JPS6265997A - Method and apparatus for synthesizing diamond - Google Patents

Method and apparatus for synthesizing diamond

Info

Publication number
JPS6265997A
JPS6265997A JP20482985A JP20482985A JPS6265997A JP S6265997 A JPS6265997 A JP S6265997A JP 20482985 A JP20482985 A JP 20482985A JP 20482985 A JP20482985 A JP 20482985A JP S6265997 A JPS6265997 A JP S6265997A
Authority
JP
Japan
Prior art keywords
plasma
gas
diamond
hydrogen
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20482985A
Other languages
Japanese (ja)
Inventor
Tamotsu Hattori
服部 有
Nobue Ito
伊藤 信衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP20482985A priority Critical patent/JPS6265997A/en
Publication of JPS6265997A publication Critical patent/JPS6265997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To easily synthesize perfect crystal diamond without contg. impurities by impressing a magnetic field to the plasma generated in a gaseous mixture composed of gaseous hydrogen and gaseous hydrocarbon so that cyclone resonance is generated in the electrons in the plasma. CONSTITUTION:The gaseous mixture composed of gaseous hydrogen and gaseous hydrocarbon such as methane or the gaseous mixture composed of gaseous hydrogen, inert gas and gaseous hydrocarbon is introduced from a gas introducing pipe 7 into a plasma chamber 6. Microwaves generated by a power unit 1 are then introduced via a waveguide 5 into the plasma chamber 6 to generate the plasma in the above-mentioned gaseous mixture. The magnetic field of at least the intensity at which the electrons in the plasma generate the cyclone resonance is impressed to the plasma by a magnetic coil 9 disposed on the outside. The ionization density of the hydrogen in the plasma is thereby improved and the reaction with the impurities is accelerated, by which the impurities are removed. The plasma accelerated by the magnetic field is conducted into a deposition chamber 10 to deposit the diamond contg. no impurities on the surface of a substrate 12 on a sample base 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素プラズマ中にてダイヤモンドを低圧合成す
る方法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for low-pressure synthesis of diamond in hydrogen plasma.

〔従来の技術〕[Conventional technology]

ダイヤモンドの合成法としては従来、黒鉛等の炭素粉末
を超高温高圧下で処理する方法が行われていたが、近年
は上記方法に代えてプラズマ中でダイヤモンドを低圧合
成する方法が注目されている。そして、上記プラズマ法
でも特に水素プラズマを使用することによって、完全な
結晶構造を有するダイヤモンドが得られることが報告さ
れている(特開昭58−135117号)。この水素プ
ラズマ法は、適当濃度の炭化水素ガスを連続的に混入し
た水素ガスを水素プラズマ中に供給してダイヤモンドを
気相反応合成するものである。
The conventional method for synthesizing diamond was to process carbon powder such as graphite under extremely high temperature and high pressure, but in recent years, a method of synthesizing diamond at low pressure in plasma has been attracting attention as an alternative to the above method. . It has also been reported that diamond having a perfect crystal structure can be obtained by using hydrogen plasma in the plasma method described above (Japanese Patent Application Laid-open No. 135117/1983). In this hydrogen plasma method, diamond is synthesized by a gas phase reaction by supplying hydrogen gas continuously mixed with hydrocarbon gas at an appropriate concentration into hydrogen plasma.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記水素プラズマ法は完全結晶のダイヤモンドが比較的
容易に得られる点で優れているが、発明者らの実験によ
ると、完全結晶のダイヤモンドとともに黒鉛状炭素の如
き不純物が析出することがある。
The above hydrogen plasma method is advantageous in that perfectly crystalline diamond can be obtained relatively easily, but according to experiments conducted by the inventors, impurities such as graphitic carbon may precipitate along with perfectly crystalline diamond.

例えば、雰囲気圧力20To r r、プラズマ温度約
700℃で、2%濃度のメタン(CH4)がガスを連続
的に混入した水素ガスを水素プラズマ中に4時間供給し
、基板上に析出した析出物をレーザーラマンスペクトル
分析した結果を第6図に示す。図によると、1333C
I11−’にピークを有していることによりダイヤモン
ドの生成が確認されるが(図中χ点)、1360cm−
’と1600cm−’にもピークを有して(図中y点、
2点)無定形炭素の生成を示している。
For example, at an atmospheric pressure of 20 Torr and a plasma temperature of approximately 700°C, hydrogen gas containing 2% concentration of methane (CH4) is continuously supplied into the hydrogen plasma for 4 hours, and the precipitates deposited on the substrate are Figure 6 shows the results of laser Raman spectrum analysis. According to the diagram, 1333C
The formation of diamond is confirmed by having a peak at I11-' (point χ in the figure), but at 1360 cm-
There are also peaks at ' and 1600 cm-' (point y in the figure,
2 points) Indicates the formation of amorphous carbon.

本発明はかかる問題点を解決しようとするもので、水素
プラズマを使用して容易かつ確実に、不純物を含まない
完全結晶ダイヤモンドを合成する方法を提供することを
目的とする。
The present invention aims to solve these problems, and aims to provide a method for easily and reliably synthesizing impurity-free perfectly crystalline diamond using hydrogen plasma.

〔問題点を解決するための手段〕 そこで本発明は上記目的を達成するために水素ガスと炭
化水素ガスの混合ガスまたは水素ガス、不活性ガス、炭
化水素ガスの混合ガス中に発生させたプラズマに、少な
くとも該プラズマ中の電子がサイクロン共鳴を生ずる強
度の磁界を印加し、前記プラズマ中に設置した基板上に
ダイヤモンドを析出させるという方法を採用する。
[Means for Solving the Problems] To achieve the above object, the present invention provides plasma generated in a mixed gas of hydrogen gas and hydrocarbon gas or in a mixed gas of hydrogen gas, inert gas, and hydrocarbon gas. In this method, a magnetic field strong enough to cause at least the electrons in the plasma to cause cyclone resonance is applied, and diamond is deposited on a substrate placed in the plasma.

〔作用〕[Effect]

上記手段によれば、水素ガスを含むプラズマ中で炭化水
素ガスから生成するダイヤモンド状炭素と、黒鉛状炭素
等の不純物のうち不純物のみが水素プラズマ中の電離し
た水素と反応してもとの炭化水素に戻るため、本発明の
如く、水素プラズマ中に電子サイクロトン共鳴を生ずる
強度の磁界を印加すると、プラズマ中の電離密度を向上
させることができ、不純物と電離した水素との反応を促
進させることにより不純物を除去することができる。
According to the above means, among impurities such as diamond-like carbon generated from hydrocarbon gas in a plasma containing hydrogen gas and impurities such as graphitic carbon, only the impurities react with ionized hydrogen in the hydrogen plasma, resulting in the original carbonization. In order to return to hydrogen, applying a strong magnetic field that causes electron cycloton resonance to hydrogen plasma as in the present invention can improve the ionization density in the plasma and promote the reaction between impurities and ionized hydrogen. This allows impurities to be removed.

〔発明の効果〕〔Effect of the invention〕

従って本発明によれば不純物のないダイヤモンドを容易
に得ることができる。
Therefore, according to the present invention, impurity-free diamond can be easily obtained.

〔実施例〕〔Example〕

以下本発明を図に示す実施例に基づき説明する。 The present invention will be explained below based on embodiments shown in the drawings.

第1図は本発明に使用した実験装置の概略を示す断面模
式図、第2図はその反応器部の詳細を説明する断面図で
あり、図中1はマイクロ波を発生させるパワーユニット
、2は反射電力からマグネトロンを保護するアイソレー
タ、3はパワーユニット1から負荷へ供給される入射電
力と負荷で消費されずに返ってくる反射電力を表示する
パワーモニタ、4はマイクロ波装置の整合をとり、マイ
クロ波電力の消費効率を向上させる整合器であり、マイ
クロ波を伝達する導波管5によってマイクロ波はプラズ
マ室6に導入される。プラズマ室6の周囲には冷却水を
循環させる冷却用ウォータジャケット部6aが設けられ
ている。
Fig. 1 is a schematic cross-sectional view showing the outline of the experimental apparatus used in the present invention, and Fig. 2 is a cross-sectional view explaining the details of the reactor section. 3 is an isolator that protects the magnetron from reflected power; 3 is a power monitor that displays the incident power supplied from the power unit 1 to the load and the reflected power that is returned without being consumed by the load; 4 is a power monitor that matches the microwave equipment; Microwaves are introduced into the plasma chamber 6 through a waveguide 5, which is a matching device that improves wave power consumption efficiency and transmits microwaves. A cooling water jacket section 6a for circulating cooling water is provided around the plasma chamber 6.

このプラズマ室6に炭化水素と水素の混合ガスをガス導
入管7から供給しながら同時に真空ポンプ等の排気装置
8で排気管8aからプラズマ室6内を減圧状態に維持で
きるよう構成されている。
The plasma chamber 6 is configured to be supplied with a mixed gas of hydrocarbons and hydrogen from a gas introduction pipe 7 while at the same time maintaining the inside of the plasma chamber 6 in a reduced pressure state through an exhaust pipe 8a using an exhaust device 8 such as a vacuum pump.

さらにこのプラズマ室6の周囲には磁気コイル9(本実
施例の場合、マイクロ波周波数2450MHzで、中心
磁界の強度は電子サイクロトロン共鳴条件である875
0e)を配し、プラズマ中の電子を電子サイクロトロン
運動せしめ電離率を向上させる。また、プラズマ室6の
下方を区画するデポジション室10内には装置と絶縁さ
れた石英製の試料台11を設け、その上に例えばシリコ
ンウェハー等の基板12が配置されている。プラズマ室
6中のプラズマは電子サイクロトロン運動をしつつ、磁
気コイル9によってできた発散磁界の強度勾配によって
より加速されながら基板12に達しダイヤモンド粒子あ
るいはダイヤモンド薄膜が形成される構成されている。
Furthermore, a magnetic coil 9 (in the case of this embodiment, the microwave frequency is 2450 MHz, and the intensity of the central magnetic field is 875 MHz, which is the electron cyclotron resonance condition) is placed around the plasma chamber 6.
0e) to cause electrons in the plasma to undergo electron cyclotron motion and improve the ionization rate. Further, a quartz sample stage 11 insulated from the apparatus is provided in a deposition chamber 10 that partitions the lower part of the plasma chamber 6, and a substrate 12 such as a silicon wafer is placed thereon. The plasma in the plasma chamber 6 is accelerated by the intensity gradient of the diverging magnetic field created by the magnetic coil 9 while undergoing electron cyclotron motion, reaching the substrate 12 to form diamond particles or a diamond thin film.

上記のように構成された装置において、メタンを2 v
o1%含む水素ガスを100 cc/minの割合でガ
ス導入管7から供給しながらプラズマ室内を減圧装置に
より50Torrに維持する。そしてプラズマ発生装置
により300MI(z以上のマイクロ波を導入して水素
プラズマを発生させる。さらにこのプラズマにマイクロ
波周波数2450MHzで、中心磁界の強度が電子サイ
クロトロン共鳴条件である8750e以上となるように
磁界を印加する。磁界中での電子はローレンツ力によっ
て磁力線を軸にしてサイクロトロン運動し、その回転周
波数fは、f−Q、B/2πmとなる。ここで、q:電
子の電荷、B:磁束密度、m:電子の質量である。この
磁界による円運動の周波数が、導入されるマイクロ波の
周波数と一致した時、電子サイクロトロン共鳴条件が成
立し、電子の運動エネルギは増加し、イオン源中の衝突
確率が増加することによって電離化率が高まる。したが
って、マイクロ波のエネルギを有効に原料ガスの分解、
基板上への成膜に利用できるという効果もある。さらに
、磁気コイル9により発生する発散磁界の強度に勾配を
持たせれば、プラズマを基板に向かって加速することが
できる。以上のように合成したダイヤモンドをラマンス
ペクトルで評価した結果を第5図に示すが、ピークχの
みが観測され、ダイヤモンド以外の物質は検出されなか
った。また、電子線解析によってもそれが確認できた。
In the apparatus constructed as described above, methane is
The inside of the plasma chamber is maintained at 50 Torr by a pressure reducing device while supplying hydrogen gas containing 0.1% from the gas introduction pipe 7 at a rate of 100 cc/min. Hydrogen plasma is then generated by introducing microwaves of 300MI (z or higher) using a plasma generator.Furthermore, a magnetic field is applied to this plasma at a microwave frequency of 2450MHz so that the strength of the central magnetic field is 8750e or higher, which is the electron cyclotron resonance condition. is applied.Electrons in the magnetic field move in a cyclotron around the lines of magnetic force due to the Lorentz force, and the rotation frequency f is f-Q, B/2πm. Here, q: electron charge, B: magnetic flux Density, m: Mass of the electron.When the frequency of circular motion caused by this magnetic field matches the frequency of the introduced microwave, the electron cyclotron resonance condition is established, the kinetic energy of the electron increases, and the kinetic energy of the electron increases. The ionization rate increases as the probability of collision increases.Therefore, microwave energy can be effectively used to decompose raw material gas
Another advantage is that it can be used to form a film on a substrate. Furthermore, if the intensity of the diverging magnetic field generated by the magnetic coil 9 has a gradient, the plasma can be accelerated toward the substrate. The results of Raman spectrum evaluation of the diamond synthesized as described above are shown in FIG. 5. Only the peak χ was observed, and no substances other than diamond were detected. This was also confirmed by electron beam analysis.

また成長速度は約145μm / h r以上と他の従
来の合成方法と比較して桁はずれに速く、基板付近温度
も約550℃で、温度調節なしで安定な合成が持続でき
た。
Furthermore, the growth rate was about 145 μm/hr or more, which is an order of magnitude faster than other conventional synthesis methods, and the temperature near the substrate was about 550° C., allowing stable synthesis to be maintained without temperature control.

メタン濃度、プラズマ発生用マイクロ波の出力、基板温
度、プラズマ室内のガス圧力、支持台の材質等を変化さ
せたときの実験結果の一例を表1に示す。電子サイクロ
トロン共鳴く以後ECRと記す)を用いた本発明では、
ダイヤモンドのみが得られ、従来のマイクロ波プラズマ
CVDによる合成と比較して、同じマイクロ波出力では
基板温度が400″C程度低く、成長温度も2倍以上で
ある。
Table 1 shows an example of the experimental results obtained by changing the methane concentration, the output of the microwave for plasma generation, the substrate temperature, the gas pressure in the plasma chamber, the material of the support, etc. In the present invention using electron cyclotron resonance (hereinafter referred to as ECR),
Only diamond is obtained, and compared to synthesis by conventional microwave plasma CVD, the substrate temperature is about 400''C lower at the same microwave output, and the growth temperature is more than twice as high.

また、メタン濃度を増加しても黒鉛の混入は見られず、
ダイヤモンドの合成条件を大幅に拡張できる。また、マ
イクロ波出力を大きくすれば結晶性等良質なダイヤモン
ドを得られるが、同時に試料及び支持台がマイクロ波に
より加熱されてダイヤモンドから黒鉛への逆転位温度(
約1300℃)を超えてしまうという相反する条件も、
基板冷却、マ・イクロ波吸収剤の設置等の対策なしに最
良の条件を選択できる。さらに、本発明によれば、従来
基板温度が上昇することによって限定されていた 1基
板材質も、耐熱温度が低い材料上へ合成することが可能
となる。
In addition, no graphite contamination was observed even when the methane concentration was increased.
Diamond synthesis conditions can be greatly expanded. In addition, if the microwave output is increased, diamond of good quality such as crystallinity can be obtained, but at the same time, the sample and support stand are heated by the microwave, and the reverse transition temperature from diamond to graphite (
The contradictory conditions of exceeding 1300℃)
The best conditions can be selected without taking measures such as cooling the board or installing microwave absorbers. Furthermore, according to the present invention, it becomes possible to synthesize a single substrate material, which was conventionally limited due to an increase in substrate temperature, onto a material with a low heat resistance temperature.

以下余白 次に本発明はプラズマ室6、デポジション室10を第3
図の如く変形しても良い。すなわち、プラズマ室6とデ
ポジション室10の境界にあるイオン引出し部に100
mesh程度の網状電極13を設置し、イオン引出し電
源として200〜1200Vの電圧を印加すると、プラ
ズマはさらに加速されて基板12に到達できる。また、
第4図に示すように、リング状の金属製パイプの内側に
向けて数個のガス導入孔14aを設けた第2のガス導入
管14を第3図の如く基板12の上方に設置し、ガス導
入管7からは水素を、第2のガス導入管下4からはメタ
ンを供給すると、プラズマ室6を汚染することなく、ま
た分解したメタンを均一に基板12に供給することがで
きる。
Below is a blank space.Next, the present invention provides a third
It may be modified as shown in the figure. In other words, 100
Plasma can be further accelerated and reach the substrate 12 by installing a mesh-like reticular electrode 13 and applying a voltage of 200 to 1200 V as an ion extraction power source. Also,
As shown in FIG. 4, a second gas introduction pipe 14 having several gas introduction holes 14a directed toward the inside of a ring-shaped metal pipe is installed above the substrate 12 as shown in FIG. By supplying hydrogen from the gas introduction pipe 7 and methane from the second gas introduction pipe lower 4, the decomposed methane can be uniformly supplied to the substrate 12 without contaminating the plasma chamber 6.

さらに本発明で使用する炭化水素ガスとしては、メタン
に限らずマイクロ波、ECRプラズマ中で励起、解離す
る炭化水素であればよい。例えばエタン、プロパン、ア
セチレン、ベンゼンなどが挙げられる。不活性ガスとし
てはアルゴン、ヘリウム等が利用できる。マイクロ波の
周波数と磁気コイルの磁界強度は、前述した共鳴条件だ
けではなく、磁界が共鳴条件以上の強度であっても良い
Further, the hydrocarbon gas used in the present invention is not limited to methane, and any hydrocarbon that can be excited and dissociated in microwave or ECR plasma may be used. Examples include ethane, propane, acetylene, and benzene. Argon, helium, etc. can be used as the inert gas. The frequency of the microwave and the strength of the magnetic field of the magnetic coil are not limited to the above-mentioned resonance condition, but may be such that the magnetic field has an intensity higher than the resonance condition.

炭化水素ガス(C)と水素ガス(H)の容量割合はC/
H=1〜0.001の範囲が好ましく、不活性ガス(A
)と混合する場合もC/ (H+A)=1〜0.001
で混合すれば、ダイヤモンドが合成できる。AはHに対
して50%以下であることが好ましい。マイクロ波の発
振機における出力は大きいほど良質のダイヤが得られ、
300〜2kwが好ましい。
The volume ratio of hydrocarbon gas (C) and hydrogen gas (H) is C/
The range of H=1 to 0.001 is preferable, and the inert gas (A
) also when mixed with C/ (H + A) = 1 to 0.001
If you mix them together, you can synthesize diamonds. It is preferable that A accounts for 50% or less of H. The higher the output of the microwave oscillator, the better the diamond quality.
300-2kw is preferable.

基板の材質はシリコンウェハに限らず、タングステン、
モリブデン、ニオブ等の金属および石英、ガラス等でも
かまわなく、必要に応じて表面処理を施したものを用い
ることもできる。
The material of the substrate is not limited to silicon wafer, but also tungsten,
Metals such as molybdenum and niobium, quartz, glass, etc. may be used, and those subjected to surface treatment as necessary may also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のダイヤモンドの合成方法に使用する装
置の構造を説明する模式図、第2図は反応室の構造を説
明する断面図、第3図は装置の他の実施例の構造を説明
する断面図、第4図は第3図における第2のガス供給口
の形状を説明する正面図、第5図および第6図は本発明
の方法および従来の水素プラズマ法により形成されたダ
イヤモンドをレーザラマンスペクトル分析した結果を示
す特性図である。 6・・・プラズマ室、7・・・ガス導入管、8・・・真
空ポンプ、9・・・磁気コイル、12・・・基板。
Fig. 1 is a schematic diagram illustrating the structure of the apparatus used in the diamond synthesis method of the present invention, Fig. 2 is a sectional view illustrating the structure of the reaction chamber, and Fig. 3 shows the structure of another embodiment of the apparatus. 4 is a front view illustrating the shape of the second gas supply port in FIG. 3, and FIGS. 5 and 6 are diamonds formed by the method of the present invention and the conventional hydrogen plasma method. FIG. 2 is a characteristic diagram showing the results of laser Raman spectrum analysis of . 6... Plasma chamber, 7... Gas introduction tube, 8... Vacuum pump, 9... Magnetic coil, 12... Substrate.

Claims (2)

【特許請求の範囲】[Claims] (1)水素ガスと炭化水素ガスの混合ガスまたは水素ガ
ス、不活性ガス、炭化水素ガスの混合ガス中に発生させ
たプラズマに、少なくとも該プラズマ中の電子がサイク
ロン共鳴を生ずる強度の磁界を印加し、前記プラズマ中
に設置した基板上にダイヤモンドを析出させることを特
徴とするダイヤモンド合成方法。
(1) Applying a magnetic field strong enough to cause at least the electrons in the plasma to cause cyclone resonance to a plasma generated in a mixed gas of hydrogen gas and hydrocarbon gas or a mixed gas of hydrogen gas, inert gas, and hydrocarbon gas. and depositing diamond on a substrate placed in the plasma.
(2)プラズマを発生させるプラズマ室と、該プラズマ
室にマイクロ波を導入することによりプラズマを発生せ
しめるプラズマ発生装置と、前記プラズマ室に原料ガス
を供給する導入管と、前記プラズマ室の下方に設けられ
、生成したダイヤモンドを析出させる基板と、 前記プラズマ室内を減圧状態に保つ減圧装置と、前記プ
ラズマ室外周部に設けられプラズマ中の電子にサイクロ
トン共鳴を生ぜしめる磁気コイルとを備えたことを特徴
とするダイヤモンド合成装置。
(2) A plasma chamber that generates plasma, a plasma generator that generates plasma by introducing microwaves into the plasma chamber, an introduction pipe that supplies raw material gas to the plasma chamber, and a a substrate for depositing generated diamond; a decompression device for keeping the inside of the plasma chamber in a reduced pressure state; and a magnetic coil for causing cycloton resonance in electrons in the plasma, provided at the outer periphery of the plasma chamber. A diamond synthesis device featuring:
JP20482985A 1985-09-18 1985-09-18 Method and apparatus for synthesizing diamond Pending JPS6265997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20482985A JPS6265997A (en) 1985-09-18 1985-09-18 Method and apparatus for synthesizing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20482985A JPS6265997A (en) 1985-09-18 1985-09-18 Method and apparatus for synthesizing diamond

Publications (1)

Publication Number Publication Date
JPS6265997A true JPS6265997A (en) 1987-03-25

Family

ID=16497072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20482985A Pending JPS6265997A (en) 1985-09-18 1985-09-18 Method and apparatus for synthesizing diamond

Country Status (1)

Country Link
JP (1) JPS6265997A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330802A (en) * 1987-07-13 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US11802053B2 (en) * 2021-06-10 2023-10-31 Daniel Hodes Method and apparatus for the fabrication of diamond by shockwaves

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103099A (en) * 1983-11-04 1985-06-07 Kyocera Corp Manufacture of diamond film
JPS60103098A (en) * 1983-11-04 1985-06-07 Kyocera Corp Manufacture of diamond film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103099A (en) * 1983-11-04 1985-06-07 Kyocera Corp Manufacture of diamond film
JPS60103098A (en) * 1983-11-04 1985-06-07 Kyocera Corp Manufacture of diamond film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423383B1 (en) * 1987-04-27 2002-07-23 Semiconductor Energy Laboratory Co., Ltd. Plasma processing apparatus and method
US6838126B2 (en) 1987-04-27 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Method for forming I-carbon film
US5330802A (en) * 1987-07-13 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
US11802053B2 (en) * 2021-06-10 2023-10-31 Daniel Hodes Method and apparatus for the fabrication of diamond by shockwaves

Similar Documents

Publication Publication Date Title
US6423383B1 (en) Plasma processing apparatus and method
JPS63107898A (en) Method for synthesizing diamond with plasma
RU2200058C1 (en) Method of performing homogeneous and heterogeneous reactions by means of plasma
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPH04959B2 (en)
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPH0372038B2 (en)
JPH05239655A (en) Diamond film synthesis device by microwave plasma cvd method
JP2564895B2 (en) Plasma processing device
JPH08337497A (en) Vapor phase synthesis of diamond thin film
JPS6054996A (en) Synthesis of diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPH0471034B2 (en)
JPH0420985B2 (en)
JPS5935092A (en) Vapor-phase synthesis of diamond
JPH0665744A (en) Production of diamond-like carbon thin film
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH0481552B2 (en)
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH01104777A (en) Formation of deposit film
JP3039880B2 (en) Carbon film formation method
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JPS593098A (en) Synthesizing method of diamond
JPH02133398A (en) Method and device for synthesizing diamond thin film
JP2975971B2 (en) Carbon film formation method