JPS60118694A - Method for synthesizing diamond under low pressure - Google Patents

Method for synthesizing diamond under low pressure

Info

Publication number
JPS60118694A
JPS60118694A JP58223066A JP22306683A JPS60118694A JP S60118694 A JPS60118694 A JP S60118694A JP 58223066 A JP58223066 A JP 58223066A JP 22306683 A JP22306683 A JP 22306683A JP S60118694 A JPS60118694 A JP S60118694A
Authority
JP
Japan
Prior art keywords
substrate
diamond
heated
plasma
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58223066A
Other languages
Japanese (ja)
Inventor
Akio Nishiyama
昭雄 西山
Noribumi Kikuchi
菊池 則文
Takayuki Shingyouchi
新行内 隆之
Hiroaki Yamashita
山下 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58223066A priority Critical patent/JPS60118694A/en
Publication of JPS60118694A publication Critical patent/JPS60118694A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To produce diamond on a substrate with high productivity, by introducing a mixed gas of a hydrocarbon and hydrogen under a low pressure into a furnace in which a plasma is generated, activating the mixed gas with a heated thermionic emitting material, and bringing the activated mixed gas into contact with the heated substrate. CONSTITUTION:A substrate 2 is placed on a supporting table 3 provided in a reaction furnace 4 and heated at 300-1,100 deg.C, and a plasma is generated by high-frequency discharge between electrodes 6 provided below the substrate 2. A mixed gas of a hydrocarbon and hydrogen under 0.1-10 Torr pressure is introduced from an introductory pipe 9 into the reaction furnace 4, activated by a heated thermionic emitting material 1 and brought into contact with the heated substrate 2 to produce a diamond film on the substrate 2. Thus, the high-frequency plasma is generated in the reaction furnace 4, and the excitation state of the hydrocarbon and hydrogen can be maintained for a long time. Thus, the aimed diamond can be efficiently obtained.

Description

【発明の詳細な説明】 本特許(・末、低圧ダイヤモンド合成法の改良にかかわ
るものである。
[Detailed Description of the Invention] This patent relates to improvements in a low-pressure diamond synthesis method.

従来ダイヤモンドは鉄族金属、特にN1等の触媒を用い
て高温、高圧下で合成されているが本方法はきわめて高
価である。
Conventionally, diamond has been synthesized at high temperatures and pressures using catalysts such as iron group metals, especially N1, but this method is extremely expensive.

従って低圧法によるダイヤモンドの合成が研究されるよ
うになり、次のような方法が知られている。
Therefore, research has begun on the synthesis of diamond by low-pressure methods, and the following methods are known.

l)熱電子放射材による熱分解により励起された炭素を
作りダイヤモンドを合成1−る。
l) Synthesize diamond by creating excited carbon through thermal decomposition using a thermionic emitting material.

2)プラズマな用い、炭化水素をプラズマで励起してダ
イヤモンドを合成する。
2) Use plasma to synthesize diamond by exciting hydrocarbons with plasma.

3)低圧にしてイオンビームな発生せしめこれを基体面
に衝突せしめて遊離炭素を放出しこねをダイヤモンドに
変換せしめるイオンビーム法0 4)励起方法としてマイクロ液を導入して炭化水しかし
いずれの方法も、現時点では太き(・反応ゾーンなとれ
ない(大型化しにく(・)と(・う欠点を持っている。
3) Ion beam method in which an ion beam is generated at low pressure and collided with the substrate surface to release free carbon and convert the diamond into diamond. 4) As an excitation method, a microfluid is introduced to generate hydrocarbon water. However, either method However, at present, it has the drawbacks of being thick (・reaction zone cannot be achieved (・) and difficult to increase in size (・).

1)の熱分解方法は蓑Sが簡単であるが、反応。The thermal decomposition method of 1) is simple, but it requires a reaction.

ゾーンが特に小さいという欠点を持って(・る。It has the disadvantage that the zone is particularly small (・ru.

これは熱電子放射材によって励起され、活性化状態にあ
る炭化水素と水素の活性化状態の寿命が短か(、熱電子
放射材と基体との間に、ダイヤモンド生成のために最適
な距離が必要であり、かつ、この距離範囲(すなわち反
応ゾーン)が非猟に狭見・という理由によるものである
。このため、反応ゾーンを・大きく取る必要のある工業
化において大きな障害となっていた。
This may be due to the short lifetime of the activated states of hydrocarbons and hydrogen excited by the thermionic emitting material (or the optimum distance between the thermionic emitting material and the substrate for diamond formation). This is because this distance range (i.e., reaction zone) is narrowly focused on non-hunting.For this reason, it has been a major obstacle in industrialization, which requires a large reaction zone.

一方、(2)の外部あるし・は内部に高周波を印荷して
プラズマな発生させる方法及び(4)のマイクロ波もで
導入してプラズマな発生させる方法は、いずれも反応炉
中のプラズマの状態を均一に制御1−ることか困難でル
〕す、特に、工具類、耐摩耗部材といった、様々の形状
のもの?コーティングしようとする場合、なかなか均一
なコーティング層を得られ難いという問題点があり、ま
だ工業化の段階までいたっていない。
On the other hand, method (2) of generating plasma by applying high frequency waves to the outside or inside of the reactor and method (4) of generating plasma by introducing microwaves are both methods of generating plasma in the reactor. Is it difficult to uniformly control the condition of objects, especially those of various shapes such as tools and wear-resistant parts? When attempting to coat it, there is a problem in that it is difficult to obtain a uniform coating layer, and it has not yet reached the stage of industrialization.

また(3)の方法は蒸着速度が遅い上に、アモルファス
構造の膜を生成し易く、今のところ明確なダイヤモンド
膜を生成したと言う報告はない。
In addition, method (3) has a slow deposition rate and tends to produce a film with an amorphous structure, and so far there has been no report that it has produced a clear diamond film.

本発明者らは、これらの問題、特に(1)の熱電子放射
材方式の欠点を改良すべく、鋭意検削を重ねたところ、
上記問題点を解決しうる方法を見〜・出した。
In order to improve these problems, especially the shortcomings of the thermionic emitter method (1), the inventors of the present invention conducted extensive testing and found that
I found a way to solve the above problems.

即ち、炭化水素と水素の混合ガスを基体支1.5部後方
に設置した装置でプラズマを炉内に発生せしめた炉中に
導入し、1200℃以上に加り4Hし≠気相合成せしめ
ることによりその反応ゾーンが熱電子放射材のツノの場
合に比べて10倍以上に庄で拡大し5ることがf11明
した。理由は明確で(佳ないが、活性化された状態にあ
る炭化水素ガスや水素ガスの寿命をプラズマによって伸
ばしうろことかで71.−ことによるものと推測されろ
That is, a mixed gas of hydrocarbons and hydrogen is introduced into a furnace in which plasma is generated in a device installed 1.5 parts behind the base support, heated to 1200°C or higher, and subjected to 4H for ≠ vapor phase synthesis. It was found that the reaction zone expanded more than 10 times in the case of the horn of the thermionic emitting material. The reason for this is clear (although it may not be a good idea, but it is probably due to the plasma extending the lifespan of hydrocarbon gas and hydrogen gas in an activated state).

またこの方法によれば、基体を直接プラズマにさらすこ
とが少℃・ため、先に述べたような高周波プラズマの欠
点であった、プラズマ状態の不均一性に起因する問題点
もなくて、良好なつき回り、(’J着強度のものを得る
こと−が可能である。
Also, according to this method, the substrate is directly exposed to the plasma at a low temperature, so there is no problem caused by the non-uniformity of the plasma state, which was a disadvantage of high-frequency plasma as mentioned earlier, and it is good. It is possible to get familiar with the material and obtain one with J-wearing strength.

炭化水素としては、メタン、エタン、プロパン、ブタン
等のパラフィン系炭化水素なはじめオレフィン系、アセ
チレイと、ジオレフィン系、刀香族炭化水素系等々の全
ての炭化水素を利用しうる。
As the hydrocarbon, all hydrocarbons can be used, including paraffinic hydrocarbons such as methane, ethane, propane, and butane, olefinic hydrocarbons, acetylene, diolefinic hydrocarbons, and aromatic group hydrocarbons.

炭化水素に対するFI2の比率は5〜1000で、5以
下てはグラファイトが析出し、1000以上ではダイヤ
モンドは生成しない。
The ratio of FI2 to hydrocarbon is 5 to 1,000; if it is less than 5, graphite will precipitate, and if it is more than 1,000, no diamond will be produced.

熱電子放射材は、W、、Ta、λ(0やLa B e等
のフィラメントがよい。熱電子放射材の温度は+200
’cJす下ではダイヤモンドが生成せず、この温度以上
がよいが、好ましくは1500℃以上がよい。
Thermionic emitting material is preferably a filament such as W, Ta, λ(0, La B e, etc.) The temperature of the thermionic emitting material is +200
Diamonds do not form under 'cJ, so a temperature above this temperature is preferable, preferably 1500°C or above.

又、基体の表面温度は30σC以下、1100℃り上で
はダイヤモンドが生成しない。
Further, diamond does not form when the surface temperature of the substrate is below 30σC and above 1100°C.

炉内圧力は0.1 Torr−10,Torrが望まし
い。
The pressure inside the furnace is preferably 0.1 Torr-10, Torr.

次に本発明を実施する装置を図1に示す。Next, an apparatus for implementing the present invention is shown in FIG.

■はフィラメント(熱電子放射材)、■は基体、■は基
体支持台、■は反応炉、■は加熱炉、■はコイル又は電
極、■は高周波マソブングボックス、■は高周波電源、
■は−ガス導入管、[相]は排気装置、0■は炭化水素
ガス(:lli給装置、(りは水素ガス供給装置、0〜
0Qは弁である。
■ is a filament (thermionic emitting material), ■ is a substrate, ■ is a substrate support, ■ is a reaction furnace, ■ is a heating furnace, ■ is a coil or electrode, ■ is a high frequency massaging box, ■ is a high frequency power supply,
■ is - gas inlet pipe, [phase] is exhaust device, 0■ is hydrocarbon gas (:lli supply device, (ri is hydrogen gas supply device, 0~
0Q is a valve.

カロ ■によって基体表面を艙熱する、Q)は基体■の後方に
あり(ガス流れに対して)これによってプラズマを発生
せしめる。
Q) is located behind the substrate (relative to the gas flow) and heats the surface of the substrate by Calo (2), thereby generating plasma.

また、場合によっては、必ずしも後方に設置する心安は
なく、基体の前方でも良見・が、(・すれにしても、プ
ラズマの中心部に基体が位置するようになると、先にの
べた高周波プラズマの問題点が現われるように/fろの
で好ましくない。
Also, depending on the case, it is not always safe to install it at the rear, and it may be possible to place it in front of the substrate. This is not desirable because the problem of /f appears.

この場合重要な点は、炉内に高周波プラズマが発生して
おり、熱′電子放射拐による炭化水素や水素の励起状態
をより長n5間維持し得ることである。
In this case, the important point is that high-frequency plasma is generated in the furnace, and the excited state of hydrocarbons and hydrogen due to thermal electron radiation can be maintained for a longer period n5.

[相]は炉内圧力の制御に用いる。[Phase] is used to control the pressure inside the furnace.

J夕、下に実施例な示す。An example is shown below.

(実施例1) WC−6%Co超硬合金を基体として炉内に装入し、反
応ガスとしてH2ガスをl000cc/分、CH4ガス
10mAとしてH2プラスマを発生せしめた。
(Example 1) A WC-6% Co cemented carbide was used as a base material and charged into a furnace, and H2 plasma was generated by using H2 gas as a reaction gas at 1000 cc/min and CH4 gas at 10 mA.

熱電子放射材としてはWフイラメン)・す使い表面温度
を2000°Cとした。基体は炉によって加pJ((5
00℃)4時間反応な行った。
The thermoelectron emitting material was W filament (W filament) and the surface temperature was 2000°C. The substrate is heated to pJ ((5
The reaction was carried out for 4 hours (00°C).

反応後、基体表面を調べたところ、膜状のダイヤモンド
が2μ生成されていた。均一にコーティングされたゾー
ンはフィラメントより30mm以−1−離れたところよ
りloornmの領域であった。
After the reaction, the surface of the substrate was examined, and it was found that 2 μm of diamond film had been formed. The uniformly coated zone was in the region of less than 30 mm away from the filament.

プラズマ発生を停止して反応させた基体は、フィラメン
トより30祁以」二Kすれたところよりl Ommまで
しかコーティングでき1よかった。
When the plasma generation was stopped and the reaction was carried out, the substrate could be coated only to a depth of 1 Omm from the point 30" or 2K away from the filament.

ダイヤモンドの検定は電子線回折ならひにレーサーラマ
ン分光分析を行ったが、いずれもダイヤモンド特有のピ
ークが得られた。
Diamond was tested using electron beam diffraction and laser Raman spectroscopy, but peaks unique to diamond were obtained in both cases.

この試別な用見・てA+−11%81合金な切削した。For this trial, A+-11% 81 alloy was cut.

Y已 条件はV二500m/2ain、 f = 0.1 m
m /pv 、 、 t = 1.(hnm、T=I5
分であった。基体形状i1 JIS i’PP322 
トシ、比牧片は無処理のVIIC−6%Co(同一母材
)合金である。
Y conditions are V2500m/2ain, f = 0.1m
m/pv, , t=1. (hnm, T=I5
It was a minute. Base shape i1 JIS i'PP322
Toshi and Himaki pieces are untreated VIIC-6%Co (same base material) alloy.

ダイヤモンド膜す治する基体は(1とんど摩耗な呈して
いた。
The substrate on which the diamond film was cured showed almost no wear.

で得られたう (実施例3) Si3N4基セラミックスを炉内に装入し、混合ガスと
してl−12ガスな500cc/分、C114ガスな5
0cc/分の流量で導入し、炉内全圧が2’l”、or
rとなるようにしまた。
(Example 3) The Si3N4-based ceramics obtained in (Example 3) were charged into a furnace, and the mixed gas was 500 cc/min of l-12 gas and 500 cc/min of C114 gas.
It was introduced at a flow rate of 0 cc/min, and the total pressure in the furnace was 2'l'', or
Let it be r again.

高周波は陽極′醒圧を7 KV、陽極電流IA、グリッ
ド電流+ OQmAとしてl−12プラズマを発生せし
めた。
The high frequency was used to generate l-12 plasma with the anode's pressure set to 7 KV, anode current IA, and grid current + OQmA.

i’hO、、イぐドープしたWフィラメントな熱電子放
射材として、このフィラメントの表向温度を2200°
Cに!用熱した。
i'hO,, As a thermionic emitter which is a doped W filament, the surface temperature of this filament is set to 2200°.
To C! I heated it up.

基体表面は600℃になるように炉で加熱し、炉フマン
分析でい−J’ Jqもダイヤモンド11°−りが得ら
れた。
The surface of the substrate was heated in a furnace to 600 DEG C., and furnace temperature analysis revealed that -J'Jq was 11°.

ダイヤモンド膜の表面(1粒状であり、フィラメントよ
り30III+l1i1な」′)たところよりloo+
nmσ)間までダイヤモンド膜が生成していた。
loo+ from the surface of the diamond film (one grain, 30III+l1i1' than the filament)
A diamond film was formed up to a diameter of 1 nmσ).

膜厚し1、Xμであった。The film thickness was 1.Xμ.

プラズマをかけない炉内で、同じfl”fi件で反応せ
しめたところフィラメントより30mrrJ9れたとこ
ろよりlom+nの間、ダイヤモンドが生成していた。
When the reaction was carried out under the same conditions of fl''fi in a furnace without applying plasma, diamond was produced at a distance of 30 mrrJ9 from the filament for a distance of lom+n.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例の説明図で
ある。 ■ フィラメント(挑”tlb、子放射イA)(り基体
■基体支持台■反応部(5)加熱部■コイル又i’j電
橙■高周波マツチレグボックス(印高周波電源■カス導
入管OQυl気装置面炭化水素カス供給装置6−2(水
素ガス供給装置(n〜(痴弁手続補正書く方式) 昭和59年3月27日 特許庁長官 若 杉 和 夫 殴 】、事件の表示 特願昭58−223066 号 2、発明の名称 ダイヤモンドの低圧合成法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町−丁目5番2号 (626) 三菱金属株式会社 代表者 永 野 健 5、補正指令の日付 昭和59年2月28日 6、補正の対象 昭和58年11月29日提出の特許願の明細書IA向7
、補正の内容 図面の浄書 (内容に変更なし)。
FIG. 1 is an explanatory diagram of an example of an apparatus for carrying out the method of the present invention. ■ Filament (challenge tlb, child radiation A) (substrate ■ Substrate support stand ■ Reaction section (5) heating section ■ Coil or i'j electric orange ■ High frequency Matsushi leg box (marked high frequency power supply ■ Waste introduction tube OQυl air) Equipment side Hydrocarbon scum supply device 6-2 (Hydrogen gas supply device (n ~ (method for writing amendments to the slander procedure) March 27, 1980, Commissioner of the Patent Office Kazuo Wakasugi), Patent application for indication of the case in 1982 -223066 No. 2, Name of the invention: Low-pressure synthesis method for diamonds 3, Relationship to the amended case Patent applicant: 5-2 Otemachi-chome, Chiyoda-ku, Tokyo (626) Mitsubishi Metals Corporation Representative Ken Nagano 5. Date of amendment order: February 28, 1980 6. Target of amendment: Specification IA of patent application filed on November 29, 1988 7.
, the content of the amendment: engraving of the drawing (no change in content).

Claims (1)

【特許請求の範囲】[Claims] と゛なるように調整して導入し、加熱した熱電子放射材
によって活性化した後300”C:〜1100℃に加熱
された基体に接触せしめ、ダイヤモンドを基体上に反応
生成せしめるダイヤモンドの低圧合成法。
A low-pressure method for synthesizing diamond, in which diamond is introduced in a controlled manner, activated by a heated thermionic emitter, and then brought into contact with a substrate heated to 300"C: ~1100°C to cause diamond to react and form on the substrate.
JP58223066A 1983-11-29 1983-11-29 Method for synthesizing diamond under low pressure Pending JPS60118694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223066A JPS60118694A (en) 1983-11-29 1983-11-29 Method for synthesizing diamond under low pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223066A JPS60118694A (en) 1983-11-29 1983-11-29 Method for synthesizing diamond under low pressure

Publications (1)

Publication Number Publication Date
JPS60118694A true JPS60118694A (en) 1985-06-26

Family

ID=16792291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223066A Pending JPS60118694A (en) 1983-11-29 1983-11-29 Method for synthesizing diamond under low pressure

Country Status (1)

Country Link
JP (1) JPS60118694A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5068871A (en) * 1989-08-04 1991-11-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for synthesizing diamond and apparatus therefor
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5077990A (en) * 1988-05-06 1992-01-07 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Knitting machine and parts having diamond-like carbon coated surfaces
US5110405A (en) * 1988-06-09 1992-05-05 Kabushiki Kaisha Toshiba Method of manufacturing single-crystal diamond particles
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5270028A (en) * 1988-02-01 1993-12-14 Sumitomo Electric Industries, Ltd. Diamond and its preparation by chemical vapor deposition method
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5360479A (en) * 1990-07-02 1994-11-01 General Electric Company Isotopically pure single crystal epitaxial diamond films and their preparation
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156594A (en) * 1982-03-08 1983-09-17 Sumitomo Electric Ind Ltd Preparation of hard coating film
JPS59232991A (en) * 1983-06-16 1984-12-27 Sumitomo Electric Ind Ltd Production of thin diamond film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156594A (en) * 1982-03-08 1983-09-17 Sumitomo Electric Ind Ltd Preparation of hard coating film
JPS59232991A (en) * 1983-06-16 1984-12-27 Sumitomo Electric Ind Ltd Production of thin diamond film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5270028A (en) * 1988-02-01 1993-12-14 Sumitomo Electric Industries, Ltd. Diamond and its preparation by chemical vapor deposition method
US5077990A (en) * 1988-05-06 1992-01-07 Sipra Patententwicklungs- Und Beteiligungsgesellschaft Mbh Knitting machine and parts having diamond-like carbon coated surfaces
US5110405A (en) * 1988-06-09 1992-05-05 Kabushiki Kaisha Toshiba Method of manufacturing single-crystal diamond particles
US5068871A (en) * 1989-08-04 1991-11-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for synthesizing diamond and apparatus therefor
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity
US5360479A (en) * 1990-07-02 1994-11-01 General Electric Company Isotopically pure single crystal epitaxial diamond films and their preparation

Similar Documents

Publication Publication Date Title
EP0324538B1 (en) Vapor-phase method for synthesis of diamond
US4816286A (en) Process for synthesis of diamond by CVD
JPS58110494A (en) Synthesizing method for diamond
JPS60118694A (en) Method for synthesizing diamond under low pressure
JPS5891100A (en) Synthesizing method for diamond
JPS61158899A (en) Production of diamond film
JPH04958B2 (en)
JPH04959B2 (en)
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS59232991A (en) Production of thin diamond film
JPS6054996A (en) Synthesis of diamond
JPS62138394A (en) Preparation of diamond
JPH01261298A (en) Synthesis of diamond
JPH0665744A (en) Production of diamond-like carbon thin film
JPH0812492A (en) Vapor synthetic apparatus and method for vapor synthesis
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPS61236691A (en) Vapor phase synthesis of diamond
JPS63288993A (en) Method for synthesizing diamond in gaseous phase
JP2568542B2 (en) Low pressure synthesis of diamond
JP2003238124A (en) Method for manufacturing carbon nanotube
JPH06280019A (en) Production of thin film of diamond-like carbon
JPH0255294A (en) Method for synthesizing diamond by vapor process
Zhu Microwave plasma-enhanced chemical vapor deposition and structural characterization of diamond films
JPS63282200A (en) Method of chemical vapor growth for diamond
JPS63134662A (en) Method for synthesizing high hardness boron nitride