JPS62120B2 - - Google Patents

Info

Publication number
JPS62120B2
JPS62120B2 JP58164766A JP16476683A JPS62120B2 JP S62120 B2 JPS62120 B2 JP S62120B2 JP 58164766 A JP58164766 A JP 58164766A JP 16476683 A JP16476683 A JP 16476683A JP S62120 B2 JPS62120 B2 JP S62120B2
Authority
JP
Japan
Prior art keywords
substrate
diamond
plasma
microwave
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58164766A
Other languages
Japanese (ja)
Other versions
JPS6054996A (en
Inventor
Mutsukazu Kamo
Yoichiro Sato
Seiichiro Matsumoto
Nobuo Sedaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP58164766A priority Critical patent/JPS6054996A/en
Publication of JPS6054996A publication Critical patent/JPS6054996A/en
Publication of JPS62120B2 publication Critical patent/JPS62120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Description

【発明の詳細な説明】 本発明は化学気相析出法によるダイヤモンドの
合成法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing diamond by chemical vapor deposition.

従来、常圧以下の低圧領域におけるダイヤモン
ドの合成法としては、次のような方法が知られて
いる。
Conventionally, the following methods are known as methods for synthesizing diamond in a low pressure region below normal pressure.

1 減圧下で炭化水素を加熱した基板表面に通
じ、その熱エネルギーで熱分解して遊離炭素を
生成せしめてダイヤモンドを析出させる化学気
相析出法。
1. A chemical vapor deposition method in which hydrocarbons are heated under reduced pressure to the surface of the substrate, and the thermal energy is used to thermally decompose them to generate free carbon and precipitate diamonds.

2 アーク放電とスパツタリングとを組合せて、
炭素の正イオンビームを生成せしめ、これを加
速、さらに集束して基板表面に衝突させてダイ
ヤモンドを析出させるイオンビーム法。
2 Combining arc discharge and sputtering,
An ion beam method that generates a positive carbon ion beam, accelerates it, focuses it, and collides with the substrate surface to deposit diamond.

3 水素ガスと炭化水素ガスとの混合ガスに、
30MHz以下、例えば13.5MHzの高周波を導通し
て高周波プラズマを発生せしめ、プラズマの高
エネルギーの荷電粒子によつて炭化水素の化学
結合を解き放すと同時に励起状態の炭素原子ま
たは励起状態の炭化水素を生成せしめ、基板表
面にダイヤモンドを析出させるプラズマ化学気
相析出法。
3 In a mixed gas of hydrogen gas and hydrocarbon gas,
A high frequency plasma is generated by conducting a high frequency of 30MHz or less, for example 13.5MHz, and the high energy charged particles of the plasma release the chemical bonds of hydrocarbons and at the same time generate excited state carbon atoms or excited state hydrocarbons. A plasma chemical vapor deposition method that deposits diamond on the surface of a substrate.

4 黒鉛、基板及び水素を封管中に黒鉛を高温部
に、基板を低温部に設置して封入し、水素ガス
を熱的あるいは放電によつて原子状水素を生成
せしめ、不均化反応を利用して基板表面にダイ
ヤモンドを析出させる化学輸送法。
4. Graphite, a substrate, and hydrogen are sealed in a sealed tube, with the graphite placed in a high-temperature part and the substrate placed in a low-temperature part, and the hydrogen gas is thermally or electrically discharged to generate atomic hydrogen, causing a disproportionation reaction. A chemical transport method is used to deposit diamond on the surface of a substrate.

などがある。and so on.

しかし、これらの方法はそれぞれ次のような欠
点がある。
However, each of these methods has the following drawbacks.

前記1の化学気相析出法は、ダイヤモンドと黒
鉛状炭素の析出が同時に進行する欠点があり、ま
たダイヤモンドを合成するためには、析出の操作
と酸素または水素ガスを導入して基板表面に析出
した黒鉛状炭素を除去する操作とを、周期的に繰
返し行うことが必要である。従つて析出速度が遅
く、また基板がダイヤモンドに限定される欠点が
ある。
The chemical vapor deposition method described in 1 above has the disadvantage that the precipitation of diamond and graphitic carbon proceeds simultaneously, and in order to synthesize diamond, it is necessary to perform the precipitation operation and introduce oxygen or hydrogen gas to deposit on the substrate surface. It is necessary to periodically repeat the operation of removing the graphitic carbon. Therefore, the deposition rate is slow and the substrate is limited to diamond.

前記2のイオンビーム法は、常温で各種材料の
基板表面にダイヤモンドを析出させることができ
る利点はあるが、炭素の正イオンビームを発生さ
せる装置及びその集束装置が高価であり、また放
電持続に用いるアルゴンガス等の不活性ガスの原
子がダイヤモンド格子中に混入するなどの欠点が
ある。
The ion beam method described in 2 above has the advantage of being able to deposit diamond on the surface of a substrate made of various materials at room temperature, but the device for generating a positive carbon ion beam and its focusing device are expensive, and it is difficult to sustain the discharge. There are drawbacks such as atoms of the inert gas used, such as argon gas, getting mixed into the diamond lattice.

前記3の高周波プラズマ化学気相析出法は、プ
ラズマを発生させるためには、反応系の圧力が低
い圧力の狭い範囲であることが必要であり、圧力
が高いとプラズマが発生しなく、また高周波はプ
ラズマと同調にずれが生じ、絶えず同調をとり続
けることが必要である欠点がある。
In the high-frequency plasma chemical vapor deposition method described in 3 above, in order to generate plasma, the pressure in the reaction system must be in a low and narrow range; if the pressure is high, plasma will not be generated; The disadvantage is that there is a shift in synchronization with the plasma, and it is necessary to constantly maintain synchronization.

前記4の化学輸送法は、封管内で行うため、連
続操業を行うことができない欠点がある。
The chemical transport method described in 4 above has the disadvantage that continuous operation cannot be performed because it is carried out in a sealed tube.

本発明者らは、これらの従来法の欠点を改善す
べく研究の結果、さきに、(1)水素をマイクロ波無
極放電中を通過させた後炭化水素を混合した混合
ガス、または水素と炭化水素との混合ガスをマイ
クロ波無極放電中を通過させた混合ガスを、300
〜1300℃に加熱した基板上に導き、炭化水素の分
解によりダイヤモンドを基板上に析出させる方法
(特願昭56−204321号)を見出した。
As a result of research to improve the shortcomings of these conventional methods, the present inventors first discovered that (1) a mixed gas in which hydrogen is passed through a microwave non-polar discharge and then mixed with hydrocarbons, or a mixture of hydrogen and hydrocarbons; The mixed gas with hydrogen was passed through a microwave non-polar discharge, and then the mixed gas was
We have discovered a method (Japanese Patent Application No. 1983-204321) in which diamond is deposited on a substrate heated to ~1300°C and the hydrocarbons are decomposed.

しかし、この方法によると、合成したダイヤモ
ンド中に、乱れた構造を有する炭素あるいは水素
と結合した炭素が光学的に観測され品質において
問題点があることが分つた。
However, with this method, it was discovered that carbon having a disordered structure or carbon bonded to hydrogen was optically observed in the synthesized diamond, resulting in a quality problem.

本発明の目的は前記問題点を解消せんとするも
のである。
An object of the present invention is to solve the above-mentioned problems.

本発明者らは、この問題点を克服すべく更に研
究の結果、前記方法において、2台のマイクロ波
発振機を用い、一台の発振機ではガスの励起・解
離を効率よく行うよう高出力のマイクロ波を発振
させプラズマを発生させて導波管で導入し、他方
の発振機ではプラズマを維持し、且つ基板温度を
ダイヤモンド合成温度(300〜1300℃)に適した
温度に保つ出力のマイクロ波を発振させプラズマ
を発生させて導波管で基板に導くようにすると、
高品質のダイヤモンドが基板上に析出し得られる
ことを究明し得た。この知見に基いて本発明を完
成した。
As a result of further research to overcome this problem, the inventors of the present invention found that in the above method, two microwave oscillators were used, and one oscillator had a high output so as to efficiently excite and dissociate the gas. The other oscillator oscillates microwaves to generate plasma and introduces it through a waveguide, and the other oscillator maintains the plasma and maintains the substrate temperature at a temperature suitable for the diamond synthesis temperature (300 to 1300℃). By oscillating waves to generate plasma and guiding it to the substrate with a waveguide,
It has been found that high quality diamond can be deposited on the substrate. The present invention was completed based on this knowledge.

本発明の要旨は、 水素と炭化水素の混合ガスのマイクロ波無極放
電を用いて基板上にダイヤモンドを析出させる方
法において、2個のマイクロ波導入用導波管を用
い、一方の導波管でガスの励起、解離を効率よく
行う高出力のマイクロ波を導入してプラズマを発
生させ、他方の導波管でプラズマを維持し、基板
温度をダイヤモンド合成に適した300〜1300℃の
温度に保つ出力のマイクロ波を発振させ導波管で
導入してプラズマを発生させて、基板上にダイヤ
モンドを析出させるようにしたことを特徴とする
ダイヤモンドの合成法にある。
The gist of the present invention is to provide a method for depositing diamond on a substrate using microwave non-polar discharge of a mixed gas of hydrogen and hydrocarbons, in which two waveguides for introducing microwaves are used, and one waveguide is used. Plasma is generated by introducing high-power microwaves that efficiently excite and dissociate gas, and the other waveguide maintains the plasma to maintain the substrate temperature at a temperature of 300 to 1300°C, which is suitable for diamond synthesis. A diamond synthesis method is characterized in that output microwaves are oscillated and introduced through a waveguide to generate plasma and deposit diamond on a substrate.

本発明の方法におけるガスを励起、解離状態に
させるために用いる出力は大きい程よいが、
200W〜5kW、好ましくは500W〜2kWで、ガスに
300MHz〜1000GHzのマイクロ波を導入してプラ
ズマを発生させる。
In the method of the present invention, the higher the output power used to excite and bring the gas into a dissociated state, the better;
200W to 5kW, preferably 500W to 2kW, on gas
Plasma is generated by introducing microwaves of 300MHz to 1000GHz.

また、基板をダイヤモンド合成に適する300〜
1300℃に保持させるための出力は100W〜
1.5kW、好ましくは100W〜1kWで、300MHz〜
1000GHzのマイクロ波を導入する。
In addition, the substrate is suitable for diamond synthesis.
The output to maintain the temperature at 1300℃ is 100W ~
1.5kW, preferably 100W~1kW, 300MHz~
Introducing 1000GHz microwave.

ガスを励起・解離状態にさせるためのマイクロ
波導波管は上部に、基板の加熱を行うマイクロ波
導波管は下部に位置することがよい。
The microwave waveguide for exciting and dissociating the gas is preferably located at the top, and the microwave waveguide for heating the substrate is preferably located at the bottom.

上部で高出力のマイクロ波プラズマの発生によ
り、水素と炭化水素ガスの励起・解離は高まり、
かつダイヤモンドの化学結合を生ぜしめる十分な
反応エネルギーを持つた炭素原子となる。下部の
マイクロ波導波管から導かれたマイクロ波プラズ
マにより、上部で発生したプラズマを基板の周囲
で維持すると同時に基板温度がダイヤモンド合成
に適した温度に保持されるために、前記の生成し
た炭素原子は基板上にダイヤモンドとして析出す
る。
Due to the generation of high-power microwave plasma at the top, the excitation and dissociation of hydrogen and hydrocarbon gas increases,
It becomes a carbon atom with enough reaction energy to create the chemical bonds of diamond. The microwave plasma guided from the microwave waveguide at the bottom maintains the plasma generated at the top around the substrate and at the same time maintains the substrate temperature at a temperature suitable for diamond synthesis. is deposited as diamond on the substrate.

また、マイクロ波プラズマ中で発生した励起状
態または原子状態の水素は、黒鉛及び黒鉛状炭素
を成長させる原因となるSp2,Sp結合を持つ炭素
原子と反応して炭化水素を生成すると同時に基板
表面からこれらを離脱し、基板面の清浄化の作用
を行う。前記2つの作用が相俟つて、ダイヤモン
ド中に不純物及び乱れた構造の炭素が混入するこ
とが防止し得られ、高品質のダイヤモンドを析出
し得られる。なお、基板温度の調整は、基板の支
持台の材質を誘電率及び誘電正接の値によつて選
択する。例えば、アルミナの代りに六方晶窒化ほ
う素を用いることで50℃から200℃の低い温度が
得られる。または基板支持台の周りに、マイクロ
波の吸収剤例えば、黒鉛、ステンレスを置いた
り、あるいは支持台を直接冷媒で冷却するように
することによつて、より正確に調整し得られる。
In addition, excited or atomic hydrogen generated in microwave plasma reacts with Sp 2 and carbon atoms with Sp bonds, which are responsible for the growth of graphite and graphitic carbon, to generate hydrocarbons and at the same time These are removed from the substrate and the substrate surface is cleaned. The above two effects work together to prevent impurities and carbon having a disordered structure from being mixed into the diamond, and to precipitate high quality diamond. Note that the substrate temperature is adjusted by selecting the material of the substrate support based on the dielectric constant and dielectric loss tangent values. For example, by using hexagonal boron nitride instead of alumina, temperatures as low as 50°C to 200°C can be obtained. Alternatively, more accurate adjustment can be achieved by placing a microwave absorber, such as graphite or stainless steel, around the substrate support, or by cooling the support directly with a coolant.

本発明において使用する炭化水素としては、マ
イクロ波プラズマ中で励起・解離する炭化水素で
あればよい。例えば、メタン、エタン、プロパ
ン、エチレン、アセチレン、ベンゼン等の飽和、
不飽和の脂肪族炭化水素及び芳香族炭化水素が挙
げられる。
The hydrocarbon used in the present invention may be any hydrocarbon that is excited and dissociated in microwave plasma. For example, saturated methane, ethane, propane, ethylene, acetylene, benzene, etc.
Mention may be made of unsaturated aliphatic hydrocarbons and aromatic hydrocarbons.

炭化水素Aと水素ガスBの容量割合は、A/B
=1000〜0.001の広い範囲で使用し得られる。し
かし、黒鉛状炭素の析出を防止するという観点か
ら、その上限は10以下であることが好ましい。
The volume ratio of hydrocarbon A and hydrogen gas B is A/B.
It can be used in a wide range of = 1000 to 0.001. However, from the viewpoint of preventing precipitation of graphitic carbon, the upper limit is preferably 10 or less.

基板の温度は300〜1300℃の範囲であることが
必要である。300℃より低いと、析出したダイヤ
モンド中に水素が混入する恐れがあり、1300℃を
超えると析出したダイヤモンドが黒鉛に逆転移す
る欠点が生ずる。最も好ましい範囲は500〜1200
℃である。マイクロ波は前記した通りの300MHz
〜1000GHzの範囲で、マイクロ波出力範囲は前記
した通りの範囲であることが好ましい。
The temperature of the substrate needs to be in the range of 300-1300°C. If it is lower than 300°C, hydrogen may be mixed into the precipitated diamond, and if it exceeds 1300°C, there is a drawback that the precipitated diamond undergoes reverse transformation into graphite. The most preferred range is 500-1200
It is ℃. The microwave is 300MHz as mentioned above.
~1000 GHz, and the microwave output range is preferably as described above.

マイクロ波プラズマを発生させる管内の圧力
は、プラズマを安定に維持するために、0.05〜
400Torrであることが好ましい。またダイヤモン
ドを基板全面に均一に析出させるには基板の支持
台を回転させることが望ましく、その回転は1時
間当り1回転以上の回転数であればよい。
The pressure inside the tube that generates microwave plasma is 0.05 to 0.05 to keep the plasma stable.
Preferably it is 400 Torr. Further, in order to uniformly deposit diamond over the entire surface of the substrate, it is desirable to rotate the substrate support, and the rotation speed may be one or more rotations per hour.

次に本発明の方法を実施する装置の態様を第1
図に基いて説明する。第1図はその態様を示す概
要図である。図中、1はガス供給装置で、10,
11はそれぞれ、炭化水素ガス及び水素ガスの供
給管に設けたバルブで、12は混合ガスの供給管
に設けたバルブである。3及び5はマイクロ波発
振機で、マイクロ波はそれぞれ導波管4及び6を
通り、反応室7内に導かれる。8は基板、9は支
持台、2は排気装置、13は排気バルブ、14は
マイクロ波吸収剤である。
Next, the first aspect of the apparatus for carrying out the method of the present invention will be described.
This will be explained based on the diagram. FIG. 1 is a schematic diagram showing this aspect. In the figure, 1 is a gas supply device, 10,
Reference numerals 11 indicate valves provided on the hydrocarbon gas and hydrogen gas supply pipes, respectively, and 12 indicates a valve provided on the mixed gas supply pipe. 3 and 5 are microwave oscillators, and the microwaves are guided into the reaction chamber 7 through waveguides 4 and 6, respectively. 8 is a substrate, 9 is a support stand, 2 is an exhaust device, 13 is an exhaust valve, and 14 is a microwave absorber.

反応室7内の支持台9上に基板8を設置した
後、排気装置2を作動して反応室7内を減圧にす
ると共に、バルブ10,11,12及び13を調
整して水素ガス、炭化水素の流量ならびに反応室
内の圧力を所定の値に保持する。次にマイクロ波
発振機3及び5を所定の出力で起動させ、導波管
4及び6を通じて反応室7内にプラズマを発生さ
せると共に基板8の加熱を行う。基板8の温度は
マイクロ波吸収剤14または支持台9を水等の冷
媒によつて制御することができる。
After placing the substrate 8 on the support stand 9 in the reaction chamber 7, the exhaust device 2 is activated to reduce the pressure in the reaction chamber 7, and the valves 10, 11, 12, and 13 are adjusted to remove hydrogen gas and carbonization. The hydrogen flow rate and the pressure inside the reaction chamber are maintained at predetermined values. Next, the microwave oscillators 3 and 5 are activated with predetermined outputs to generate plasma in the reaction chamber 7 through the waveguides 4 and 6, and to heat the substrate 8. The temperature of the substrate 8 can be controlled by using the microwave absorber 14 or the support 9 with a coolant such as water.

実施例 1 第1図に示す装置を用い、基板8としてシリコ
ンウエハーを、ガスとしてメタン及び水素を使用
した。シリコンウエハーを支持台9上に設置し、
排気装置2を作動して反応室7を減圧にした。次
にでガス供給装置1より水素とメタンをそれぞれ
毎分50c.c.、1c.c.の流量で供給し、バルブ13を調
整して反応室7内の圧力を40Torrに調整した。
次いでマイクロ波発振機5の周波数2.45GHz、
800Wの出力で無極放電を発生させ、導波管6に
より反応室内に導きガスを励起させると共に、マ
イクロ波発振機3の周波数2.45GHz、400Wの出力
で無極放電を発生させ、導波管4により反応室内
に導き、基板8を900℃に加熱した。3時間析出
させたところ約10μmのダイヤモンド粒子が基板
8上に析出した。ダイヤモンド粒子中には乱れた
構造の炭素あるいは水素と結合した炭素が光学的
に観察されなかつた。
Example 1 Using the apparatus shown in FIG. 1, a silicon wafer was used as the substrate 8, and methane and hydrogen were used as the gases. Place the silicon wafer on the support stand 9,
The exhaust device 2 was operated to reduce the pressure in the reaction chamber 7. Next, hydrogen and methane were supplied from the gas supply device 1 at flow rates of 50 c.c. and 1 c.c. per minute, respectively, and the pressure in the reaction chamber 7 was adjusted to 40 Torr by adjusting the valve 13.
Next, the frequency of the microwave oscillator 5 is 2.45GHz,
A non-polar discharge is generated with an output of 800 W, and the waveguide 6 excites the gas guided into the reaction chamber.A non-polar discharge is generated with a frequency of 2.45 GHz and an output of 400 W from the microwave oscillator 3, and the wave guide 4 causes a non-polar discharge to be generated. The substrate 8 was introduced into a reaction chamber and heated to 900°C. After 3 hours of precipitation, diamond particles of about 10 μm were deposited on the substrate 8. No disordered carbon structure or carbon bonded to hydrogen was optically observed in the diamond particles.

実施例 2 第1図の装置を使用し、基板8としてダイヤモ
ンド粉末できずをつけたシリコンウエハーを、ガ
スとしてメタン及び水素を使用し、水素及びメタ
ンをそれぞれ毎分80c.c.、0.24c.c.の流量で供給し、
反応室7内の圧力を30Torrにした。マイクロ波
発振機5は周波数2.45GHz、1kWの出力、マイク
ロ波発振機3は周波数2.45GHz、500Wの出力で行
い、支持台中に水を通して基板の温度を930℃と
した。50時間析出させたところ、厚さ約30μmの
膜状ダイヤモンドが基板上に析出した。膜状ダイ
ヤモンド中には乱れた構造の炭素あるいは水素と
結合した炭素が光学的に観察されなかつた。
Example 2 Using the apparatus shown in Fig. 1, a silicon wafer with diamond powder scratches was used as the substrate 8, and methane and hydrogen were used as gases. Supplied with flow rate,
The pressure inside the reaction chamber 7 was set at 30 Torr. The microwave oscillator 5 was operated at a frequency of 2.45 GHz and an output of 1 kW, and the microwave oscillator 3 was operated at a frequency of 2.45 GHz and an output of 500 W, and the temperature of the substrate was set at 930° C. by passing water into the support stand. After 50 hours of precipitation, a diamond film with a thickness of approximately 30 μm was deposited on the substrate. No disordered carbon structure or carbon bonded to hydrogen was optically observed in the diamond film.

本発明の方法によると、2個のマイクロ波導入
用導波管を用い、一方の導波管でガスの励起解離
に適したマイクロ波を導入してプラズマを発生さ
せ、他方の導波管でプラズマを維持し、かつ基板
温度をダイヤモンド合成に適した温度に保持する
ため、極めて適正にダイヤモンド合成に適する条
件に調整し得られる。従つて、高品質のダイヤモ
ンドを基板上に析出し得られる優れた効果を有す
る。
According to the method of the present invention, two waveguides for introducing microwaves are used, one waveguide introduces microwaves suitable for excitation dissociation of gas to generate plasma, and the other waveguide generates plasma. In order to maintain the plasma and the substrate temperature at a temperature suitable for diamond synthesis, conditions suitable for diamond synthesis can be adjusted very appropriately. Therefore, it has an excellent effect of depositing high quality diamond on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概要図
である。 1:ガス供給装置、2:排気装置、3,5:マ
イクロ発振機、4,6:導波管、7:反応室、
8:基板、9:支持台、10,11,12,1
3:バルブ、14:マイクロ波吸収剤。
FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the invention. 1: gas supply device, 2: exhaust device, 3, 5: micro oscillator, 4, 6: waveguide, 7: reaction chamber,
8: Substrate, 9: Support stand, 10, 11, 12, 1
3: Valve, 14: Microwave absorber.

Claims (1)

【特許請求の範囲】 1 水素と炭化水素の混合ガスのマイクロ波無極
放電を用いて基板上にダイヤモンドを析出させる
方法において、2個のマイクロ波導入用導波管を
用い、一方の導波管でガスの励起、解離を効率よ
く行う高出力のマイクロ波を導入してプラズマを
発生させ、他方の導波管でプラズマを維持し、基
板温度をダイヤモンド合成に適した300〜1300℃
の温度に保つ出力のマイクロ波を発振させ導波管
で導入してプラズマを発生させて、基板上にダイ
ヤモンドを析出させるようにしたことを特徴とす
るダイヤモンドの合成法。 2 基板の周囲に冷却材またはマイクロ波吸収材
を配置して基板温度を制御するようにした特許請
求の範囲第1項記載のダイヤモンドの合成法。
[Claims] 1. In a method for depositing diamond on a substrate using microwave non-polar discharge of a mixed gas of hydrogen and hydrocarbon, two waveguides for introducing microwaves are used, and one of the waveguides is A high-power microwave is introduced to efficiently excite and dissociate gas, and plasma is generated.The plasma is maintained in the other waveguide, and the substrate temperature is maintained at 300-1300℃, which is suitable for diamond synthesis.
A method of synthesizing diamond characterized by oscillating microwaves with an output that is maintained at a temperature of 100 mL and introducing it through a waveguide to generate plasma and depositing diamond on a substrate. 2. The method of synthesizing diamond according to claim 1, wherein the temperature of the substrate is controlled by disposing a cooling material or a microwave absorbing material around the substrate.
JP58164766A 1983-09-07 1983-09-07 Synthesis of diamond Granted JPS6054996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164766A JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164766A JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Publications (2)

Publication Number Publication Date
JPS6054996A JPS6054996A (en) 1985-03-29
JPS62120B2 true JPS62120B2 (en) 1987-01-06

Family

ID=15799517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164766A Granted JPS6054996A (en) 1983-09-07 1983-09-07 Synthesis of diamond

Country Status (1)

Country Link
JP (1) JPS6054996A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH043007Y2 (en) * 1986-06-09 1992-01-31
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
JPH02141494A (en) * 1988-07-30 1990-05-30 Kobe Steel Ltd Vapor phase synthetic device of diamond
JPH04144992A (en) * 1990-10-01 1992-05-19 Idemitsu Petrochem Co Ltd Microwave plasma-generating device and method for producing diamond film with the same
DE19643865C2 (en) * 1996-10-30 1999-04-08 Schott Glas Plasma-assisted chemical deposition process (CVD) with remote excitation of an excitation gas (remote plasma CVD process) for coating or for treating large-area substrates and device for carrying out the same
KR100459531B1 (en) * 2001-12-27 2004-12-04 박수길 Manufacturing Method of Large crystalline Diamond Electrode by Microwave Plasma CVD

Also Published As

Publication number Publication date
JPS6054996A (en) 1985-03-29

Similar Documents

Publication Publication Date Title
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
JPH0346436B2 (en)
US4985227A (en) Method for synthesis or diamond
Singh et al. Hollow cathode plasma assisted chemical vapor deposition of diamond
JPS5927754B2 (en) Diamond synthesis method
JPS62120B2 (en)
JPH04958B2 (en)
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS6221757B2 (en)
Din et al. CVD diamond
JPS60127293A (en) Production of diamond
JPS62158195A (en) Synthesizing method of diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS593098A (en) Synthesizing method of diamond
JPH0543393A (en) Method for preparing carbon material
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JP2766668B2 (en) Synthesis method without diamond powder
JPS60200896A (en) Process for synthesizing fibrous diamond
JPH0667797B2 (en) Diamond synthesis method
JPS63297299A (en) Method for vapor synthesis of diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond
Matsumoto Development of CVD diamond synthesis techniques
JPS63282200A (en) Method of chemical vapor growth for diamond
JPH0818905B2 (en) Diamond synthesizing method and synthesizing apparatus
JPH0532489A (en) Synthesis of diamond using plasma