized H2 gas formed to selectively etch away free carbon and efficiently promote the synthesis of the diamond film. Other gases are used as carriers for CH4 and C2H6 and reaction promoting gases. This kind of gas is preferably an inert gas or a reducing gas. In addition, at this time, thermionic radiation from the heated tungsten filament is important for activating the raw material gas.
aCtor, but when the temperature is below 1500°C, the amount of thermionic electrons emitted is small, and the synthesized diamond film also contains some free carbon. Next, the reason why methane and ethane are included in the raw material gas is that when other hydrocarbon gases such as ethylene or acetylene are used, the weight ratio of carbon in an equimole is large. This is because a large amount of carbon is mixed in, and even with the same methane-based gas, when the gas has a higher molecular weight than propane, even under the same activation conditions, the activation level of carbon atoms is low and free carbon is more likely to be generated. In addition, the total gas pressure in the vacuum container is 1o-5 to 1 torr, and the substrate temperature is 150' to 500°C.
One of the reasons for limiting this is the synthesis efficiency. That is, 10-”t
At low pressures below orr and at low temperatures below 150°C, the growth rate of the diamond film is extremely slow at 0.01 μm//11r or less, resulting in extremely poor yields. On the other hand, at a high pressure of 1 torr or higher or a high temperature of 500° C. or higher, the interlayer growth rate is excellent, but the reaction gas is not activated sufficiently and the rate of free carbon generation increases.

以下実施例にて詳細を説明する。Details will be explained below in Examples.

に)実施例 し赤外線加熱で350°Cに加熱し、C)T4ガスを5
0CC/f11inで供給しツツ、総ガス圧は2.5X
 10−3torrになるように調節した。タングステ
ンフィラメントは2[1[]VAC電源により、180
0°Cに加熱し、その下方に5ターンのコイルを巻き、
13.56 MT(zの高周波によりプラズマを発生せ
しめた。この条件下で5hrの蒸着を行なった後、同試
料を赤外線分光分析によりそのスペクトルを測定したと
ころ、2000α−1にピークをもつダイヤモンド特有
のスペクトルが得られた。尚、同試料の破面をSEM観
察したところ6.5μm厚のDiarrnnd膜が合成
されていいることが判明した。
C) T4 gas was heated to 350°C using infrared heating.
Supply at 0CC/f11in, total gas pressure is 2.5X
The pressure was adjusted to 10-3 torr. The tungsten filament is powered at 180
Heat it to 0°C and wrap a 5-turn coil underneath it.
Plasma was generated by a high frequency of 13.56 MT (z). After 5 hours of vapor deposition under these conditions, the spectrum of the same sample was measured by infrared spectroscopy. SEM observation of the fractured surface of the same sample revealed that a 6.5 μm thick Diarnnd film had been synthesized.

実施例2 研磨したMo板を実施例1と同様の真空容器中に設置し
3hrの反応を行なった。この時、直流電極(2[]O
V 10A)でプラズマを発生させた。基板温度は45
0°C1Wフイラメントは2600°Cであったが形成
された膜はLEELS (LowElectron E
nergy LossSpectrometry)によ
ってダイヤモンドであることが判明した。
Example 2 A polished Mo plate was placed in the same vacuum container as in Example 1, and a reaction was carried out for 3 hours. At this time, the DC electrode (2[]O
Plasma was generated at V 10A). The board temperature is 45
The temperature of the 0°C1W filament was 2600°C, but the film formed was LEELS (Low Electron E
energy loss spectrometry) revealed that it was a diamond.

実施例6 した膜の電子線回折結果を(表1)にまとめた。これよ
りダイヤモンドの合成条件としては、基板温度150〜
500°CWフィラメント加熱温度1500°C以上、
真空度10−5〜1tonが最適であることが判明した
Example 6 The electron diffraction results of the film prepared are summarized in (Table 1). From this, the diamond synthesis conditions are that the substrate temperature is 150~
500°CW filament heating temperature 1500°C or more,
It has been found that a degree of vacuum of 10-5 to 1 ton is optimal.

表1 蒸着条件と膜質の相関について 9−Table 1 Correlation between vapor deposition conditions and film quality 9-

Claims (1)

【特許請求の範囲】 (1)気相合成法によるダイヤモンド薄膜の製造法にお
いて、真空容器内に150〜500°Cに加熱した基材
を設置し、導入原料ガスが加熱されたタングステンフィ
ラメントのゾーンと、高周波電界もしくは直流電界が印
加されたゾーンを通過することを特徴とするダイヤモン
ド薄膜の製造法。 (2)加熱されたタングステンフィラメントの温度(6
)原料ガスがメタン(CH4)、エタン(C2H6)の
1種以上よりなることを特徴とする特許請求の範囲第(
1)項記載のダイヤモンド薄膜の製造法。 (4)真空容器内の圧力が10−5〜jtorrである
ことを特徴とする特許請求の範囲第(1)項記載のダイ
ヤモンド薄膜の製造法。
[Scope of Claims] (1) In a method for producing a diamond thin film by vapor phase synthesis, a base material heated to 150 to 500°C is placed in a vacuum container, and a tungsten filament zone where the raw material gas introduced is heated. A method for producing a diamond thin film, characterized by passing through a zone to which a high frequency electric field or a direct current electric field is applied. (2) Temperature of heated tungsten filament (6
) The source gas is comprised of one or more of methane (CH4) and ethane (C2H6).
1) A method for producing a diamond thin film as described in section 1). (4) The method for producing a diamond thin film according to claim (1), wherein the pressure within the vacuum container is 10 -5 to jtorr.
JP58108215A 1983-06-16 1983-06-16 Production of thin diamond film Pending JPS59232991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108215A JPS59232991A (en) 1983-06-16 1983-06-16 Production of thin diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108215A JPS59232991A (en) 1983-06-16 1983-06-16 Production of thin diamond film

Publications (1)

Publication Number Publication Date
JPS59232991A true JPS59232991A (en) 1984-12-27

Family

ID=14478942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108215A Pending JPS59232991A (en) 1983-06-16 1983-06-16 Production of thin diamond film

Country Status (1)

Country Link
JP (1) JPS59232991A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118694A (en) * 1983-11-29 1985-06-26 Mitsubishi Metal Corp Method for synthesizing diamond under low pressure
JPS60122794A (en) * 1983-12-01 1985-07-01 Mitsubishi Metal Corp Low pressure vapor phase synthesis method of diamond
JPS63182297A (en) * 1986-12-22 1988-07-27 ゼネラル・エレクトリック・カンパニイ Aggregate diamond
US4767608A (en) * 1986-10-23 1988-08-30 National Institute For Research In Inorganic Materials Method for synthesizing diamond by using plasma
US4768011A (en) * 1985-12-24 1988-08-30 Nippon Soken, Inc. Joint structure for diamond body and metallic body
JPS63215595A (en) * 1987-03-02 1988-09-08 Nachi Fujikoshi Corp Method and apparatus for vapor phase synthesis of diamond
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process
US5112643A (en) * 1986-07-23 1992-05-12 Sumitomo Electric Industries, Ltd. Gaseous phase synthesized diamond and method for synthesizing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118694A (en) * 1983-11-29 1985-06-26 Mitsubishi Metal Corp Method for synthesizing diamond under low pressure
JPS60122794A (en) * 1983-12-01 1985-07-01 Mitsubishi Metal Corp Low pressure vapor phase synthesis method of diamond
US4768011A (en) * 1985-12-24 1988-08-30 Nippon Soken, Inc. Joint structure for diamond body and metallic body
US5112643A (en) * 1986-07-23 1992-05-12 Sumitomo Electric Industries, Ltd. Gaseous phase synthesized diamond and method for synthesizing same
US4767608A (en) * 1986-10-23 1988-08-30 National Institute For Research In Inorganic Materials Method for synthesizing diamond by using plasma
JPS63182297A (en) * 1986-12-22 1988-07-27 ゼネラル・エレクトリック・カンパニイ Aggregate diamond
JPH0472798B2 (en) * 1986-12-22 1992-11-19 Gen Electric
JPS63215595A (en) * 1987-03-02 1988-09-08 Nachi Fujikoshi Corp Method and apparatus for vapor phase synthesis of diamond
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process

Similar Documents

Publication Publication Date Title
EP0304201A1 (en) Process for making diamond doped diamond and diamond-cubic boron nitride composite films
Singh et al. Hollow cathode plasma assisted chemical vapor deposition of diamond
WO1991000377A1 (en) Process for making diamond, doped diamond, diamond-cubic boron nitride composite films at low temperature
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
US5491002A (en) Multilayer CVD diamond films
JPS59232991A (en) Production of thin diamond film
JPH04958B2 (en)
JPS61158899A (en) Production of diamond film
JPH04959B2 (en)
US4981671A (en) Method for preparing diamond or diamond-like carbon by combustion flame
JPH0372038B2 (en)
JPS5935092A (en) Vapor-phase synthesis of diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS6054996A (en) Synthesis of diamond
JPS5918197A (en) Gaseous phase synthesis of diamond
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6395200A (en) Production of hard boron nitride film
JPS60112698A (en) Manufacture of diamond
JPS6353159B2 (en)
JPS60112699A (en) Manufacture of diamond
Matsumoto Development of CVD diamond synthesis techniques
JPS62138394A (en) Preparation of diamond
JPS60226494A (en) Gas-phase synthesis of diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond