JPH1197721A - Photoconductive light receiving element - Google Patents

Photoconductive light receiving element

Info

Publication number
JPH1197721A
JPH1197721A JP9259682A JP25968297A JPH1197721A JP H1197721 A JPH1197721 A JP H1197721A JP 9259682 A JP9259682 A JP 9259682A JP 25968297 A JP25968297 A JP 25968297A JP H1197721 A JPH1197721 A JP H1197721A
Authority
JP
Japan
Prior art keywords
diamond
light
film
photoconductive
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9259682A
Other languages
Japanese (ja)
Inventor
Eiji Nozu
栄治 野洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP9259682A priority Critical patent/JPH1197721A/en
Publication of JPH1197721A publication Critical patent/JPH1197721A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photosensitivity in a broad range, by constituting a photoconductive light receiving element having a surface conductive layer formed on the surface of a diamond, as a light receiving surface. SOLUTION: A diamond film 2 is stacked on a substrate 1 by using a plasma CVD device using CH4 as a material gas. After hydrogenation processing or the like is suitably carried out, a comb-like electrode is formed by photolithography. When a diamond single crystal substrate is used as the substrate 1, the diamond film 2 becomes a diamond single crystal film. When other substrates than the diamond single crystal substrate, for example, a Si substrate and the like are used, the diamond film 2 becomes a diamond polycrystalline film. When the diamond film 2 is stacked by using the plasma CVD device, a surface conductive layer is formed on the surface of the diamond because of the influence of hydrogen plasma in the stacked layer. However, hydrogenation processing is carried out to secure the surface conductive layer. Thus, a light receiving surface LS is constituted by the surface conductive layer formed on the surface of the diamond film 2, that is, on the surface of the diamond.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受光面に入射した
光によって生じる電気抵抗の変化で光を検出する光導電
型受光素子に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a photoconductive photodetector for detecting light based on a change in electrical resistance caused by light incident on a light receiving surface.

【0002】[0002]

【従来の技術】かかる光導電型受光素子は、受光面に入
射した光によって素子内に生成された電子・正孔対のた
めに電気抵抗が変化する性質を利用して、光を検出する
素子として一般的に知られている。かかる光導電型受光
素子としては、従来からCdS等の種々の半導体材料を
利用して実用化されており、一般には、当該半導体材料
のバンドギャップのエネルギーに相当する光の波長より
短い波長に対して光感度を有している。
2. Description of the Related Art Such a photoconductive light-receiving element detects light by utilizing the property that electric resistance changes due to electron-hole pairs generated in the element by light incident on a light-receiving surface. It is commonly known as As such a photoconductive type light receiving element, various semiconductor materials such as CdS have been conventionally put into practical use, and generally, for a wavelength shorter than the wavelength of light corresponding to the energy of the band gap of the semiconductor material. Light sensitivity.

【0003】[0003]

【発明が解決しようとする課題】従って、当該半導体材
料のバンドギャップで規定される光の波長より長い波長
の光に対しては光感度を有さず、又、バンドギャップで
規定される光の波長に比較してあまりに短い波長では実
用的な感度を有しない。つまり、従来の光導電型受光素
子では、バンドギャップで規定される光の波長よりも短
波長側の一定範囲において光感度を有するのみであっ
た。本発明は、上記実情に鑑みてなされたものであっ
て、その目的は、より広い範囲で光感度を有する光導電
型受光素子を提供する点にある。
Therefore, the semiconductor material has no light sensitivity with respect to light having a wavelength longer than the wavelength of light defined by the band gap of the semiconductor material. At wavelengths that are too short compared to the wavelength, there is no practical sensitivity. That is, the conventional photoconductive light-receiving element has only light sensitivity in a certain range on a shorter wavelength side than the wavelength of light defined by the band gap. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a photoconductive light-receiving element having photosensitivity over a wider range.

【0004】[0004]

【課題を解決するための手段】上記請求項1記載の構成
を備えることにより、ダイヤモンドの表面に形成された
表面導電層を受光面として光導電型受光素子が構成さ
れ、その表面導電層の電気抵抗の変化によって光を検出
する。ダイヤモンドの表面導電層は、ダイヤモンド膜を
プラズマCVD法によって作製したときに、ダイヤモン
ド膜の表面に形成されるものであり、又、天然あるいは
高圧合成による単結晶ダイヤモンドの表面を水素プラズ
マにさらすことによっても形成されることが確認されて
いる。このように形成される表面導電層では、種々の測
定結果から、バンドギャップ内に複雑に分布するエネル
ギー準位が存在することが知られている。
According to the first aspect of the present invention, there is provided a photoconductive type light receiving element in which a surface conductive layer formed on the surface of diamond is used as a light receiving surface. Light is detected by a change in resistance. The surface conductive layer of diamond is formed on the surface of a diamond film when the diamond film is formed by a plasma CVD method, and is formed by exposing the surface of a single crystal diamond formed by natural or high-pressure synthesis to hydrogen plasma. Has also been found to be formed. In the surface conductive layer formed in this manner, it is known from various measurement results that an energy level that is complicatedly distributed in the band gap exists.

【0005】本発明の発明者は、このような複雑に分布
するエネルギー準位は、光導電作用に寄与し得るものと
の認識に立ち、ダイヤモンドの表面導電層の光導電効果
の測定を行った。その結果、ダイヤモンドのバンドギャ
ップに相当する波長よりも長波長側で、極めて広い波長
範囲において光感度を有することが確認された。これに
より、ダイヤモンドの表面に形成された表面導電層を受
光面として光導電型受光素子を構成することにより、広
い範囲で光感度を有する光導電型受光素子を提供できる
に至ったのである。
The inventor of the present invention has recognized that such a complicatedly distributed energy level can contribute to the photoconductive action, and has measured the photoconductive effect of the surface conductive layer of diamond. . As a result, it was confirmed that the compound has photosensitivity in an extremely wide wavelength range on the longer wavelength side than the wavelength corresponding to the band gap of diamond. As a result, the photoconductive light-receiving element having the photoconductive light-receiving element with the surface conductive layer formed on the surface of the diamond as the light-receiving surface can provide a photoconductive light-receiving element having photosensitivity over a wide range.

【0006】又、上記請求項2記載の構成を備えること
により、ダイヤモンド多結晶膜の表面に形成された表面
導電層を受光面として光導電型受光素子が構成され、そ
の表面導電層の電気抵抗の変化によって光を検出する。
このように、ダイヤモンド多結晶膜の表面に形成した表
面導電層を利用する場合、ダイヤモンド多結晶膜がアン
ドープのものであっても、又、不純物をドーピングして
p型半導体とした場合であっても光感度を有することを
確認できた。従って、広い波長範囲で光感度を有すると
共に、ダイヤモンド多結晶膜の導電型に制限を受けにく
いものとなって、実施製作面で有利なものとできる。
尚、ダイヤモンド多結晶膜に表面導電層を形成する場
合、後述の単結晶膜の場合と異なり、ダイヤモンド多結
晶膜がアンドープの場合のみならず、不純物をドーピン
グして電気抵抗が低下したp型半導体とした場合であっ
ても光感度を有する理由は明確ではないが、ダイヤモン
ド多結晶膜に本来的に存在する結晶欠陥が表面導電層の
エネルギー準位の生成に関与しているものと考えられ
る。
In addition, by providing the structure according to the second aspect, a photoconductive type light receiving element is constituted by using the surface conductive layer formed on the surface of the polycrystalline diamond film as a light receiving surface, and the electric resistance of the surface conductive layer is adjusted. The light is detected by the change of.
As described above, when the surface conductive layer formed on the surface of the diamond polycrystalline film is used, even if the diamond polycrystalline film is undoped, or if the impurity is doped into a p-type semiconductor, Was confirmed to have light sensitivity. Therefore, it has light sensitivity in a wide wavelength range and is less likely to be limited by the conductivity type of the polycrystalline diamond film, which is advantageous in terms of practical production.
When a surface conductive layer is formed on a polycrystalline diamond film, unlike the case of a monocrystalline film described later, not only when the polycrystalline diamond film is undoped, but also a p-type semiconductor whose electric resistance is reduced by doping impurities. Although the reason for having the photosensitivity is not clear even in the case of the above, it is considered that crystal defects inherently present in the polycrystalline diamond film are involved in the generation of the energy level of the surface conductive layer.

【0007】又、上記請求項3記載の構成を備えること
により、ダイヤモンド単結晶基板上に積層されたアンド
ープのダイヤモンド単結晶膜の表面に形成された表面導
電層を受光面として光導電型受光素子が構成され、その
表面導電層の電気抵抗の変化によって光を検出する。つ
まり、本発明の発明者の実験により、ダイヤモンド単結
晶基板上に積層されたp型のダイヤモンド単結晶膜の表
面に表面導電層を形成したのでは、実験の結果、十分な
光感度を有しないことを確認でき、逆に、ダイヤモンド
単結晶基板上に積層されたアンドープのダイヤモンド単
結晶膜の表面に表面導電層を形成した場合は光感度を有
することを確認できた。もって、アンドープのダイヤモ
ンド単結晶膜の表面に形成された表面導電層を受光面と
することで、広い範囲で光感度を有する光導電型受光素
子を提供できるに至ったのである。
[0007] Further, by providing the structure according to the third aspect, the photoconductive type light receiving element uses the surface conductive layer formed on the surface of the undoped diamond single crystal film laminated on the diamond single crystal substrate as a light receiving surface. Are formed, and light is detected by a change in electric resistance of the surface conductive layer. That is, according to the experiment of the inventor of the present invention, if the surface conductive layer is formed on the surface of the p-type diamond single crystal film laminated on the diamond single crystal substrate, the experiment results in insufficient light sensitivity. Conversely, it was confirmed that when the surface conductive layer was formed on the surface of the undoped diamond single crystal film laminated on the diamond single crystal substrate, it had photosensitivity. Therefore, by using the surface conductive layer formed on the surface of the undoped diamond single crystal film as the light receiving surface, a photoconductive light receiving element having a wide range of photosensitivity can be provided.

【0008】[0008]

【発明の実施の形態】以下、本発明の光導電型受光素子
の実施の形態を図面に基づいて説明する。光導電型受光
素子PSは、図1に示すように、基板1上にダイヤモン
ド膜2を積層し、そのダイヤモンド膜2の表面に、一対
の櫛形電極3a,3bを形成して構成され、一対の電極
3a,3b間のダイヤモンド膜2表面が受光面LSとな
る。ダイヤモンド膜2を積層する基板1としては、ダイ
ヤモンド単結晶基板を用いる他、Si基板等の他の材料
の単結晶又は多結晶基板を用いることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the photoconductive light-receiving element of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the photoconductive type light receiving element PS is formed by laminating a diamond film 2 on a substrate 1 and forming a pair of comb-shaped electrodes 3a and 3b on the surface of the diamond film 2. The surface of the diamond film 2 between the electrodes 3a and 3b becomes the light receiving surface LS. As the substrate 1 on which the diamond film 2 is to be laminated, a diamond single crystal substrate or a single crystal or polycrystalline substrate of another material such as a Si substrate can be used.

【0009】ダイヤモンド膜2は、原料ガスとしてCH
4 を用いるプラズマCVD装置を用いて基板1上に積層
され、後述する水素化処理等を適宜行った後、フォトリ
ソグラフ技術等により櫛形電極3a,3bを形成する。
このようにダイヤモンド膜2を積層する場合において、
基板1としてダイヤモンド単結晶基板を用いるとダイヤ
モンド膜2はダイヤモンド単結晶膜となり、基板1とし
てSi基板等のダイヤモンド単結晶基板以外のものを用
いるとダイヤモンド膜2はダイヤモンド多結晶膜とな
る。又、上述のようにプラズマCVD装置を用いてダイ
ヤモンド膜2を積層することにより、積層中の水素プラ
ズマの影響でダイヤモンド膜2の表面にいわゆる表面導
電層が形成されるのであるが、この表面導電層をさらに
確実に形成するため、ダイヤモンド膜2の表面を水素プ
ラズマにさらす水素化処理を適宜行うのである。従っ
て、ダイモンド膜2の表面、すなわち、ダイヤモンドの
表面に形成された表面導電層にて、受光面LSが構成さ
れている。尚、基板1がSi基板等のようにウェハ状態
で供給可能なものは、ウェハー状態でダイヤモンド膜2
を積層し、櫛形電極3a,3b形成後に、図1に示す状
態に素子分離を行う。
The diamond film 2 is made of CH as a source gas.
After being stacked on the substrate 1 by using a plasma CVD apparatus using 4 and appropriately performing a hydrogenation treatment described later, the comb-shaped electrodes 3a and 3b are formed by photolithography technology or the like.
When the diamond film 2 is laminated as described above,
When a diamond single crystal substrate is used as the substrate 1, the diamond film 2 becomes a diamond single crystal film, and when a substrate other than a diamond single crystal substrate such as a Si substrate is used, the diamond film 2 becomes a polycrystalline diamond film. By laminating the diamond film 2 using the plasma CVD apparatus as described above, a so-called surface conductive layer is formed on the surface of the diamond film 2 under the influence of the hydrogen plasma during the lamination. In order to form the layer more reliably, a hydrogenation treatment for exposing the surface of the diamond film 2 to hydrogen plasma is appropriately performed. Therefore, the light receiving surface LS is constituted by the surface of the diamond film 2, that is, the surface conductive layer formed on the surface of the diamond. In the case where the substrate 1 can be supplied in a wafer state, such as a Si substrate, the diamond film 2
Are stacked, and after the comb-shaped electrodes 3a and 3b are formed, element isolation is performed in the state shown in FIG.

【0010】次に、種々の条件で作製した光導電型受光
素子PSの特性について具体的に説明する。先ず、基板
1としてSi基板(単結晶)を用い、ダイヤモンド膜2
を、アンドープのダイヤモンド多結晶膜並びにp型のダ
イヤモンド多結晶膜として作製した場合について説明す
る。ダイヤモンド膜2をアンドープのダイヤモンド多結
晶膜として作製した光導電型受光素子PSの特性を図2
に示す。図2に特性を示す光導電型受光素子PSは、上
記水素化処理を施している。
Next, the characteristics of the photoconductive type light receiving element PS manufactured under various conditions will be specifically described. First, an Si substrate (single crystal) was used as a substrate 1 and a diamond film 2
Are produced as an undoped diamond polycrystalline film and a p-type diamond polycrystalline film. FIG. 2 shows the characteristics of a photoconductive light-receiving element PS in which the diamond film 2 was formed as an undoped diamond polycrystalline film.
Shown in The photoconductive light-receiving element PS having the characteristics shown in FIG. 2 has been subjected to the above-described hydrogenation treatment.

【0011】図2(イ)及び(ロ)は、受光面LSに対
して光を照射する状態としない状態の夫々で、一対の櫛
形電極3a,3b間の電気抵抗を測定し、受光面LSに
光を照射したときの表面抵抗の変化(ΔR)の、光を照
射しないときの抵抗値(R)に対する割合が、光の波長
に対してどのように変化するかを示す、いわゆる分光感
度に相当するものである。但し、測定装置の都合上、受
光面LSに照射する光の波長を変化させるにあたって、
図2(イ)は、図8(イ)に示す発光波長分布を有する
ハロゲンランプを光源として、その光源からの出射光
を、特定波長より短波長側の光をカットするカットフィ
ルタを通過させて、受光面LSに照射し、そのカットフ
ィルタの前記特定波長より長波長側の光成分の総量に対
する光感度を、前記特定波長が異なるカットフィルタを
適宜交換しつつ測定することによって、分光感度に相当
する特定を測定している。従って、縦軸の光感度(ΔR
/R)は、長波長側から短波長側に向けて積算されてい
くことになる。以下、便宜上、この測定手法を「カット
フィルタによる分光感度測定」と称する。
FIGS. 2 (a) and 2 (b) show a state where the light receiving surface LS is not irradiated with light and a state where the light is not irradiated, respectively, and the electric resistance between the pair of comb electrodes 3a and 3b is measured. The so-called spectral sensitivity indicates how the ratio of the change in surface resistance (ΔR) when light is irradiated to the resistance value (R) when light is not irradiated changes with respect to the wavelength of light. It is equivalent. However, for changing the wavelength of the light irradiated on the light receiving surface LS,
FIG. 2A shows a case where a halogen lamp having the emission wavelength distribution shown in FIG. 8A is used as a light source, and light emitted from the light source passes through a cut filter that cuts light having a shorter wavelength than a specific wavelength. Irradiating the light-receiving surface LS, and measuring the light sensitivity of the cut filter with respect to the total amount of light components on the longer wavelength side than the specific wavelength while appropriately replacing the cut filters having different specific wavelengths, thereby corresponding to the spectral sensitivity. You are measuring certain. Therefore, the light sensitivity (ΔR
/ R) is integrated from the long wavelength side to the short wavelength side. Hereinafter, for convenience, this measurement method is referred to as “spectral sensitivity measurement using a cut filter”.

【0012】又、図2(ロ)は、図8(ロ)に示す発光
波長分布を有する超高圧水銀ランプを光源として、その
光源からの出射光を分光器により分光して受光面LSに
照射し、その光感度を測定したもので、一般的な分光感
度を示すものである。以下、便宜上、この測定手法を
「通常の分光感度測定」と称して、上記の「カットフィ
ルタによる分光感度測定」と区別する。尚、図8(ロ)
の発光波長分布から明らかなように、超高圧水銀ランプ
は複数の特定の波長において発光強度が大となってお
り、それに応じて、図2(ロ)の特性にも複数のピーク
が存在している。
FIG. 2B shows an ultra-high pressure mercury lamp having the emission wavelength distribution shown in FIG. 8B as a light source, and radiates the light emitted from the light source with a spectroscope to irradiate a light receiving surface LS. The light sensitivity is measured, and indicates a general spectral sensitivity. Hereinafter, for convenience, this measurement method is referred to as “normal spectral sensitivity measurement” and is distinguished from the above-described “spectral sensitivity measurement using a cut filter”. In addition, FIG.
As can be seen from the emission wavelength distribution, the ultra-high pressure mercury lamp has a large emission intensity at a plurality of specific wavelengths, and accordingly, the characteristic in FIG. I have.

【0013】使用する光源の発光波長分布との関係上、
前記カットフィルタによる分光感度測定では、主に、5
00〜1000nmの範囲での光感度の有無を確認で
き、前記通常の分光感度測定では、主に、250〜60
0nmの範囲での光感度の有無を確認できる。図2
(イ)及び図2(ロ)の測定結果から明らかなように、
ダイヤモンド膜2をアンドープのダイヤモンド多結晶膜
として作製した光導電型受光素子PSでは、少なくと
も、200nm〜1000nmの極めて広い波長範囲で
光感度を有している。
In relation to the emission wavelength distribution of the light source used,
In the spectral sensitivity measurement by the cut filter, mainly 5
The presence or absence of light sensitivity in the range of 00 to 1000 nm can be confirmed.
The presence or absence of photosensitivity in the range of 0 nm can be confirmed. FIG.
As is clear from the measurement results of (a) and FIG. 2 (b),
The photoconductive light-receiving element PS in which the diamond film 2 is formed as an undoped polycrystalline diamond film has photosensitivity at least in an extremely wide wavelength range of 200 nm to 1000 nm.

【0014】次に、ダイヤモンド膜2をp型のダイヤモ
ンド多結晶膜として作製した光導電型受光素子PSの特
性を図3に示す。図3に特性を示す光導電型受光素子P
Sも、上記水素化処理を施している。尚、p型の不純物
としてはホウ素を使用している。図3(イ)は、前記カ
ットフィルタによる分光感度測定の測定結果を示し、図
3(ロ)は、前記通常の分光感度測定の測定結果を示し
ている。図3(イ)及び図3(ロ)の測定結果から明ら
かなように、ダイヤモンド膜2をp型のダイヤモンド多
結晶膜として作製した光導電型受光素子PSも、少なく
とも、200nm〜1000nmの極めて広い波長範囲
で光感度を有している。
FIG. 3 shows the characteristics of the photoconductive light-receiving element PS in which the diamond film 2 is formed as a p-type diamond polycrystalline film. The photoconductive light-receiving element P whose characteristics are shown in FIG.
S is also subjected to the above hydrogenation treatment. Note that boron is used as the p-type impurity. FIG. 3A shows the measurement result of the spectral sensitivity measurement using the cut filter, and FIG. 3B shows the measurement result of the normal spectral sensitivity measurement. As is clear from the measurement results shown in FIGS. 3A and 3B, the photoconductive light-receiving element PS in which the diamond film 2 is formed as a p-type diamond polycrystalline film is also at least extremely wide from 200 nm to 1000 nm. It has photosensitivity in the wavelength range.

【0015】図4は、図3と同様にダイヤモンド膜2を
p型のダイヤモンド多結晶膜として作製した光導電型受
光素子PSの特性を示すが、図3のものと異なり、水素
化処理は行わず、その代わりに、酸素雰囲気中で10分
間450℃に加熱する酸化処理を行ったものである。こ
の酸化処理は、一般的には、一旦ダイヤモンド膜2の表
面に形成された表面導電層を取り除いてしまう方向に作
用するのであるが、図4(イ)の前記カットフィルタに
よる分光感度測定の測定結果、並びに、図4(ロ)の前
記通常の分光感度測定の測定結果から明らかなように、
水素化処理を行った図3のものと同様に、200nm〜
1000nmの極めて広い波長範囲で光感度を有してい
る。
FIG. 4 shows the characteristics of the photoconductive light-receiving element PS in which the diamond film 2 is formed as a p-type diamond polycrystalline film in the same manner as in FIG. Instead, an oxidation treatment of heating to 450 ° C. for 10 minutes in an oxygen atmosphere was performed. This oxidation treatment generally acts in a direction in which the surface conductive layer once formed on the surface of the diamond film 2 is removed. However, the measurement of the spectral sensitivity measurement by the cut filter shown in FIG. As is clear from the results and the measurement results of the ordinary spectral sensitivity measurement shown in FIG.
As in the case of FIG.
It has photosensitivity in an extremely wide wavelength range of 1000 nm.

【0016】次に、基板1としてダイヤモンド単結晶基
板を用い、ダイヤモンド膜2を、アンドープのダイヤモ
ンド単結晶膜として作製した場合について説明する。ダ
イヤモンド膜2をアンドープのダイヤモンド単結晶膜と
して作製した光導電型受光素子PSの特性を図5及び図
6に示す。図5に特性を示す光導電型受光素子PSと、
図6に特性を示す光導電型受光素子PSとは、材料ガス
であるCH4の混合比が異なり、前者は1%、後者は2
%として作製している。図5(イ)及び図6(イ)は、
前記カットフィルタによる分光感度測定の測定結果を示
し、図5(ロ)及び図6(ロ)は、前記通常の分光感度
測定の測定結果を示している。図5及び図6の測定結果
から明らかなように、ダイヤモンド膜2をアンドープの
ダイヤモンド単結晶膜として作製した光導電型受光素子
PSも、CH4 の混合比を1%とした場合であっても、
又、2%とした場合であっても、少なくとも、200n
m〜1000nmの極めて広い波長範囲で光感度を有し
ている。
Next, a case where a diamond single crystal substrate is used as the substrate 1 and the diamond film 2 is formed as an undoped diamond single crystal film will be described. 5 and 6 show the characteristics of the photoconductive light-receiving element PS in which the diamond film 2 is formed as an undoped diamond single crystal film. A photoconductive light-receiving element PS whose characteristics are shown in FIG.
6 is different from the photoconductive light-receiving element PS whose characteristics are shown in FIG. 6 in the mixing ratio of CH 4 which is a material gas.
%. FIGS. 5 (a) and 6 (a)
FIG. 5 (b) and FIG. 6 (b) show the measurement results of the normal spectral sensitivity measurement using the cut filter. As is clear from the measurement results of FIGS. 5 and 6, the photoconductive light-receiving element PS in which the diamond film 2 was formed as an undoped diamond single crystal film also has a CH 4 mixing ratio of 1%. ,
In addition, even if it is 2%, at least 200 n
It has photosensitivity in an extremely wide wavelength range from m to 1000 nm.

【0017】尚、上記のようにダイヤモンド膜2をアン
ドープのダイヤモンド単結晶膜として作製した場合と異
なり、ダイヤモンド膜2を、不純物としてホウ素をドー
ピングしてp型のダイヤモンド単結晶膜として作製した
場合には、図7(イ)の前記カットフィルタによる分光
感度測定の測定結果、並びに、図7(ロ)の前記通常の
分光感度測定の測定結果のように、光感度を有しない。
図7に示す特性を有する素子は、上記水素化処理を施し
たものであるが、水素化処理の代わりに上記酸化処理を
施しても、図7の特性と同様に光感度を有しない。
Unlike the case where the diamond film 2 is formed as an undoped diamond single crystal film as described above, the diamond film 2 is formed as a p-type diamond single crystal film by doping boron as an impurity. Does not have light sensitivity like the measurement result of the spectral sensitivity measurement by the cut filter in FIG. 7A and the measurement result of the normal spectral sensitivity measurement in FIG. 7B.
The element having the characteristics shown in FIG. 7 has been subjected to the above-described hydrogenation treatment. However, even if the above-described oxidation treatment is performed instead of the hydrogenation treatment, the element does not have photosensitivity similarly to the characteristics shown in FIG.

【0018】〔別実施形態〕以下、別実施形態を列記す
る。 上記実施の形態では、基板1上に形成したダイヤモ
ンド膜2の表面に形成される表面導電層にて受光面LS
が構成されているが、単結晶又は多結晶のダイヤモンド
基板の表面に上記水素化処理を施して表面導電層を形成
し、ダイヤモンド基板自体に形成された表面導電層にて
受光面LSを構成しても良い。 上記実施の形態では、ダイヤモンド膜2をダイヤモ
ンド多結晶膜として作製するときに、基板1としてSi
単結晶基板を用いているが、Si多結晶基板を用いても
良いし、Siに限らず、GaAs等の他の材料の基板を
用いても良い。 上記実施の形態では、光導電型受光素子PSの電極
を、一対の櫛形電極3a,3bとしているが、例えば平
面視で略長方形状の電極を二つ並べる等、電極の具体形
状は種々変更可能である。
[Other Embodiments] Hereinafter, other embodiments will be listed. In the above embodiment, the light receiving surface LS is formed by the surface conductive layer formed on the surface of the diamond film 2 formed on the substrate 1.
The surface of a single crystal or polycrystalline diamond substrate is subjected to the above hydrogenation treatment to form a surface conductive layer, and the light receiving surface LS is formed by the surface conductive layer formed on the diamond substrate itself. May be. In the above embodiment, when the diamond film 2 is formed as a polycrystalline diamond film, the substrate 1 is made of Si.
Although a single crystal substrate is used, a polycrystalline Si substrate may be used, and a substrate made of another material such as GaAs, not limited to Si, may be used. In the above embodiment, the electrodes of the photoconductive type light receiving element PS are a pair of comb-shaped electrodes 3a and 3b, but the specific shape of the electrodes can be variously changed, for example, two substantially rectangular electrodes are arranged in plan view. It is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態にかかる光導電型受光素子
の概略斜視図
FIG. 1 is a schematic perspective view of a photoconductive light receiving element according to an embodiment of the present invention.

【図2】本発明の実施の形態にかかる光導電型受光素子
の特性を示す図
FIG. 2 is a diagram showing characteristics of a photoconductive light-receiving element according to an embodiment of the present invention.

【図3】本発明の実施の形態にかかる光導電型受光素子
の特性を示す図
FIG. 3 is a diagram showing characteristics of the photoconductive light-receiving element according to the embodiment of the present invention;

【図4】本発明の実施の形態にかかる光導電型受光素子
の特性を示す図
FIG. 4 is a diagram showing characteristics of the photoconductive light-receiving element according to the embodiment of the present invention;

【図5】本発明の実施の形態にかかる光導電型受光素子
の特性を示す図
FIG. 5 is a diagram showing characteristics of the photoconductive light-receiving element according to the embodiment of the present invention;

【図6】本発明の実施の形態にかかる光導電型受光素子
の特性を示す図
FIG. 6 is a diagram showing characteristics of the photoconductive light-receiving element according to the embodiment of the present invention;

【図7】比較対象のための素子の特性を示す図FIG. 7 is a diagram showing characteristics of an element for comparison.

【図8】本発明の実施の形態にかかる測定に用いた光源
の特性を示す図
FIG. 8 is a diagram showing characteristics of a light source used for measurement according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 ダイヤモンド LS 受光面 2 Diamond LS light receiving surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 受光面に入射した光によって生じる電気
抵抗の変化で光を検出する光導電型受光素子であって、 前記受光面が、ダイヤモンドの表面に形成された表面導
電層にて構成されている光導電型受光素子。
1. A photoconductive light-receiving element for detecting light by a change in electric resistance caused by light incident on a light-receiving surface, wherein the light-receiving surface is constituted by a surface conductive layer formed on a diamond surface. Photoconductive light receiving element.
【請求項2】 前記ダイヤモンドは、ダイヤモンド多結
晶膜である請求項1記載の光導電型受光素子。
2. The photoconductive light-receiving element according to claim 1, wherein said diamond is a polycrystalline diamond film.
【請求項3】 前記ダイヤモンドは、ダイヤモンド単結
晶基板上に積層されたアンドープのダイヤモンド単結晶
膜である請求項1記載の光導電型受光素子。
3. The photoconductive photodetector according to claim 1, wherein said diamond is an undoped diamond single crystal film laminated on a diamond single crystal substrate.
JP9259682A 1997-09-25 1997-09-25 Photoconductive light receiving element Pending JPH1197721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259682A JPH1197721A (en) 1997-09-25 1997-09-25 Photoconductive light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259682A JPH1197721A (en) 1997-09-25 1997-09-25 Photoconductive light receiving element

Publications (1)

Publication Number Publication Date
JPH1197721A true JPH1197721A (en) 1999-04-09

Family

ID=17337456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259682A Pending JPH1197721A (en) 1997-09-25 1997-09-25 Photoconductive light receiving element

Country Status (1)

Country Link
JP (1) JPH1197721A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310964A (en) * 2004-04-20 2005-11-04 National Institute For Materials Science Diamond ultraviolet phototransistor
JP2005310963A (en) * 2004-04-20 2005-11-04 National Institute For Materials Science Diamond ultraviolet photosensor element
WO2007015431A1 (en) * 2005-08-01 2007-02-08 National Institute For Materials Science Diamond uv-ray sensor
JP2007066976A (en) * 2005-08-29 2007-03-15 National Institute For Materials Science Diamond ultraviolet sensor
WO2009099233A1 (en) 2008-02-07 2009-08-13 National Institute For Materials Science Diamond uv sensor element and manufacturing method thereof, uv sensor device, diamond single crystal processing method
WO2010038785A1 (en) * 2008-09-30 2010-04-08 国立大学法人岡山大学 Photosensor and method for manufacturing the photosensor
US7768091B2 (en) 2004-11-25 2010-08-03 National Institute For Materials Science Diamond ultraviolet sensor
JP2012508459A (en) * 2008-11-12 2012-04-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved large area photodetector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310963A (en) * 2004-04-20 2005-11-04 National Institute For Materials Science Diamond ultraviolet photosensor element
JP2005310964A (en) * 2004-04-20 2005-11-04 National Institute For Materials Science Diamond ultraviolet phototransistor
US7768091B2 (en) 2004-11-25 2010-08-03 National Institute For Materials Science Diamond ultraviolet sensor
WO2007015431A1 (en) * 2005-08-01 2007-02-08 National Institute For Materials Science Diamond uv-ray sensor
JPWO2007015431A1 (en) * 2005-08-01 2009-02-19 独立行政法人物質・材料研究機構 Diamond ultraviolet light sensor
JP4650491B2 (en) * 2005-08-01 2011-03-16 独立行政法人物質・材料研究機構 Diamond ultraviolet light sensor
US7884372B2 (en) 2005-08-01 2011-02-08 National Institute For Materials Science Diamond UV-Ray sensor
JP2007066976A (en) * 2005-08-29 2007-03-15 National Institute For Materials Science Diamond ultraviolet sensor
WO2009099233A1 (en) 2008-02-07 2009-08-13 National Institute For Materials Science Diamond uv sensor element and manufacturing method thereof, uv sensor device, diamond single crystal processing method
US8435597B2 (en) 2008-02-07 2013-05-07 National Institute For Materials Science Diamond UV-sensor element and manufacturing method thereof, UV-sensor unit, and method of treating diamond single crystal
WO2010038785A1 (en) * 2008-09-30 2010-04-08 国立大学法人岡山大学 Photosensor and method for manufacturing the photosensor
JP5360837B2 (en) * 2008-09-30 2013-12-04 国立大学法人 岡山大学 Optical sensor and manufacturing method thereof
JP2012508459A (en) * 2008-11-12 2012-04-05 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Improved large area photodetector

Similar Documents

Publication Publication Date Title
JP4688589B2 (en) Stacked photovoltaic device
KR20100087017A (en) Photodetector for ultraviolet and method for manufacturing the photodetector
JPH08264815A (en) Amorphous silicon carbide film and photovoltaic element using the same
JPH1197721A (en) Photoconductive light receiving element
Zhang et al. Narrowband photoresponse of a self-powered CuI/SrTiO 3 purple light detector with an ultraviolet-shielding effect
JP2006229052A (en) Solar cell, its manufacturing method, and short-circuited part removal device
Kondo et al. Light induced phenomena in microcrystalline silicon
JP2009130013A (en) Manufacturing method of electrode for gallium oxide substrate and electrode for gallium oxide substrate manufactured by the method
JPH11103077A (en) Photoconductive type light receiving element
AU2018253508A1 (en) Solar cell and preparation method thereof
JPS5873169A (en) Pin photovoltaic device and method of producing same
JP4289768B2 (en) Photovoltaic device
JP5294162B2 (en) Photodetection element and method for manufacturing the same
Wronski et al. Charge transfer enhancement of photoconductivity in hydrogenated amorphous Ge/Si multilayer films
JPH0614560B2 (en) Photo sensor
JP4766363B2 (en) Diamond ultraviolet light sensor element and manufacturing method thereof
RU2155418C1 (en) Semiconductor sensor of ultraviolet radiation
JP2011009293A (en) Wide gap oxide semiconductor and ultraviolet sensor using the same
KR100798052B1 (en) Fabrication method of UV photodetector
JP4138673B2 (en) Diamond sensor
JPH046880A (en) Amorphous silicon carbide film, formation thereof and photovoltaic device using same
JPS6175568A (en) Manufacture of semiconductor element
JP2567643B2 (en) Photovoltaic device manufacturing method
Mandracci et al. Stability and quantum efficiency of a novel type of a-Si: H/a-SiC: H based UV detector
JP2978050B2 (en) Manufacturing method of amorphous alloy semiconductor