JPS60231498A - Synthesizing method of diamond under low pressure - Google Patents

Synthesizing method of diamond under low pressure

Info

Publication number
JPS60231498A
JPS60231498A JP8805284A JP8805284A JPS60231498A JP S60231498 A JPS60231498 A JP S60231498A JP 8805284 A JP8805284 A JP 8805284A JP 8805284 A JP8805284 A JP 8805284A JP S60231498 A JPS60231498 A JP S60231498A
Authority
JP
Japan
Prior art keywords
hydrogen
diamond
substrate
methane
low pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8805284A
Other languages
Japanese (ja)
Other versions
JPH0448757B2 (en
Inventor
Yukio Saito
幸雄 斉藤
Shinpei Matsuda
松田 臣平
Mamoru Mizumoto
水本 守
Hiromi Matsumoto
松本 浩美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8805284A priority Critical patent/JPS60231498A/en
Publication of JPS60231498A publication Critical patent/JPS60231498A/en
Publication of JPH0448757B2 publication Critical patent/JPH0448757B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To suppress the formation of silicon carbide and to grow diamond effectively by allowing hydrogen of exited state of react with gaseous hydrocarbon in a reaction vessel of low pressure and bringing the formed hydrocarbon radical into contact with a substrate. CONSTITUTION:Gaseous hydrogen 10 introduced into a reaction tube 14 of a low pressure (a mark 9 shown a vacuum pump) is exited with microwave charged via a wave guide 15 from a generator 5 to form hydrogen plasma 12. Then, in the downstream side lower than the generation place of the hydrogen plasma, gaseous methane 11 is introduced into the reaction pipe 14 from a feed pipe 16 and allowed to react with the hydrogen plasma to form hydrocarbon radical (methyl, methylene, methine). Next, the hydrocarbon radical is adsorbed on a substrate 3 (silicon wafer or the like) being heated at about 600-1,100 deg.C with a heater 13 to grow diamond. (Still more, since the graphite formed simultaneously is easily brought to react with the exited hydrogen atom or hydrogen molecule, it is changed into methane and automatically removed.)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体等の基板上にダイヤモンドを析出させ
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for depositing diamond on a substrate such as a semiconductor.

〔発明の背景〕[Background of the invention]

ダイヤモンドは最も硬度の大きい物質として知られてい
るが、硬度以外の点でも、電気的に高絶縁体(比抵抗1
012Ω・crn)であシながら熱の良導体(常温で銅
の6倍)であり、また紫外から赤外までに及ぶ広範囲の
光に対して透明であり、化学的にも安定であるなど、機
能材料として優れた特性を持っている。
Diamond is known as the hardest material, but it is also an electrically high insulator (specific resistance 1).
012Ω・crn) but is a good conductor of heat (six times that of copper at room temperature), is transparent to a wide range of light ranging from ultraviolet to infrared, and is chemically stable. It has excellent properties as a material.

ダイヤモンドは現在、主として筒圧法により合成されて
いる。高圧法とは、1500℃以上の高温、6万気圧以
上の高圧条件下で黒鉛の結晶転移により合成する方法で
ある。この方法によシ粒子状ダイヤモンドが合成でき、
これらは研摩材、工具等に利用されている。
Diamond is currently synthesized primarily by the cylinder pressure method. The high-pressure method is a method of synthesizing by crystal transition of graphite at a high temperature of 1500° C. or higher and a high pressure of 60,000 atmospheres or higher. Particulate diamond can be synthesized by this method,
These are used in abrasives, tools, etc.

これに対し、最近、1気圧以下の低圧条件下でもダイヤ
モンドが合成できる低圧法が示された(下の註参照)。
In contrast, a low-pressure method has recently been demonstrated that allows diamond to be synthesized even under low-pressure conditions of 1 atmosphere or less (see note below).

低圧法では粒子に限らず膜状ダイヤモンドの合成も可能
であシ、幅広い応用が考えられる。その一つは、半導体
素子の放熱基板への応用である。ICの高集積化に伴い
半導体装置の三次元化が推進されているが、このために
は半導体素子をつなぐと共に、素子で発生した熱を速や
かに外へ伝える絶縁材料が必要で、それにはダイヤモン
ド膜が最適である。
The low-pressure method makes it possible to synthesize not only particles but also film-like diamonds, and a wide range of applications can be considered. One of them is its application to heat dissipation substrates for semiconductor devices. As ICs become more highly integrated, semiconductor devices are becoming three-dimensional, but this requires an insulating material that not only connects the semiconductor elements but also quickly transfers the heat generated by the elements to the outside. Membrane is best.

(註) (1)昭和58年10月5日新技術開発事業団主催のダ
イヤモンド低圧合成に関する説明会における科学技術庁
無機材質研究所瀬高信雄報告「ダイヤモンド膜の低圧気
相合成技術」の配布資料(2)1983年4月4日応用
物理学会における科学技術庁無機材質研究所加茂原料、
瀬高信雄発表「マイクロ波プラズマ法による膜状ダイヤ
モンドの合成」、講演予稿集第215頁 (31Japanese Journal of Ap
plied Physics。
(Note) (1) Handout of Nobuo Setaka's report on "Low-pressure gas phase synthesis technology for diamond films" at the Science and Technology Agency's Inorganic Materials Research Institute at a briefing session on low-pressure diamond synthesis sponsored by the New Technology Development Corporation on October 5, 1985. (2) Kamo Raw Materials, Institute for Inorganic Materials, Science and Technology Agency, at the Japan Society of Applied Physics on April 4, 1983;
Nobuo Setaka presented “Synthesis of film-like diamond by microwave plasma method”, lecture proceedings, page 215 (31 Japanese Journal of Ap
Plied Physics.

vol、 21. A4 、 April 1982.
 pp、L183−L185第2図に既に発表されたダ
イヤモンド低圧合成技術を示す。メタン(濃度工ないし
数%)、残り水素の混合ガス1が反応管2に供給される
。反応管2は真空=e7f9により数十Torrに減圧
されている。マイクロ波発振器5で発生したマイクロ波
はアイソレータ6で波形が調整され、ノ9ワーモニタ7
で出力が測定された後、導波管15を通って反応管2に
送られる。このマイクロ波によってメタンと水素との上
記混合ガスがプラズマ化され、その分解によって生成し
た励起炭素が反応管2内の台座4上のシリコンウエノ・
等の基板3の上にダイヤモンド結晶を析出させる。排ガ
スは真空ポンプ9によって系外に排気される。上記の反
応時にシリコンウエノ・等の基板3はメタン−水素プラ
ズマによシフ00〜900℃とに加熱される。
vol, 21. A4, April 1982.
pp, L183-L185 Figure 2 shows the diamond low-pressure synthesis technology that has already been announced. A mixed gas 1 of methane (at a concentration of 5% to several %) and remaining hydrogen is supplied to a reaction tube 2. The pressure in the reaction tube 2 is reduced to several tens of Torr by vacuum=e7f9. The waveform of the microwave generated by the microwave oscillator 5 is adjusted by the isolator 6, and the waveform is adjusted by the isolator 6.
After the output is measured, it is sent to the reaction tube 2 through the waveguide 15. The above-mentioned mixed gas of methane and hydrogen is turned into plasma by this microwave, and the excited carbon generated by its decomposition is transferred to the silicon urethane on the pedestal 4 in the reaction tube 2.
Diamond crystals are deposited on a substrate 3 such as the like. The exhaust gas is exhausted to the outside of the system by a vacuum pump 9. During the above reaction, the silicon substrate 3 is heated to 00 to 900 DEG C. by methane-hydrogen plasma.

上記した方法によれば、数時間で数μm径又は厚の粒子
状ないし膜状ダイヤモンドの合成が可能であるが、しか
しながら、メタンと水素を同時にプラズマ分解するので
水素ラジカル、水嵩イオン以外に炭素ラジカル、炭素イ
オンも生成し、シリコンウェハ等の基板がエツチングあ
るいはスバ、タリングされてシリコンカーバイトが生成
し易い。
According to the above method, it is possible to synthesize diamond particles or films with a diameter or thickness of several μm in a few hours.However, since methane and hydrogen are simultaneously plasma decomposed, carbon radicals are produced in addition to hydrogen radicals and water bulk ions. , carbon ions are also generated, and silicon carbide is likely to be generated when a substrate such as a silicon wafer is etched, scraped, or tarred.

このため、ダイヤモンド生成の結晶核となる励起炭素が
消費されてし一部いダイヤモンドの成長が抑制されると
いう欠点があった。
For this reason, the excited carbon, which serves as the crystal nucleus for diamond formation, is consumed and the growth of diamond is inhibited.

〔発明の目的〕[Purpose of the invention]

本発明は前記した既提案技術の欠点を改善するためにな
されたものであシ、その目的はシリコンカーバイトの生
成を抑制し、ダイヤモンドを効率よく成長させるダイヤ
モンド低圧合成法を提供することにある。
The present invention has been made to improve the drawbacks of the previously proposed techniques described above, and its purpose is to provide a low-pressure diamond synthesis method that suppresses the formation of silicon carbide and efficiently grows diamond. .

〔発明の概要〕[Summary of the invention]

本発明のダイヤモンド低圧合成法は、低圧の反応容器内
で水素ガスのみをプラズマにょシ分解して水素ラジカル
等の励起水素原子をっくシ、次にこの励起水素原子に炭
化水素を接触させることによシ炭化水素を分解して炭化
水素ラジカルを生成せしめ、この炭化水素ラジカルをシ
リコンウェハ等の基板上に吸着させて熱分解にょシ該炭
化水素うジカル中の残存する水素原子を分離してダイヤ
モンドを生成するものである。
The low-pressure diamond synthesis method of the present invention involves decomposing only hydrogen gas into plasma in a low-pressure reaction vessel to remove excited hydrogen atoms such as hydrogen radicals, and then bringing hydrocarbons into contact with the excited hydrogen atoms. The hydrocarbon radicals are then decomposed to generate hydrocarbon radicals, which are adsorbed onto a substrate such as a silicon wafer, and the remaining hydrogen atoms in the hydrocarbon radicals are separated by thermal decomposition. It is what produces diamonds.

〔発明の実施例〕[Embodiments of the invention]

第1図に本発明の実施に用いた装置の例を示す。 FIG. 1 shows an example of an apparatus used to carry out the present invention.

水素がス10が反応管14の上方に導入される。Hydrogen gas 10 is introduced above the reaction tube 14.

この水素ガスは反応管14内でマイクロ波発振器5から
第2図と同様1(シて送られたマイクロ波によシ励起さ
れ水素プラズマ12を生成する。
This hydrogen gas is excited by microwaves transmitted from the microwave oscillator 5 in the reaction tube 14 as shown in FIG. 2, and generates hydrogen plasma 12.

一方、この水素プラズマ発生面バよシ下流側において、
メタンがス11がメタン供給管16よシ反応器14にプ
ラズマ化されてbない状態で入る。
On the other hand, on the downstream side of this hydrogen plasma generation surface,
Methane gas 11 enters the reactor 14 through the methane supply pipe 16 without being converted into plasma.

このメタンガスはシリコンウェハ等の基板3の上方部で
上記の励起水素原子と反応しメタンの構成元素である水
素が一部除去されてメチル、メチレン、メチン等の炭化
水素ラジカルを生成する。こレラ炭化水素ラジカルは、
シリコンウェハ等の基板3に吸着された後、ヒータ13
による加熱又は励起水素原子等の作用を受けてさらにこ
れら炭化水素ラジカル中に残存する水素原子が除去され
、ダイヤモンド又はグラファイトの結晶核を形成する。
This methane gas reacts with the above-described excited hydrogen atoms above the substrate 3 such as a silicon wafer, and hydrogen, which is a constituent element of methane, is partially removed to generate hydrocarbon radicals such as methyl, methylene, and methine. Cholera hydrocarbon radical is
After being adsorbed to the substrate 3 such as a silicon wafer, the heater 13
Hydrogen atoms remaining in these hydrocarbon radicals are further removed by heating or by the action of excited hydrogen atoms, etc., to form crystal nuclei of diamond or graphite.

これら結晶核のうちグラファイトの結晶核はラジカル等
の励起水素原子又は水素分子と反応し易いので選択的に
これと反応してメタンを生成して除去され、ダイヤモン
ドだけが基板3上に成長する。
Among these crystal nuclei, graphite crystal nuclei easily react with excited hydrogen atoms or hydrogen molecules such as radicals, so they selectively react with them to generate methane and are removed, and only diamond grows on the substrate 3.

以下、本発明の具体的実施例を説明する。Hereinafter, specific examples of the present invention will be described.

〔実施例1〕 内径13割、長さ300wRの石英ガラス管に水素及び
メタンの供給管を設けた第1図に示す構成の装置を用い
、上述したように水素だけをプラズマ化し、基板をヒー
タにより加熱する方法でダイヤモンドの析出実験を行な
った。基板には[oO:]面のシリコンウェハを用いた
。表IK実験条件を示す。
[Example 1] Using an apparatus configured as shown in Fig. 1, in which a quartz glass tube with an inner diameter of 130% and a length of 300 wR was provided with hydrogen and methane supply pipes, only hydrogen was turned into plasma as described above, and the substrate was placed under a heater. A diamond precipitation experiment was conducted using a heating method. A silicon wafer with an [oO:] plane was used as the substrate. Table IK shows the experimental conditions.

表1 実験条件 圧力は5 Torr刻み、基板温度はl 00’刻み、
時間はlhr刻みで変えた値で実験した。マイクロ波は
40W又は100Wとした。
Table 1 Experimental conditions Pressure is 5 Torr increments, substrate temperature is 100' increments,
Experiments were conducted by changing the time in lhr increments. The microwave power was 40W or 100W.

実#終了後、シリコンウェハ表面をSEMによシ観察し
たところ第3図に示したように約1μm径の角ばった析
出物が見られ*、 (第3図は反応時間3hrのもの)
。析出物の形状や大きさは析出条件によって変化するが
表1に示した実験条件の範囲内でいずれの場合にも析出
物が得られた。析出物の電子線回折像の解析によ請求め
た結晶の各面間距離は立方晶ダイヤモンドの各面間距離
に一致し、析出物はダイヤモンドであると判定される。
When the silicon wafer surface was observed using SEM after the completion of the actual #, angular precipitates with a diameter of approximately 1 μm were seen as shown in Figure 3. (Figure 3 shows the reaction time of 3 hours)
. Although the shape and size of the precipitate varied depending on the precipitation conditions, the precipitate was obtained in all cases within the range of the experimental conditions shown in Table 1. The distance between the planes of the crystal determined by analysis of the electron diffraction image of the precipitate coincides with the distance between the planes of cubic diamond, and the precipitate is determined to be diamond.

なお、析出時間を長くする( 6 hr )と、第4図
に示すように粒子状析出物が合体して膜状化して行くの
がみられた。なお、1000℃を越えるとダイヤモンド
折用の速度が極めて遅くなり、また600℃以下では、
黒鉛が析出してダイヤモンドにならないことが確認され
た。
In addition, when the precipitation time was increased (6 hr), it was observed that the particulate precipitates coalesced into a film as shown in FIG. In addition, when the temperature exceeds 1000℃, the speed of diamond folding becomes extremely slow, and below 600℃,
It was confirmed that graphite did not precipitate into diamond.

〔実施例2〕 実施例1と同一装置を用い、メタンの代りにエタン又は
ゾロノーンを用いて同一条件下で実験を行なったところ
、実施例1と同様にダイヤモンドの析出か観測された。
[Example 2] When an experiment was conducted under the same conditions using the same equipment as in Example 1 and using ethane or zolonone instead of methane, diamond precipitation was observed as in Example 1.

〔比較例1〕 比較のため、内径13惰、長さ200簡の石英カラス管
1/iC5tmn X 5 yenのシリコンウェハ[
100面〕を設置し、第2図に示した従来法、すなわち
メタンと水素の混合ガス全同時にプラズマ分解する方法
によりダイヤモンドの析出実験を行なった。
[Comparative Example 1] For comparison, a silicon wafer of 1/iC5tmn x 5yen was prepared using a quartz glass tube with an inner diameter of 13mm and a length of 200mm.
A diamond precipitation experiment was conducted using the conventional method shown in FIG. 2, that is, the method of simultaneously plasma decomposing a mixed gas of methane and hydrogen.

表2に実験条件を示す・ 表2 実験条件 実験終了後、シリコンウェハ表面及び反応管壁を電子線
回折によシ分析を行なったところ、シリコンカーバイト
の強い回折像が得られたが表2に示した実験条件範囲内
ではダイヤモンドに相当する回折像は得られなかった。
The experimental conditions are shown in Table 2. Table 2 Experimental conditions After the experiment was completed, the silicon wafer surface and reaction tube wall were analyzed by electron beam diffraction, and a strong diffraction image of silicon carbide was obtained. No diffraction image corresponding to diamond was obtained within the range of experimental conditions shown in .

また、シリコンウェハ表面のSEM (走査型電照)に
よる観察結果では、激しいエツチング跡が見られた。
Further, as a result of observation of the surface of the silicon wafer by SEM (scanning electron beam), severe etching marks were observed.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、シリコンウェハ等の基板上にシ
リコンカーバイト等の析出を抑制して効率よくダイヤモ
ンドを析出させることができる。
According to the method of the present invention, diamond can be efficiently deposited on a substrate such as a silicon wafer while suppressing the deposition of silicon carbide or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のダイヤモンド低圧合成法に用いられる
装置の模式図、第2図は既提案のダイヤモンド低圧合成
法に用いられる装置の模式図、第3図および第4図は本
発明の実施によシ得られたダイヤモンドのSEM写真で
ある。 2・・・反応管 3・・・シリコンウェハ4・・・台座
 5・・・マイクロ波発振器、9・・・真空ボンデ l
O・・・導波管13・・・ヒータ 第1図 第2図 第3図 第4図 と広 手続補正書(方式) 昭和59年2月、29[ 昭和!9年特 許願第p〆)号 3 補正をする者 i1c件どの1ツj係 出 願 人 4、代理人 住 所 東京都千代F月区丸の内2丁目6番2号丸の内
へ千洲ビル3308IIIIBGの2而の前!バな説明
の欄8 補正の内容 別紙の切6つ 補 正 書 本願明細書中下記事項を補正いたします。 記 ■、第第1貢 「ダイヤモυドのSIIEM写真である。」とあるを[
ダイヤ七ンドの粒子構造を示す走査型電子顕微鏡( S
EM )写真である。」と訂正する。
Fig. 1 is a schematic diagram of the apparatus used in the low-pressure diamond synthesis method of the present invention, Fig. 2 is a schematic diagram of the apparatus used in the previously proposed diamond low-pressure synthesis method, and Figs. 3 and 4 are the embodiments of the present invention. This is an SEM photograph of the diamond obtained by this method. 2... Reaction tube 3... Silicon wafer 4... Pedestal 5... Microwave oscillator, 9... Vacuum bonder l
O...Waveguide 13...Heater Figure 1, Figure 2, Figure 3, Figure 4 and wide procedural amendment (method) February 1980, 29 [Showa! 9th Patent Application No. P〆) No. 3 Person making the amendment I1c Person in charge of any one of the following: Applicant 4, Agent Address: 3308IIIBG, Chisu Building, Marunouchi, 2-6-2, Marunouchi, Chiyo F Tsuki-ku, Tokyo. Before the 2nd one! Explanation column 8 Contents of amendment Six amendments to attached sheet The following matters in the specification of the application will be amended. In the first part of the record, it says, ``This is a SIIEM photo of a diamond.'' [
Scanning electron microscope (S
EM) This is a photograph. ” he corrected.

Claims (1)

【特許請求の範囲】 1、低圧反応容器内において、水素ガスをプラズマ状態
にし、このプラズマ状態の水素ガスに別に用意された分
解によ勺炭素を放出する炭化水素のガスを混合して該炭
化水素中の水素を除去した炭化水素ラジカルを生せしめ
、この炭化水素ラジカルを該反応容器内で600℃ない
し1000℃に加熱された基板に接触させて該基板上に
ダイヤモンドを析出させることを特徴とするダイヤモン
ド低圧合成法。 2、炭化水素がメタン、エタン又はゾロ)4ンCある特
許請求の範囲第1項記載のダイヤモンド低圧合成法。
[Claims] 1. Hydrogen gas is brought into a plasma state in a low-pressure reaction vessel, and a separately prepared hydrocarbon gas that releases carbon by decomposition is mixed with the hydrogen gas in the plasma state to produce the carbonized gas. Hydrocarbon radicals are generated by removing hydrogen from hydrogen, and the hydrocarbon radicals are brought into contact with a substrate heated to 600°C to 1000°C in the reaction vessel to deposit diamond on the substrate. Diamond low pressure synthesis method. 2. The low-pressure diamond synthesis method according to claim 1, wherein the hydrocarbon is methane, ethane, or 4-C.
JP8805284A 1984-05-01 1984-05-01 Synthesizing method of diamond under low pressure Granted JPS60231498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8805284A JPS60231498A (en) 1984-05-01 1984-05-01 Synthesizing method of diamond under low pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8805284A JPS60231498A (en) 1984-05-01 1984-05-01 Synthesizing method of diamond under low pressure

Publications (2)

Publication Number Publication Date
JPS60231498A true JPS60231498A (en) 1985-11-18
JPH0448757B2 JPH0448757B2 (en) 1992-08-07

Family

ID=13932061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8805284A Granted JPS60231498A (en) 1984-05-01 1984-05-01 Synthesizing method of diamond under low pressure

Country Status (1)

Country Link
JP (1) JPS60231498A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5015528A (en) * 1987-03-30 1991-05-14 Crystallume Fluidized bed diamond particle growth
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
FR2678956A1 (en) * 1991-07-12 1993-01-15 Pechiney Recherche DEVICE AND METHOD FOR DEPOSITING DIAMOND BY DCPV ASSISTED BY MICROWAVE PLASMA.
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110494A (en) * 1981-12-17 1983-07-01 Natl Inst For Res In Inorg Mater Synthesizing method for diamond

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882138A (en) * 1987-03-30 1989-11-21 Crystallume Method for preparation of diamond ceramics
US5015528A (en) * 1987-03-30 1991-05-14 Crystallume Fluidized bed diamond particle growth
US5075095A (en) * 1987-03-30 1991-12-24 Crystallume Method for preparation of diamond ceramics
US5372799A (en) * 1988-10-20 1994-12-13 Sumitomo Electric Industries, Ltd. Process for the synthesis of granular diamond
FR2678956A1 (en) * 1991-07-12 1993-01-15 Pechiney Recherche DEVICE AND METHOD FOR DEPOSITING DIAMOND BY DCPV ASSISTED BY MICROWAVE PLASMA.
US5360485A (en) * 1991-07-12 1994-11-01 Pechiney Recherche Apparatus for diamond deposition by microwave plasma-assisted CVPD

Also Published As

Publication number Publication date
JPH0448757B2 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
JPS60231498A (en) Synthesizing method of diamond under low pressure
JPS62138395A (en) Preparation of diamond film
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPS62265198A (en) Method for synthesizing diamond
JPS58156594A (en) Preparation of hard coating film
JPS6054996A (en) Synthesis of diamond
JPS62235295A (en) Method for synthesizing diamond
JP3176086B2 (en) Diamond crystal and substrate for diamond formation
JPH0341435B2 (en)
JPH0518798B2 (en)
Huang et al. Oriented AlN films prepared with solid AlCl3 source by bias assisted Cat-CVD
JP2803396B2 (en) Diamond thin film synthesis equipment
JPH01290591A (en) Vapor-phase synthesizing method for diamond
JPS63236708A (en) Vapor synthesis of carbon thin film or carbon particle
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPS63166970A (en) Method for synthesizing carbon film
JPS63252998A (en) Hetero-junction structure
JP2975971B2 (en) Carbon film formation method
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPH03141199A (en) Production of single crystal cvd diamond
JPH04240190A (en) Formation of diamond film on si substrate by cvd method
JPH0656583A (en) Method for accumulation of thin diamond film
JPH0193495A (en) Synthesis of diamond
JPS63134662A (en) Method for synthesizing high hardness boron nitride
JPH02263791A (en) Production of diamond film