JP4766363B2 - Diamond ultraviolet light sensor element and manufacturing method thereof - Google Patents

Diamond ultraviolet light sensor element and manufacturing method thereof Download PDF

Info

Publication number
JP4766363B2
JP4766363B2 JP2004124302A JP2004124302A JP4766363B2 JP 4766363 B2 JP4766363 B2 JP 4766363B2 JP 2004124302 A JP2004124302 A JP 2004124302A JP 2004124302 A JP2004124302 A JP 2004124302A JP 4766363 B2 JP4766363 B2 JP 4766363B2
Authority
JP
Japan
Prior art keywords
diamond
light
sensor element
ultraviolet light
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124302A
Other languages
Japanese (ja)
Other versions
JP2005310963A (en
Inventor
康夫 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004124302A priority Critical patent/JP4766363B2/en
Publication of JP2005310963A publication Critical patent/JP2005310963A/en
Application granted granted Critical
Publication of JP4766363B2 publication Critical patent/JP4766363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、ダイヤモンド紫外光センサー素子及びその製造方法に関する。
The present invention relates to a diamond ultraviolet light sensor element and a manufacturing method thereof .

ダイヤモンド半導体は、バンドギャップが室温で約5.5eV(光波長で約225nmに
対応)とかなり大きく、ドーパント(不純物)が添加されていない真性状態で絶縁体とし
ての電気伝導性を示す。単結晶薄膜を成長させる方法は、実質的に炭素及び水素を含む雰
囲気、例えばCH4(メタン)とH2(水素)ガスを用いたマイクロ波励起プラズマ気相成長
法が開発(特許文献1)されており、広く普及している。また、マイクロ波励起プラズマ
気相成長法においてドーパントとしてボロンを添加することによって、p型の電気伝導性
を制御することも広く使われている。
A diamond semiconductor has a considerably large band gap of about 5.5 eV (corresponding to about 225 nm at an optical wavelength) at room temperature, and exhibits electrical conductivity as an insulator in an intrinsic state to which no dopant (impurity) is added. As a method of growing a single crystal thin film, a microwave-excited plasma vapor phase growth method using an atmosphere substantially containing carbon and hydrogen, for example, CH 4 (methane) and H 2 (hydrogen) gas has been developed (Patent Document 1). Has been widely spread. In addition, it is also widely used to control p-type conductivity by adding boron as a dopant in microwave-excited plasma vapor deposition.

マイクロ波励起プラズマ気相成長法は、水素を含む雰囲気を用いる気相成長法であるた
め、成長させたダイヤモンド単結晶膜表面には、実質的に水素で覆われた表面であること
が知られている。即ち、表面には炭素原子(C)の未結合手が水素原子(H)によって結
合終端されたC−H分子構造が存在し(以後「水素化」と呼ぶ)、この水素化に伴ってダ
イヤモンド表面近傍のダイヤモンド内には主たるキャリアの正孔が表面近傍(2nm以内
)に局在した表面伝導層が発生していることが知られている。この表面電気伝導層は、ア
ンドープ及びボロンドープの(100)、(111)面単結晶薄膜、及び多結晶薄膜にお
いても同様に存在することも知られている。
Since the microwave-excited plasma vapor deposition method is a vapor deposition method using an atmosphere containing hydrogen, it is known that the surface of the grown diamond single crystal film is substantially covered with hydrogen. ing. That is, there is a CH molecular structure in which dangling bonds of carbon atoms (C) are terminated by hydrogen atoms (H) on the surface (hereinafter referred to as “hydrogenation”). It is known that a surface conductive layer in which holes of main carriers are localized near the surface (within 2 nm) is generated in the diamond near the surface. This surface electrical conductive layer is also known to exist in undoped and boron doped (100), (111) plane single crystal thin films, and polycrystalline thin films as well.

この表面伝導層の発生機構は、世界的にも大論争段階にあるが、少なくとも実験的には
この表面伝導層は、(1)200℃程度までは安定に存在し、(2)水素化されたダイヤ
モンド表面にのみ発生していることがわかっている。表面の結合水素を除去する溶液処理
(酸化処理)、例えば、沸騰させた硫酸・硝酸混合液中に浸す処理を施すことによって、
この表面伝導層は消滅することも知られており、本発明者自身も確認している。
The generation mechanism of this surface conductive layer is in a state of great debate worldwide, but at least experimentally, this surface conductive layer exists stably (1) up to about 200 ° C. and (2) is hydrogenated. It is known that it only occurs on the diamond surface. By applying a solution treatment (oxidation treatment) to remove surface-bonded hydrogen, for example, immersion in a boiled sulfuric acid / nitric acid mixture,
This surface conductive layer is also known to disappear, and the present inventors have also confirmed.

受光部の電気抵抗の変化又は光誘起電流量の変化によって受光部に照射される紫外光を
検出する、いわゆる光伝導型センサー素子としては、波長400nmから650nmの範
囲の可視光等にも検出感度を持つSi半導体、また上記可視光等や赤外域の雑音光には検
出感度を全く持たないAlGa1−xN(0≦x≦1)半導体及びダイヤモンド半導体
を受光部の固体材料として用いたもの等が従来から考えられている。
As a so-called photoconductive sensor element that detects ultraviolet light irradiated to the light receiving portion by a change in the electrical resistance of the light receiving portion or a change in the amount of photoinduced current, the detection sensitivity is also applicable to visible light in the wavelength range of 400 nm to 650 nm. As well as Al x Ga 1-x N (0 ≦ x ≦ 1) semiconductors and diamond semiconductors that do not have any detection sensitivity to the visible light or the noise light in the infrared region, etc. What has been considered is conventionally considered.

これらの光伝導型センサー素子の光検出原理は、受光部の半導体にバンドギャップ以上
のエネルギーを持つ光を照射することによって、半導体内に電子―正孔対を発生させ、こ
のキャリアによる電気抵抗の変化又は光誘起電流量の変化を検出するものである。従って
、半導体材料に2つの電極を接合させた2端子素子にて素子構造を構築でき、極めて単純
化された紫外光センサー素子を製造することができる。
The photodetection principle of these photoconductive sensor elements is to generate electron-hole pairs in the semiconductor by irradiating the semiconductor of the light receiving part with light having energy greater than the band gap, and the electric resistance of this carrier is reduced. A change or a change in the amount of photoinduced current is detected. Therefore, an element structure can be constructed with a two-terminal element in which two electrodes are bonded to a semiconductor material, and an extremely simplified ultraviolet sensor element can be manufactured.

ダイヤモンド半導体を紫外光センサー素子に応用した例として、例えば、非特許文献1
には、多結晶ダイヤモンド薄膜の表面伝導層を受光部に用いた光伝導型センサー素子にお
いて、200nmの紫外光照射に対して0.03A/Wの検出感度を達成しているものが
記載されている。その光検出原理はダイヤモンド半導体にバンドギャップ以上エネルギー
を持つ光が照射されるとダイヤモンド内に電子―正孔対が発生し、2つの電極間に印加さ
れる電流変化を検出する従来原理にて説明される検出感度である。また、非特許文献2に
は、酸化処理を施すことによって表面伝導層を除去した多結晶ダイヤモンド膜を受光部に
用いた光伝導センサー素子において、200nmの紫外光照射に対して、0.02A/W
の検出感度を得ているが、実用化には不十分な検出感度である。
As an example of applying a diamond semiconductor to an ultraviolet light sensor element, for example, Non-Patent Document 1
Describes a photoconductive sensor element using a surface conductive layer of a polycrystalline diamond thin film as a light receiving part and achieving a detection sensitivity of 0.03 A / W with respect to 200 nm ultraviolet light irradiation. Yes. The principle of light detection is explained by the conventional principle of detecting a change in current applied between two electrodes by generating electron-hole pairs in diamond when diamond semiconductor is irradiated with light with energy above the band gap. Detection sensitivity. Non-Patent Document 2 discloses that in a photoconductive sensor element using a polycrystalline diamond film from which a surface conductive layer has been removed by an oxidation treatment as a light receiving portion, 0.02 A / W
However, the detection sensitivity is insufficient for practical use.

また、先行技術例として、特許文献2は、厚さ40μmのダイヤモンドモンド多結晶薄
膜又は(100)及び(111)配向薄膜と表面の結合水素を除去した表面を受光部に利
用したダイヤモンド紫外光センサー素子に関する技術であり、検出感度が実用化には不十
分である。特許文献3は、ダイヤモンドの表面伝導層を受光部に利用したダイヤモンド紫
外光センサー素子であり、その検出感度波長は可視光域全体にわたる特性を持っており、
ダイヤモンドのバンドギャップ内の欠陥準位を利用した光伝導型センサー素子であり、2
30nmの紫外線を選択的に検出することはできない。
H. J. Looi, M. D. Whitfield, and R. B. Jackman, Appl. Phys. Letts. 74, 3332 (1999) R. D. McKeag and R. B. Jackman, Diamond Relat. Mater. 7, 513 (1998) 特公昭59−027754号(特許第1272929号)公報 特開平11−248531号公報 特開平11−097721号公報
As an example of the prior art, Patent Document 2 discloses a diamond ultraviolet light sensor using, as a light receiving portion, a diamond-mond polycrystalline thin film having a thickness of 40 μm or a (100) and (111) -oriented thin film and a surface from which bound hydrogen is removed from the surface. This is a technology related to elements, and its detection sensitivity is insufficient for practical use. Patent Document 3 is a diamond ultraviolet light sensor element using a surface conductive layer of diamond as a light receiving part, and its detection sensitivity wavelength has characteristics over the entire visible light range,
This is a photoconductive sensor element that utilizes defect levels in the band gap of diamond.
It is not possible to selectively detect 30 nm ultraviolet rays.
HJ Looi, MD Whitfield, and RB Jackman, Appl. Phys. Letts. 74, 3332 (1999) RD McKeag and RB Jackman, Diamond Relat. Mater. 7, 513 (1998) Japanese Examined Patent Publication No. 59-027754 (Patent No. 1272929) Japanese Patent Laid-Open No. 11-248531 Japanese Patent Application Laid-Open No. 11-097721

従来のSi、AlGa1−xN(0≦x≦1)、及びダイヤモンド半導体を受光部に
用いた光伝導型受光素子は、照射された紫外光が上記受光部の半導体内部に吸収されるこ
とによって生成されるキャリア(電子又は正孔)に起因する光電流を検出する素子である
ため、照射された紫外光のパワーに対する光電流の大きさの割合、即ち量子効率が100
%の理想的な素子であっても、例えば、波長220nmや230nmの紫外光に対して受
光感度の限界値が、それぞれ0.18A/W及び0.19A/Wであり、極微弱光に対す
る光誘起電流量の変化は極めて小さいものであった。
In a conventional photoconductive light receiving element using Si, Al x Ga 1-x N (0 ≦ x ≦ 1), and a diamond semiconductor as a light receiving portion, irradiated ultraviolet light is absorbed inside the semiconductor of the light receiving portion. Therefore, the ratio of the magnitude of the photocurrent to the power of the irradiated ultraviolet light, that is, the quantum efficiency is 100.
% Of ideal elements, for example, the limit values of light receiving sensitivity are 0.18 A / W and 0.19 A / W for ultraviolet light with a wavelength of 220 nm and 230 nm, respectively, and light for extremely weak light The change in the amount of induced current was extremely small.

本発明は、素子構造の複雑化を回避しながら光伝導型センサー素子の特徴を生かしつつ
、波長230nm以下の紫外光に対する受光感度を上記限界値の少なくとも15000倍
程度高めたダイヤモンド紫外光センサー素子を提供するものである。
The present invention provides a diamond ultraviolet light sensor element in which the light receiving sensitivity to ultraviolet light having a wavelength of 230 nm or less is increased by at least about 15000 times the above limit value while avoiding the complexity of the element structure and taking advantage of the characteristics of the photoconductive sensor element. It is to provide.

具体的には、受光部の電気抵抗変化又は光誘起電流量の変化によって、受光部に照射さ
れる波長230nm以下の紫外光を検出し、波長400nm以上の可視光には検出感度を
持たない光伝導型センサー素子、その光伝導型センサー素子を用いた火炎センサー及び紫
外光センサーである。光センサー素子の構造は、光伝導型、pn型、pin型、及びショ
ットキーダイオード型が既に工業化されている。本発明は、この中でも2端子電極を持つ
光伝導型センサー素子に関するものである。
Specifically, ultraviolet light with a wavelength of 230 nm or less irradiated to the light receiving unit is detected by a change in the electrical resistance of the light receiving unit or a change in the amount of photo-induced current, and visible light with a wavelength of 400 nm or more has no detection sensitivity. A conductive sensor element, a flame sensor and an ultraviolet light sensor using the photoconductive sensor element. As the structure of the photosensor element, a photoconductive type, a pn type, a pin type, and a Schottky diode type have already been industrialized. In particular, the present invention relates to a photoconductive sensor element having a two-terminal electrode.

また、本発明は、(1)受光部材料の電気抵抗の変化又は光誘起電流の変化によって、受光部に照射される光を検出する光伝導型センサー素子であって、実質的に炭素及び水素を含む雰囲気中において、プラズマ気相成長法又は気相成長法を用いて成膜され、成膜後に沸騰させた王水溶液中で処理されたダイヤモンド単結晶を受光部に持つダイヤモンド紫外光センサー素子、である。
The present invention also provides: (1) a photoconductive sensor element that detects light irradiated to the light receiving portion by a change in electrical resistance of the light receiving portion material or a change in photoinduced current, and substantially comprises carbon and hydrogen. in an atmosphere containing, deposited by plasma vapor deposition or vapor deposition, the diamond ultraviolet light sensor element having a light receiving portion of the treated single-crystal diamond king aqueous solution was boiled after film formation, It is.

また、本発明は、(2)2つの電極が前記ダイヤモンド単結晶の水素化された表面に接合している(1)に記載のダイヤモンド紫外光センサー素子、である。
The present invention is also (2) the diamond ultraviolet light sensor element according to (1), wherein two electrodes are bonded to the hydrogenated surface of the diamond single crystal .

また、本発明は、(3)主たる光誘起電流成分が前記ダイヤモンド単結晶の水素化された表面近傍の表面伝導層を流れる(1)又は(2)に記載のダイヤモンド紫外光センサー素子、である。
また、本発明は、(4)受光部材料の電気抵抗の変化又は光誘起電流の変化によって、受光部に照射される光を検出する光伝導型センサー素子の製造方法であって、炭素及び水素を含む雰囲気中において、プラズマ気相成長法又は気相成長法を用いてダイヤモンド単結晶を基板上に成膜する工程と、成膜後に沸騰させた王水溶液中で前記ダイヤモンド単結晶を処理する工程と、前記ダイヤモンド単結晶の水素化された表面に2つの電極を形成する工程と、を有するダイヤモンド紫外光センサー素子の製造方法、である。

The present invention also relates to (3) mainly serving photoinduced current component flows through the table Menden conductive layer of hydrogenated near the surface of the diamond single crystal (1) or (2) diamond ultraviolet light sensor device according to .
The present invention also relates to (4) a method of manufacturing a photoconductive sensor element for detecting light irradiated to a light receiving part by a change in electrical resistance of a light receiving part material or a change in a photo-induced current. A step of forming a diamond single crystal on a substrate using a plasma vapor deposition method or a vapor deposition method, and a step of treating the diamond single crystal in an aqueous solution boiled after the film formation. And a step of forming two electrodes on the hydrogenated surface of the diamond single crystal, and a method for producing a diamond ultraviolet light sensor element.

本発明の紫外光センサー素子は、従来の半導体内の光吸収過程により生成するキャリア
の電気伝導に基づくセンサー素子とは、根本的に異なる機構に起因する紫外光のセンシン
グ機構であり、且つ従来の検出感度の限界値を覆して4桁程度向上させている。紫外光セ
ンサー素子として実用化も見込まれるが、工業化にはその安定性の向上に技術的な改善が
必要である。一般に、電気的・光学的に高品質なダイヤモンド半導体は、CH(メタン)
及びH(水素)を原料ガスとして用いるマイクロ波励プラズマ気相成長法によって、高圧
合成させたダイヤモンド(100)又は(111)面単結晶基板上にエピタキシャル成長
させることによって得られる。
The ultraviolet light sensor element of the present invention is an ultraviolet light sensing mechanism resulting from a fundamentally different mechanism from a sensor element based on electrical conduction of carriers generated by a light absorption process in a conventional semiconductor, and the conventional Overcoming the limit of detection sensitivity, it is improved by about 4 digits. Although it is expected to be put to practical use as an ultraviolet light sensor element, technical improvement is required for improving its stability for industrialization. Generally, high-quality electrical and optical diamond semiconductors are CH 4 (methane).
And by epitaxial growth on a diamond (100) or (111) plane single crystal substrate synthesized at high pressure by a microwave-excited plasma vapor phase growth method using H 2 (hydrogen) as a source gas.

本発明の実施例においてもこの方法を用いるが、水素を含む雰囲気を用いる気相成長法
であるため、受光部には水素化されたダイモンド表面伝導層を用いる。
Although this method is also used in the embodiments of the present invention, since it is a vapor phase growth method using an atmosphere containing hydrogen, a hydrogenated diamond surface conductive layer is used for the light receiving portion.

本発明は、この水素化表面伝導層に図1及び図2に示す2端子電極を形成した光伝導型
センサー素子において、波長220nmの紫外光をこの表面伝導層に照射することによっ
て、受光感度が従来の半導体内部の光励起キャリアの光伝導に基づく理論限界値である0
.18A/Wの少なくとも15000倍である3100A/Wを実現する。上記素子構造
において酸化溶液処理を施したダイヤモンド単結晶膜表面や高圧合成ダイヤモンド基板表
面を受光部にした場合には、このような高い受光感度が実現されないことも確認している
In the photoconductive sensor element in which the two-terminal electrode shown in FIGS. 1 and 2 is formed on the hydrogenated surface conductive layer, the present invention has a light receiving sensitivity by irradiating the surface conductive layer with ultraviolet light having a wavelength of 220 nm. 0 which is a theoretical limit value based on photoconductivity of photoexcited carriers in a conventional semiconductor
. Realize 3100 A / W which is at least 15000 times 18 A / W. It has also been confirmed that such a high light receiving sensitivity cannot be realized when the surface of the diamond single crystal film or the surface of the high pressure synthetic diamond substrate subjected to the oxidizing solution treatment in the element structure is used as a light receiving portion.

ダイヤモンド半導体のエネルギーギャップ5.5eVより大きなエネルギーを持つ波長
220nmの紫外光(エネルギー5.6eV)が、ダイヤモンド半導体内部において吸収
されることによって生成するキャリア(電子又は正孔)が担体となって伝導する電気伝導
機構では、高々0.2A/W程度の受光感度が限界であった。これに対し、表面伝導層へ
の正孔の発生を担っている水素化された表面構造への紫外光の分子励起機構及び光励起に
基づく格子緩和現象を利用すれば、表面伝導層内の実質的な正孔濃度を飛躍的に増大させ
ることが可能であると考えられ、実際3100A/Wの受光感度は分子励起機構に関連す
るものと推察される。
Conducted by carriers (electrons or holes) generated by absorption of ultraviolet light (energy 5.6 eV) having a energy larger than the energy gap of 5.5 eV of diamond semiconductor at a wavelength of 220 nm inside the diamond semiconductor. In the electric conduction mechanism, the light receiving sensitivity of about 0.2 A / W is the limit. On the other hand, if the molecular excitation mechanism of ultraviolet light to the hydrogenated surface structure responsible for the generation of holes in the surface conductive layer and the lattice relaxation phenomenon based on photoexcitation are utilized, a substantial increase in the surface conductive layer will occur. It is considered that the positive hole concentration can be dramatically increased, and it is assumed that the light receiving sensitivity of 3100 A / W is actually related to the molecular excitation mechanism.

図1及び図2に示す光伝導型センサー素子を以下に記すプロセスで作製し、紫外光に対
する受光感度特性を測定した。
The photoconductive sensor element shown in FIGS. 1 and 2 was manufactured by the process described below, and the light receiving sensitivity characteristic with respect to ultraviolet light was measured.

図1に示すように、p型ドーパント元素であるB(ボロン)を添加したダイヤモンド・
エピタキシャル単結晶膜2は、CH(メタン)を原料ガス、及びH(水素)を希釈用
キャリアガス、更に1Vol(0.01)%水素希釈B(CH(トリメチルボロン
)をドーパントBの原料ガスとして用いたマイクロ波励起プラズマ気相成長法によって、
高圧合成法によって作製された長さ2.5×幅2.5×厚さ0.5mmのIbダイヤモン
ド(100)単結晶基板3上に厚さ0.5μm成長させた。この時の成長条件は以下のと
おりであった。基板温度930℃、成長圧力80Torr、及びマイクロ波パワー400
W、更にCH流量500sccm、CH/H濃度比0.06%(vol)、及びB(
CH/CH濃度比0.01(vol)%、成長時間は2時間であった。
As shown in FIG. 1, diamond and B (boron), which is a p-type dopant element, are added.
Epitaxial single crystal film 2 includes CH 4 (methane) as a source gas, H 2 (hydrogen) as a carrier gas for dilution, and 1 Vol (0.01)% hydrogen diluted B (CH 3 ) 3 (trimethylboron) as a dopant. By microwave-excited plasma vapor phase epitaxy used as a source gas for B,
A thickness of 0.5 μm was grown on an Ib diamond (100) single crystal substrate 3 having a length of 2.5 × width of 2.5 × thickness of 0.5 mm produced by a high pressure synthesis method. The growth conditions at this time were as follows. Substrate temperature 930 ° C., growth pressure 80 Torr, and microwave power 400
W, CH 4 flow rate 500 sccm, CH 4 / H 2 concentration ratio 0.06% (vol), and B (
The CH 3 ) 3 / CH 4 concentration ratio was 0.01 (vol)%, and the growth time was 2 hours.

成長させたダイヤモンド(100)面単結晶膜2は、沸騰させた王水中に10分間浸し
た後、超純水にてオーバーフロー洗浄された。その後アセトン及びイソプロピルアルコー
ルそれぞれの溶液中で超音波洗浄され、フォトリソグラフィー法によって図1の1及び図
2に示す電極1の作製のためのレジストのパターニングが行なわれた。その後、電子ビー
ム蒸着法によって、Ti(厚さ15nm)及びAu(厚さ150nm)を積層堆積させ、
リフトオフ法により、図1及び図2に示すくしの刃型の2端子TiAu電極1のパターン
を形成した。TiAu電極1の電極幅(図1及び図2の1Lに相当する)は10μmであ
り、電極間隔(図1及び図2の2Lに相当する)は10μmであった。2端子電極の内、
1つの電極の面積は8.1×10−4cmであり、光の受光面積は5.3×10−4
であった。
The grown diamond (100) plane single crystal film 2 was immersed in boiling aqua regia for 10 minutes and then overflow washed with ultrapure water. Thereafter, ultrasonic cleaning was performed in a solution of each of acetone and isopropyl alcohol, and resist patterning for producing the electrode 1 shown in FIGS. 1 and 2 was performed by photolithography. Thereafter, Ti (thickness 15 nm) and Au (thickness 150 nm) are stacked and deposited by electron beam evaporation.
The comb-shaped two-terminal TiAu electrode 1 pattern shown in FIGS. 1 and 2 was formed by the lift-off method. The electrode width (corresponding to 1L in FIGS. 1 and 2) of the TiAu electrode 1 was 10 μm, and the electrode interval (corresponding to 2L in FIGS. 1 and 2) was 10 μm. Of the two terminal electrodes,
The area of one electrode is 8.1 × 10 −4 cm 2 , and the light receiving area is 5.3 × 10 −4 c.
It was m 2.

このように作製された光伝導型センサー素子は2短針プローバを装備した真空チャンバ
ー内にセットされ、チャンバー内はターボ分子ポンプによって0.05Paの真空度に維
持された。キセノン水銀ランプからの放射光が、分光器を通して215から420nmの
範囲で単色化され、その光量6μW/cmが一定となる条件で石英窓を通して上記光伝
導型受光素子に照射された。
The photoconductive sensor element thus produced was set in a vacuum chamber equipped with a two-short prober, and the inside of the chamber was maintained at a vacuum degree of 0.05 Pa by a turbo molecular pump. The emitted light from the xenon mercury lamp was monochromatized in the range of 215 to 420 nm through the spectroscope, and the photoconductive light-receiving element was irradiated through the quartz window under the condition that the light quantity 6 μW / cm 2 was constant.

図3aに、光照射されない暗室下で測定された電流―電圧(I−V)特性を示し、図3
bに、波長220nmの紫外光が照射されている間に測定されたI−V特性を示す。ここ
で、I−V特性は2端子法によって測定された。図3aに示すように、本素子の紫外光照
射されない暗電流は±15Vにおいて2pA以下であり、極めて微弱な暗電流を実現して
いることがわかる。
FIG. 3a shows current-voltage (IV) characteristics measured in a dark room where no light is irradiated.
b shows the IV characteristics measured during irradiation with ultraviolet light having a wavelength of 220 nm. Here, the IV characteristic was measured by the two-terminal method. As shown in FIG. 3a, the dark current not irradiated with ultraviolet light of this element is 2 pA or less at ± 15 V, and it can be seen that an extremely weak dark current is realized.

一方、図3bに示すように、波長220nmの紫外光を照射することによって、暗電流
に比べて10倍もの光誘起電流が得られ、±2V以上において1μAもの高レベルに達
している。このような10倍の光誘起電流は波長230nm以上の光を照射しても得ら
れなかった。紫外光の入射光パワーに対する光電流値で定義される検出感度を計算すると
3100A/Wに達している。この検出感度の値は、従来の半導体内部の光励起キャリア
に起因する光電流の限界値0.2A/Wの15000倍に達している。
On the other hand, as shown in FIG. 3b, by irradiating with ultraviolet light having a wavelength of 220 nm, a photoinduced current as much as 10 7 times that of the dark current is obtained, and reaches a high level of 1 μA at ± 2 V or more. Such a photoinduced current of 10 7 times was not obtained even when irradiated with light having a wavelength of 230 nm or more. When the detection sensitivity defined by the photocurrent value with respect to the incident light power of ultraviolet light is calculated, it reaches 3100 A / W. The value of the detection sensitivity reaches 15000 times the limit value 0.2 A / W of the photocurrent caused by the photoexcited carriers in the conventional semiconductor.

これまで10−15Wもの波長230nm以下の極微弱紫外光を検出可能な半導体セン
サー素子はこれまで存在しなかったが、本発明によりフェムトワットクラスの微弱紫外光
であっても、十分検出可能な素子が初めて実現される。本発明の光素子は、工業用燃焼炉
、ガスタービンエンジン、並びにジェットエンジン等の燃焼制御モニター、及び火災報知
器と連動した炎探知機用の火炎センサー、更にシリコン大規模集積回路作製プロセスに使
われるステッパー露光装置や紫外線照射装置内の紫外線センサーに応用され、新たな半導
体センサー素子の市場が切り開かれる。
Until now detectable semiconductor sensor elements 10 -15 W stuff wavelength 230nm following ultraweak ultraviolet light did not exist until now, even weak ultraviolet light femto watt class by the present invention, sufficient detectable The device is realized for the first time. The optical element of the present invention is used in combustion control monitors for industrial combustion furnaces, gas turbine engines, jet engines, etc., flame sensors for flame detectors linked to fire alarms, and silicon large-scale integrated circuit fabrication processes. It is applied to the stepper exposure device and the ultraviolet sensor in the ultraviolet irradiation device, which opens up a new market for semiconductor sensor elements.

本発明のダイヤモンド紫外光センサー素子の断面図である。It is sectional drawing of the diamond ultraviolet light sensor element of this invention. 本発明のダイヤモンド紫外光センサー素子の電極パターンを示す平面図である。It is a top view which shows the electrode pattern of the diamond ultraviolet light sensor element of this invention. 本発明のダイヤモンド紫外光センサー素子の(a)暗電流I−V特性、及び(b)波長220nmの紫外光を照射中に測定されたI−V特性を示すグラフである。It is a graph which shows the (a) dark current IV characteristic of the diamond ultraviolet light sensor element of this invention, and the (IV) IV characteristic measured during irradiation of the ultraviolet light of wavelength 220nm.

符号の説明Explanation of symbols

1:TiAu電極
2:ダイヤモンド単結晶膜
3:ダイヤモンド(100)単結晶基板
1: TiAu electrode 2: Diamond single crystal film 3: Diamond (100) single crystal substrate

Claims (4)

受光部材料の電気抵抗の変化又は光誘起電流の変化によって、受光部に照射される光を検出する光伝導型センサー素子であって、
実質的に炭素及び水素を含む雰囲気中において、プラズマ気相成長法又は気相成長法を用いて成膜され、成膜後に沸騰させた王水溶液中で処理されたダイヤモンド単結晶を受光部に持つダイヤモンド紫外光センサー素子。
A photoconductive sensor element that detects light irradiated to the light receiving part by a change in electrical resistance of the light receiving part material or a change in photoinduced current,
The light-receiving part has a diamond single crystal formed in a plasma or vapor phase growth method in an atmosphere substantially containing carbon and hydrogen and treated in an aqua regia solution boiled after the film formation. Diamond ultraviolet light sensor element.
つの電極が前記ダイヤモンド単結晶の水素化された表面に接合している請求項1に記載のダイヤモンド紫外光センサー素子。 Diamond ultraviolet light sensor device according to claim 1 in which the two electrodes are joined to the hydrogenated surface of diamond single crystal. たる光誘起電流成分が前記ダイヤモンド単結晶の水素化された表面近傍の表面伝導層を流れる請求項1又は2に記載のダイヤモンド紫外光センサー素子。 Diamond ultraviolet light sensor device according to claim 1 or 2 main serving photoinduced current component flows through the table Menden conductive layer near the surface that is hydrogenation of the diamond monocrystal. 受光部材料の電気抵抗の変化又は光誘起電流の変化によって、受光部に照射される光を検出する光伝導型センサー素子の製造方法であって、A method of manufacturing a photoconductive sensor element that detects light irradiated to a light receiving part by a change in electrical resistance of a light receiving part material or a change in a light-induced current,
炭素及び水素を含む雰囲気中において、プラズマ気相成長法又は気相成長法を用いてダイヤモンド単結晶を基板上に成膜する工程と、Forming a diamond single crystal on a substrate using a plasma vapor deposition method or a vapor deposition method in an atmosphere containing carbon and hydrogen; and
成膜後に沸騰させた王水溶液中で前記ダイヤモンド単結晶を処理する工程と、Treating the diamond single crystal in an aqueous solution boiled after film formation;
前記ダイヤモンド単結晶の水素化された表面に2つの電極を形成する工程と、を有するダイヤモンド紫外光センサー素子の製造方法。And a step of forming two electrodes on the hydrogenated surface of the diamond single crystal.
JP2004124302A 2004-04-20 2004-04-20 Diamond ultraviolet light sensor element and manufacturing method thereof Expired - Fee Related JP4766363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004124302A JP4766363B2 (en) 2004-04-20 2004-04-20 Diamond ultraviolet light sensor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124302A JP4766363B2 (en) 2004-04-20 2004-04-20 Diamond ultraviolet light sensor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005310963A JP2005310963A (en) 2005-11-04
JP4766363B2 true JP4766363B2 (en) 2011-09-07

Family

ID=35439394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124302A Expired - Fee Related JP4766363B2 (en) 2004-04-20 2004-04-20 Diamond ultraviolet light sensor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4766363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677634B2 (en) * 2005-11-14 2011-04-27 独立行政法人物質・材料研究機構 Diamond UV sensor element
JP5504565B2 (en) 2008-02-07 2014-05-28 独立行政法人物質・材料研究機構 Diamond UV sensor element, manufacturing method thereof, and UV sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927754B2 (en) * 1981-12-17 1984-07-07 科学技術庁無機材質研究所長 Diamond synthesis method
JP2671259B2 (en) * 1988-03-28 1997-10-29 住友電気工業株式会社 Schottky junction semiconductor device
JPH1197721A (en) * 1997-09-25 1999-04-09 Kubota Corp Photoconductive light receiving element
JP3560462B2 (en) * 1998-03-04 2004-09-02 株式会社神戸製鋼所 Diamond film UV sensor and sensor array

Also Published As

Publication number Publication date
JP2005310963A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP5800291B2 (en) ZnO-based semiconductor device and manufacturing method thereof
Chang et al. Electrical and optical characteristics of UV photodetector with interlaced ZnO nanowires
Shao et al. Ionization-enhanced AlGaN heterostructure avalanche photodiodes
US7768091B2 (en) Diamond ultraviolet sensor
Jiang et al. Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain
JP4650491B2 (en) Diamond ultraviolet light sensor
Yagi Highly sensitive ultraviolet photodetectors based on Mg-doped hydrogenated GaN films grown at 380 C
JP5019305B2 (en) Diamond UV sensor
Alia et al. The spectral responsivity enhancement for gallium-doped CdO/PS heterojunction for UV detector
JP4766363B2 (en) Diamond ultraviolet light sensor element and manufacturing method thereof
Perný et al. Ac Impedance Spectroscopy Of Al/A-Sic/C–Si (P)/Al Heterostructure under Illumination
Cai et al. Enhancing Performance of GaN/Ga2O3 P‐N Junction Uvc Photodetectors via Interdigitated Structure
CN113054050B (en) V-shaped groove 2 O 5 -Ga 2 O 3 Heterojunction self-powered solar-blind photoelectric detector and preparation method thereof
Poti et al. High responsivity GaN-based UV detectors
JP4766364B2 (en) Diamond ultraviolet phototransistor and manufacturing method thereof
JP4677634B2 (en) Diamond UV sensor element
Mosca et al. Effects of the buffer layers on the performance of (Al, Ga) N ultraviolet photodetectors
KR20230168890A (en) Photo transistor for visible light detection and manufacturing method thereof
Tian et al. Effect of Oxygen Precursors on Growth Mechanism in High-quality β-Ga 2 O 3 Epilayers on Sapphire by Molecular Beam Epitaxy and Related Solar-blind Photodetectors
JP2009130012A (en) Photodetector for ultraviolet and method for manufacturing the same
CN113437164B (en) Photoconductive all-silicon solar blind ultraviolet detector and manufacturing method thereof
Liao et al. Tungsten carbide Schottky contact to diamond toward thermally stable photodiode
JP2012182396A (en) Ultraviolet light detection device and method of manufacturing the same
CN116525693A (en) Narrow-band EUV photoelectric detector without filter for 13.5nm
Gu et al. Ultrahigh Responsivity of Diamond-based Solar-blind Photodetectors Using Hydrogen Plasma Treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4766363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees