JPS58110494A - Synthesizing method for diamond - Google Patents

Synthesizing method for diamond

Info

Publication number
JPS58110494A
JPS58110494A JP56204321A JP20432181A JPS58110494A JP S58110494 A JPS58110494 A JP S58110494A JP 56204321 A JP56204321 A JP 56204321A JP 20432181 A JP20432181 A JP 20432181A JP S58110494 A JPS58110494 A JP S58110494A
Authority
JP
Japan
Prior art keywords
diamond
hydrocarbon
substrate
microwave
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56204321A
Other languages
Japanese (ja)
Other versions
JPS5927754B2 (en
Inventor
Mutsukazu Kamo
加茂 睦和
Seiichiro Matsumoto
精一郎 松本
Yoichiro Sato
洋一郎 佐藤
Nobuo Sedaka
瀬高 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP56204321A priority Critical patent/JPS5927754B2/en
Priority to US06/442,506 priority patent/US4434188A/en
Publication of JPS58110494A publication Critical patent/JPS58110494A/en
Publication of JPS5927754B2 publication Critical patent/JPS5927754B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To synthesize granular or filmlike diamond stably by introducing a gaseous mixture of gaseous H2 passed through the inside of microwave nonpolar discharge and hydrocarbon into the surface of a substrate heated to specific temps. and thermally decomposing the hydrocarbon. CONSTITUTION:After a reacting system is evacuated to 0.05-400Torr by driving an evacuating device 6, the gaseous H2 in a supply device 2 is passed through the inside of the microwave nonpolar discharge generated from a waveguide 4 by a microwave oscillator 3 to grow H in an excited state or atomic state. The H is mixed with hydrocarbon (e.g.; methane) supplied from a supply device 1 and the mixture is introduced into a reacting chamber 5, where the mixture is supplied onto the surface of a substrate 7 on a susceptor 9 heated to 300- 1,300 deg.C by a resistance heating furnace 9, whereby the hydrocarbon in the excited state is thermally decomposed and diamond is deposited. Thus the control of nucleus forming speed is facilitated and the granular or filmlike diamond is synthesized easily.

Description

【発明の詳細な説明】 本発明は化学気相析出法Kよるダイヤモンドの合成法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamond by chemical vapor deposition method K.

一来、気相析出法Kよるダイヤモンド合成法としては次
のような方法が知られている。
For some time now, the following method has been known as a diamond synthesis method using vapor phase precipitation method K.

1》 炭化水素を加熱し九基板褒面に導入し、その藷I
]一ネルギ で熱分解して 遊離炭素を生成せめて,ダ
イヤモンドを析出する化学気相析出法。
1》 Heat the hydrocarbon and introduce it into the nine substrate surface,
] A chemical vapor deposition method in which diamond is precipitated by thermal decomposition with one energy to generate free carbon.

2》 アーク放電とスパッタリングの技術を組合せて、
炭素の正イオンビームを生成せしめ、これを加速、さら
に集束して、基板表面κ衝突させてダイヤモンドを析出
させるイオ/ビーム法。
2》 Combining arc discharge and sputtering technology,
An ion/beam method that generates a positive carbon ion beam, accelerates it, focuses it, and causes it to collide with the substrate surface to deposit diamond.

3》 電極関に直流放電を発生し、放電中の高エネルギ
ーを持った電子を利用して炭化水素の化学結合を解き放
すと同時K励起状態の炭素原子を生成せしめ、基板表面
にダイヤモンド析出する化学気相析出法。
3. A chemical process in which a direct current discharge is generated between the electrodes, and the high-energy electrons during the discharge are used to release the chemical bonds of hydrocarbons, simultaneously generating carbon atoms in the K excited state, and depositing diamonds on the substrate surface. Vapor phase deposition method.

4)黒鉛.基板と水素ガスを封入し、黒鉛を高温部に基
板を低温部に設置し、水素ガスを熱的、あるいは放電に
よって、原子状水素を生成せしめ、不均化反応を利用し
て、基板表面κダイヤモンドを析出させる化学輸送法な
どがある。
4) Graphite. A substrate and hydrogen gas are sealed, graphite is placed in a high-temperature area and the substrate is placed in a low-temperature area, and the hydrogen gas is thermally or electrically discharged to generate atomic hydrogen. There are chemical transport methods that precipitate diamonds.

前記1》の化学気相析出法は減圧下でttoo Pcm
:’p.”;板     し・・1゛1 下の温度に加熱した基体表面で炭化水素を熱 sj+l
TI1l して、ダイヤモンド層を形成せしめるため、j〆−4.
11゛ヤ舌冫ドよ抄安定な黒鉛.非ダイヤモンド炭素の
析…が避けられない。
The chemical vapor deposition method in 1) above is performed under reduced pressure at ttoo Pcm.
:'p. "; Plate...1゛1 Heat hydrocarbons on the surface of the substrate heated to a temperature below sj+l
TI1l to form a diamond layer, j〆-4.
11. Extremely stable graphite. Analysis of non-diamond carbon is unavoidable.

これらはダイヤモンドの生成を阻害する。従って周期的
に析出の操作と酸素ガス、またけ水素ガスを導入して、
基板褒面に析出した黒鉛,非ダイヤモンド炭素を除去す
る操作を繰返して行うことが必要である。また析出達度
が遅く、基板がダイヤモンドκ限定されるなどの欠点が
ある。
These inhibit diamond formation. Therefore, by periodically introducing the precipitation operation, oxygen gas, and hydrogen gas,
It is necessary to repeat the operation to remove graphite and non-diamond carbon deposited on the substrate surface. Further, there are drawbacks such as slow deposition rate and the substrate being limited to diamond κ.

1“゜”″”″”“′゛“゜“ 1゛ 麺 面にダイヤモンドを析出することができる利点 あ
る◇炭素の正イオンビームを発生する装置,シ びその
集束装置が高価であり、放電持゛続に用いる不活性ガス
の原子が析出したダイヤモンド格子中K取染込まれるな
どの欠点がある。
1"゜"""""""'゛"゜" 1゛Advantages of being able to deposit diamond on the noodle surface ◇The equipment that generates the carbon positive ion beam and its focusing device are expensive, and the discharge life is short. There are drawbacks such as K incorporation into the precipitated diamond lattice by atoms of the inert gas used subsequently.

前記3》の反応ガスの導入と同期して、周期的にプラズ
マを発生して、ダイヤモンドを合威する方法は、プラズ
マの密度を全城κわ友って均一に保持することが困一で
ある。この密度の不均質により、ダイヤモンド以外κ非
ダイヤモンド炭素が析出する欠点がある。
In the method described in 3 above, in which plasma is generated periodically to combine with diamond in synchronization with the introduction of the reactant gas, it is difficult to maintain the plasma density uniformly throughout the area. be. Due to this non-uniform density, there is a drawback that κ non-diamond carbon other than diamond is precipitated.

’t:記4)の化学輸送法は封管法であり、封管内で門
 と原子状水素との反応によって生成した炭化氷一素を
利用する方法であるため、連続操業することが困■であ
る。また反応ガスの濃度、およびその比率,加熱温度等
の合成条件を独立して可変することができないなどの欠
点を有している。
't: The chemical transport method described in note 4) is a sealed tube method, which uses monocarbohydrate produced by the reaction between a gate and atomic hydrogen in a sealed tube, which makes continuous operation difficult. It is. It also has the disadvantage that synthesis conditions such as the concentration of reaction gas, its ratio, and heating temperature cannot be varied independently.

本発明の方法は前記の従来法の欠点を改善せんとするも
のであり、反応ガスの濃度.およびその比率,加熱温度
,反応系の王力,などの合成条件なi立して可変するこ
とが容易であり、基板表面にi秋ダイヤモンド、あるい
は膜状ダイヤモンドを安定して、合成する方法を提供す
るものである。
The method of the present invention is intended to improve the drawbacks of the conventional method described above, and the concentration of the reactant gas. It is easy to change the synthesis conditions such as the ratio, heating temperature, and power of the reaction system, and it is possible to stably synthesize diamond or film diamond on the surface of the substrate. This is what we provide.

本発明は水素ガスをライクロ波無極′電放電中を通過さ
せ丸後炭化水素と混合し九混合ガス、t九は炭化水素と
水素との混合ガスをマイクロ波無極電放電中を通過せし
めた混合ガスを300−/300”CK加熱した基板表
面に導入して、励起状態の炭化水素の熱分解によりダイ
ヤモンドを析出させる方法によって、前記目的を達成し
丸ものである。
The present invention is a mixed gas in which hydrogen gas is passed through a microwave non-polar electric discharge and mixed with hydrocarbons. The above object is achieved by a method in which diamond is precipitated by thermal decomposition of excited hydrocarbons by introducing a gas into the surface of the substrate heated to 300-/300''CK.

本発明の方法の原理を示すと、黒鉛が熱力学的に安定な
温度.圧力でダイヤモンドを合成するため.kは、個々
に分離し九炭素原子を生成せしめること、これらの炭素
原子が励起状態Kあること、この励起状態がダイヤモン
ドの核を形成するまで持続すること等の条件を満九すこ
とが必要である。
The principle of the method of the present invention is as follows: The temperature at which graphite is thermodynamically stable. To synthesize diamond using pressure. It is necessary for k to satisfy the following conditions: 9 carbon atoms must be separated individually, these carbon atoms must be in an excited state K, and this excited state must last until the diamond nucleus is formed. It is.

また炭化水素の熱分堺で生成した遊離炭素かトダ.イヤ
モンドを成長させるためには謡の結合門生″じせしめる
に充分な反応エネルギーを遊離炭PK懐給することが必
要である。
In addition, free carbon generated during the thermal separation of hydrocarbons is also used. In order to grow diamonds, it is necessary to supply free carbon PK with sufficient reaction energy to produce the ``combination seed'' of the diamond.

コV′”゜”′”“゛″“″′ 極放電中を通過せしめ丸後、炭化水素と混合、1,は炭
化水素と水素ガスとを混合した後、マイクロ波無極放電
中を通過せしめて励起状態の炭化水素.励起状態または
原子状態の水素を生成せしめる。この励起状態の炭化水
素が加熱され九基板表面で熱分解し九時に生成する遊離
炭素原子にsp S結合を起すに充分表反応エネルギー
を供給する。t九励起状態ま九は原子状態の水素は黒鉛
および非ダイヤモンド炭素を成長させる原因と1なる、
姫.4結合を持つ九検と反応し、これを& ,.、バν ゛結゛ に変換、あるいは炭化水素を生成し、ダイヤ゛
”4 :{チードが成長する面の清浄化の作用をする。
KO V'"゜"'""゛"""' After passing through a polar discharge, it is mixed with a hydrocarbon, 1. After mixing a hydrocarbon and hydrogen gas, it is passed through a microwave non-polar discharge. Hydrocarbons in an excited state.Hydrogen in an excited state or an atomic state is produced.This excited hydrocarbon is heated and thermally decomposed on the surface of the substrate, and the surface of the excited state is sufficient to cause sp S bonds to the free carbon atoms that are produced. Provides the reaction energy.Hydrogen in the excited state and in the atomic state is responsible for the growth of graphite and non-diamond carbon.
princess. It reacts with Kuken which has 4 bonds, and converts this into & , . , converts into carbon dioxide, or produces hydrocarbons, and acts to clean the surface on which diamonds grow.

−o:二 本発明の方法においては安定に放電を持続させるためマ
イクロ波無極放電を採用した。直流放電の場合は電極を
利用するため、長時間連続して放電の発生は電極が損傷
を受けるため困難でml幕。
-o: 2 In the method of the present invention, microwave non-polar discharge was employed in order to sustain stable discharge. In the case of DC discharge, electrodes are used, so it is difficult to generate a discharge continuously for a long time because the electrodes will be damaged.

川 また数拾メガヘルツ以下の獣波数による無一歓電。!U
.I+−1J(7)1カ.、4オ,、イ,シェ極放電は
系の圧力の依存度を軽減することができるO i数拾メガヘルツでは炭化水素にダイヤモンドを析1出
するに充分な励起状態を与えるには不充分である。
Kawamata is a constant source of electricity with a beast wave frequency of several megahertz or less. ! U
.. I+-1J (7) 1ka. , 4O, ,I, Shep polar discharge can reduce the pressure dependence of the system. be.

使用する混合ガスの炭化水素と水素ガスとの混合比率は
広い範囲に変更し得られるが黒鉛,非ダイヤモンド炭素
の析出を防止する観点から、その上限は70以下である
ことか望ましい。粒状ダイヤモンドを合成するには約O
.Ol以下、展状ダイヤモンドを析出するには0,/以
上であることが望ましい。
The mixing ratio of hydrocarbon and hydrogen gas in the mixed gas used can be varied over a wide range, but from the viewpoint of preventing precipitation of graphite and non-diamond carbon, it is desirable that the upper limit is 70 or less. Approximately O to synthesize granular diamond
.. In order to precipitate expanded diamond, it is desirable that the value be less than 0.

基1fは析出したダイヤモンドが黒鉛VC*’d移す.
る現象を防止し、ま九励起状簡の炭化水一二一基板表面
で熱分解を起すに必要な温度であることを必要とするの
で,  300 − /300 ’Cであることが望ま
しい。特にSOO〜/000”Cが好ましい。
In the group 1f, the precipitated diamond is transferred to graphite VC*'d.
The temperature is preferably 300-/300'C, since it is necessary to prevent the phenomenon of thermal decomposition and cause thermal decomposition on the surface of the hydrocarbon 121 substrate. Particularly preferred is SOO~/000''C.

無極電放電を発生する管内の圧カは、放電を安定に維持
するために0.OJ − 1100 Torrの範囲が
よい。
The pressure inside the tube that generates non-polar electric discharge is kept at 0.0 to maintain stable discharge. A range of OJ-1100 Torr is good.

?−二..1 .  本発明の方法は開管法であるため炭化水書ど゛オ
板  二 1:、,素一スとの混合比率.ガスの流速,基休温一’
>炉1゛t,;y′圀にマイクロ波発振機の出方を調整
する=!mi::.゛よって、励起状態の炭化水素.水
素.原子状態の水素の生成量などを独立K制御すること
ができるので、被形成達度を制御することが容易である
? -2. .. 1. Since the method of the present invention is an open-tube method, the mixing ratio of hydrocarbons and raw materials is very low. Gas flow rate, base temperature
>Adjust the direction of the microwave oscillator in the furnace 1゛t,;y′ field=! mi::. Therefore, it is an excited state hydrocarbon. hydrogen. Since the amount of hydrogen produced in the atomic state can be independently controlled, it is easy to control the degree of hydrogen formation.

このS形威速度を制御するととKよ秒粒状ダイヤモンド
.あるいは膜状ダイヤモンドを容易κ合威し得る。
If you control the speed of this S shape, it will be K second granular diamond. Alternatively, film-like diamond can be easily combined with κ.

次に本発明の方法を奥施する装置の態様を示すと第l図
、第コ図K示す通やである。第l図は水素ガスをマイク
ロ波無極電放電中を通過せしめ九’=.”@l.炭化水
素ガスと混合する方式であり、第コ―1、  ; j.1FJ+炭化水素と水素ガスとの混合ガスをマイク
ロ波:″.11 ”無極放電中を通過せしめる方式である。第7図.第一
図において、/Vi炭化水素ガス供給装置、コは水素ガ
ス供給装置、3Fiマイクロ波発振機、参はウエーブガ
イド、sVi反応室、乙は排気装置である。5の析出室
には基板7を支持する支持台lが設置され、第7図にお
いては抵抗加熱炉9にて1k躯を加熱している。第一図
においてはハロゲンラqプから発する光を集光する赤外
線集中照射炉/σオ加熱を行っている。/λ, 13 
, /lは水素ガス,1、1 炭化水素ガスの流量ならびに装置内の圧力を調整するコ
ックである。/5は排気口である。
Next, the embodiments of the apparatus for carrying out the method of the present invention are shown in FIG. 1 and FIG. Figure 1 shows hydrogen gas passing through a microwave non-electrode discharge with 9'=. ``@l. It is a method of mixing with hydrocarbon gas. 11 "This is a method of passing through a non-polar discharge. Figure 7. In the first figure, /Vi hydrocarbon gas supply device, ``H'' hydrogen gas supply device, 3Fi microwave oscillator, ``Wave guide'', and sVi reaction chamber. , B is an exhaust device. A support stand l for supporting a substrate 7 is installed in the deposition chamber 5, and in FIG. 7, a 1k frame is heated in a resistance heating furnace 9. In FIG. An infrared concentrated irradiation furnace that focuses the light emitted from a halogen lamp/σ heating is performed./λ, 13
, /l is a cock that adjusts the flow rate of hydrogen gas, 1, 1 hydrocarbon gas and the pressure inside the device. /5 is an exhaust port.

反応室S内の支持上に基板7を設置した後、排気装置t
を作動して、装置内を減圧すると共にコツク/2 , 
/3 , /ダを調整して、水素ガスの流量ならびに装
置内の圧力を所定の値に保持する。次に抵抗加熱炉タに
より、基板を所定の温度に保持する。
After installing the substrate 7 on the support inside the reaction chamber S, the exhaust device t
Activate to reduce the pressure inside the device, and at the same time,
/3 and /da are adjusted to maintain the hydrogen gas flow rate and the pressure inside the device at predetermined values. Next, the substrate is maintained at a predetermined temperature using a resistance heating furnace.

赤外線集中照射炉の場合はハロゲンランプ//K流れる
電流を調整して基板温度を制御する。次にマイタロ波発
振機を作動し、iイクロ波無極電放電を鵜生せしめると
共K%予め流量調整した炭化水素ガスを導入する。
In the case of an infrared concentrated irradiation furnace, the substrate temperature is controlled by adjusting the current flowing through the halogen lamp. Next, the microwave oscillator is activated to generate i-microwave non-polar electric discharge, and hydrocarbon gas whose flow rate is adjusted in advance by K% is introduced.

実施例t モリブデンを基板とし、反応ガスとしてメタ/ガスと水
素ガスを用いる。排気装置を作動し、反応系を減圧にす
る。次κ水素ガスを毎分/00ccの流量で供給すると
共にコック/2 , /Jを関整して、反応系内の圧力
なO.Sテorr IIC調整する。マイク一波発振機
Kよって無極電披電を発生する。次に一1。gf900
”cllc上?.5共,,2,奪 1 ガスを毎分〃αの流量で供給し、前記の無極電放電中を
通過した水素ガスと混合し、加熱基板上に導入する。3
時間析出を行い、基板褒面K/μm程度のダイヤモンド
の析出層を得た。
Example t Molybdenum is used as a substrate, and meta/gas and hydrogen gas are used as reaction gases. Activate the exhaust system to reduce the pressure in the reaction system. Next, κ hydrogen gas is supplied at a flow rate of 100 cc/min, and the cocks /2 and /J are adjusted to maintain the pressure in the reaction system. Adjust Storr IIC. A microphone single-wave oscillator K generates a non-polar electric current. Next, 11. gf900
``On the cllc?'' 5, 2, 1 Gas is supplied at a flow rate of α per minute, mixed with the hydrogen gas that has passed through the non-polar electrode discharge, and introduced onto the heated substrate.3
Time-long precipitation was performed to obtain a diamond precipitated layer with a thickness of about K/μm on the surface of the substrate.

実施例2 シリコンウエハーを基板とし、反応ガスとしてメタンガ
スと水素ガスを用いる。排気装置を作動し、反応系を減
圧Kする。次K水素ガス,炭化水素ガスを各々毎分/Q
Q ee , /J ccで供給すると共κi  .”
・ , , 77                ,.−
(,Iyln , ′t′/′@ILr・Hi絆0”卵
゜゜′.−7 rrに調整する。次に基#温度を700
″CK上昇゛せしめると共に、マイクロ波発振機にょっ
等無価電放電を発生する。3時間析出を行い、基板表面
にコμm程度のダイヤモンド粒子の析出を得た。
Example 2 A silicon wafer is used as a substrate, and methane gas and hydrogen gas are used as reaction gases. Activate the exhaust system to reduce the pressure of the reaction system. Next K hydrogen gas, hydrocarbon gas each per minute/Q
When supplied with Q ee , /J cc , κi . ”
・ , , 77 , . −
(,Iyln, 't'/'@ILr・Hi bond 0" egg ゜゜'.-7 rr. Next, set the base temperature to 700
As well as causing the CK to rise, the microwave oscillator generated a slight chargeless discharge. Deposition was carried out for 3 hours, and diamond particles of about micrometer size were deposited on the substrate surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図、第一図は本発明の方法を実施する合成装置の態
様を示す。 一/・・・炭化水素ガス供給装置、 3 コ・・・水素ガス供給能置、3・・・マイクロ波発振機
、1 l −1弘・・・ウェーブガイド、  S・・・反応室、゛
世5・・・排気装置、     7・・・基板、!・・
・支持台、      9・・・加熱炉、/θ・・・赤
外線集中照射炉、//・・・ハロゲンランプ./J ,
 /3 , /l・・・コックs    /j・・・排
気口。 −586一
FIG. 1 shows an embodiment of a synthesis apparatus for carrying out the method of the present invention. 1/... Hydrocarbon gas supply device, 3... Hydrogen gas supply station, 3... Microwave oscillator, 1 l-1 Hiro... Wave guide, S... Reaction chamber, ゛World 5... Exhaust system, 7... Board,!・・・
- Support stand, 9...Heating furnace, /θ...Infrared concentrated irradiation furnace, //...Halogen lamp. /J,
/3, /l...cock s /j...exhaust port. -5861

Claims (1)

【特許請求の範囲】 t 水素ガスをマイクロ波無極電放電中を通過させ友後
炭化水素と混合した混合ガス,まえは炭化水素と水素ガ
スとの混合ガスをマイクロ波無極電放電中を通過させ九
混合ガスを、300〜/JOO”CK加熱した基板褒面
K導入し、炭化水素の熱分解κよ〉ダイヤモンドを析出
させることを特徴とするダイヤモンドの合成法。 2 炭化水素と水素ガスとの混合比率がioo〜o.o
oiの範囲である特許請求の範III第1項記載のダイ
ヤ毫冫ドの舎威法。
[Scope of Claims] t Hydrogen gas is passed through a microwave non-electrode discharge and a mixed gas mixed with a hydrocarbon is passed through a microwave non-electrode discharge. A diamond synthesis method characterized by introducing a mixed gas of 300~/JOO"CK onto the surface of a heated substrate to precipitate diamond through thermal decomposition of hydrocarbons. 2. Combination of hydrocarbons and hydrogen gas. Mixing ratio is ioo~o.o.
oi.
JP56204321A 1981-12-17 1981-12-17 Diamond synthesis method Expired JPS5927754B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56204321A JPS5927754B2 (en) 1981-12-17 1981-12-17 Diamond synthesis method
US06/442,506 US4434188A (en) 1981-12-17 1982-11-17 Method for synthesizing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204321A JPS5927754B2 (en) 1981-12-17 1981-12-17 Diamond synthesis method

Publications (2)

Publication Number Publication Date
JPS58110494A true JPS58110494A (en) 1983-07-01
JPS5927754B2 JPS5927754B2 (en) 1984-07-07

Family

ID=16488545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204321A Expired JPS5927754B2 (en) 1981-12-17 1981-12-17 Diamond synthesis method

Country Status (1)

Country Link
JP (1) JPS5927754B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112699A (en) * 1983-11-24 1985-06-19 Nec Corp Manufacture of diamond
JPS60122796A (en) * 1983-12-06 1985-07-01 Sumitomo Electric Ind Ltd Vapor phase synthesis method of diamond
JPS60204695A (en) * 1984-03-28 1985-10-16 Mitsubishi Metal Corp Method of precipitation and formation of artificial diamond film
JPS60231498A (en) * 1984-05-01 1985-11-18 Hitachi Ltd Synthesizing method of diamond under low pressure
JPS61209990A (en) * 1985-03-14 1986-09-18 Nec Corp Gas phase synthesizing method for diamond
JPS61247696A (en) * 1985-04-25 1986-11-04 Kobe Steel Ltd Device for vapor phase synthesis of diamond
US4734339A (en) * 1984-06-27 1988-03-29 Santrade Limited Body with superhard coating
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
JPH02208601A (en) * 1989-02-08 1990-08-20 Seiko Instr Inc Optical window member and its manufacture
WO1990012754A1 (en) * 1989-04-21 1990-11-01 Frenklach Michael Y Synthesis of diamond powders in the gas phase
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5210430A (en) * 1988-12-27 1993-05-11 Canon Kabushiki Kaisha Electric field light-emitting device
US5242663A (en) * 1989-09-20 1993-09-07 Sumitomo Electric Industries, Ltd. Method of and apparatus for synthesizing hard material
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity
US5426340A (en) * 1993-01-29 1995-06-20 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method of manufacturing the same
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
JP2006219370A (en) * 2001-11-07 2006-08-24 Carnegie Institution Of Washington Apparatus and method for diamond production
US7884372B2 (en) 2005-08-01 2011-02-08 National Institute For Materials Science Diamond UV-Ray sensor
JP2018074172A (en) * 2013-09-02 2018-05-10 アールエフエイチアイシー コーポレイション Semiconductor device structures comprising polycrystalline cvd diamond with improved near-substrate thermal conductivity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3728465B2 (en) * 1994-11-25 2005-12-21 株式会社神戸製鋼所 Method for forming single crystal diamond film
JP3728464B2 (en) * 1994-11-25 2005-12-21 株式会社神戸製鋼所 Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JP4766364B2 (en) * 2004-04-20 2011-09-07 独立行政法人物質・材料研究機構 Diamond ultraviolet phototransistor and manufacturing method thereof
JP4766363B2 (en) * 2004-04-20 2011-09-07 独立行政法人物質・材料研究機構 Diamond ultraviolet light sensor element and manufacturing method thereof
JP4123496B2 (en) 2004-11-25 2008-07-23 独立行政法人物質・材料研究機構 Diamond ultraviolet light sensor
JP5504565B2 (en) 2008-02-07 2014-05-28 独立行政法人物質・材料研究機構 Diamond UV sensor element, manufacturing method thereof, and UV sensor device

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112699A (en) * 1983-11-24 1985-06-19 Nec Corp Manufacture of diamond
JPH0480000B2 (en) * 1983-11-24 1992-12-17 Nippon Electric Co
JPS60122796A (en) * 1983-12-06 1985-07-01 Sumitomo Electric Ind Ltd Vapor phase synthesis method of diamond
JPS60204695A (en) * 1984-03-28 1985-10-16 Mitsubishi Metal Corp Method of precipitation and formation of artificial diamond film
JPS60231498A (en) * 1984-05-01 1985-11-18 Hitachi Ltd Synthesizing method of diamond under low pressure
JPH0448757B2 (en) * 1984-05-01 1992-08-07 Hitachi Ltd
US4734339A (en) * 1984-06-27 1988-03-29 Santrade Limited Body with superhard coating
JPS61209990A (en) * 1985-03-14 1986-09-18 Nec Corp Gas phase synthesizing method for diamond
JPH0518800B2 (en) * 1985-03-14 1993-03-12 Nippon Electric Co
JPS61247696A (en) * 1985-04-25 1986-11-04 Kobe Steel Ltd Device for vapor phase synthesis of diamond
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
US4984534A (en) * 1987-04-22 1991-01-15 Idemitsu Petrochemical Co., Ltd. Method for synthesis of diamond
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
US7144629B2 (en) 1988-03-07 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6583481B2 (en) 1988-03-07 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6265070B1 (en) 1988-03-07 2001-07-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US5210430A (en) * 1988-12-27 1993-05-11 Canon Kabushiki Kaisha Electric field light-emitting device
US5275967A (en) * 1988-12-27 1994-01-04 Canon Kabushiki Kaisha Electric field light-emitting device
JPH02208601A (en) * 1989-02-08 1990-08-20 Seiko Instr Inc Optical window member and its manufacture
WO1990012754A1 (en) * 1989-04-21 1990-11-01 Frenklach Michael Y Synthesis of diamond powders in the gas phase
US5087434A (en) * 1989-04-21 1992-02-11 The Pennsylvania Research Corporation Synthesis of diamond powders in the gas phase
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5242663A (en) * 1989-09-20 1993-09-07 Sumitomo Electric Industries, Ltd. Method of and apparatus for synthesizing hard material
US5436036A (en) * 1989-09-20 1995-07-25 Sumitomo Electric Industries, Ltd. Method of synthesizing hard material
US5310447A (en) * 1989-12-11 1994-05-10 General Electric Company Single-crystal diamond of very high thermal conductivity
US5419276A (en) * 1989-12-11 1995-05-30 General Electric Company Single-crystal diamond of very high thermal conductivity
US5355568A (en) * 1991-06-05 1994-10-18 Sumitomo Electric Industries, Ltd. Method of making a surface acoustic wave device
US5329208A (en) * 1991-06-05 1994-07-12 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method for producing the same
US5426340A (en) * 1993-01-29 1995-06-20 Sumitomo Electric Industries, Ltd. Surface acoustic wave device and method of manufacturing the same
JP2006219370A (en) * 2001-11-07 2006-08-24 Carnegie Institution Of Washington Apparatus and method for diamond production
JP4494364B2 (en) * 2001-11-07 2010-06-30 カーネギー インスチチューション オブ ワシントン Diamond manufacturing apparatus and method
US7884372B2 (en) 2005-08-01 2011-02-08 National Institute For Materials Science Diamond UV-Ray sensor
JP2018074172A (en) * 2013-09-02 2018-05-10 アールエフエイチアイシー コーポレイション Semiconductor device structures comprising polycrystalline cvd diamond with improved near-substrate thermal conductivity

Also Published As

Publication number Publication date
JPS5927754B2 (en) 1984-07-07

Similar Documents

Publication Publication Date Title
JPS58110494A (en) Synthesizing method for diamond
US4434188A (en) Method for synthesizing diamond
US4816286A (en) Process for synthesis of diamond by CVD
US4767608A (en) Method for synthesizing diamond by using plasma
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
JPS5891100A (en) Synthesizing method for diamond
JPS58135117A (en) Preparation of diamond
JPS62243768A (en) Formation of deposited film
JPH04958B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH04959B2 (en)
RU2032765C1 (en) Method of diamond coating application from vapor phase and a device for it realization
JPS6221757B2 (en)
JPH0372038B2 (en)
JPS6054996A (en) Synthesis of diamond
JP2646439B2 (en) Method and apparatus for vapor phase synthesis of diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS593098A (en) Synthesizing method of diamond
JPS61236691A (en) Vapor phase synthesis of diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JPH0480000B2 (en)
JPH0524992B2 (en)
JPH06199595A (en) Method for synthesizing diamond
JPH01192794A (en) Vapor-phase production of diamond