JPS63107898A - Method for synthesizing diamond with plasma - Google Patents

Method for synthesizing diamond with plasma

Info

Publication number
JPS63107898A
JPS63107898A JP61252391A JP25239186A JPS63107898A JP S63107898 A JPS63107898 A JP S63107898A JP 61252391 A JP61252391 A JP 61252391A JP 25239186 A JP25239186 A JP 25239186A JP S63107898 A JPS63107898 A JP S63107898A
Authority
JP
Japan
Prior art keywords
plasma
gas
diamond
substrate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61252391A
Other languages
Japanese (ja)
Other versions
JPH0346436B2 (en
Inventor
Seiichiro Matsumoto
精一郎 松本
Mototsugu Hino
日野 基次
Yusuke Moriyoshi
佑介 守吉
Takashi Nagashima
長島 隆
Masayuki Dai
提 正幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP61252391A priority Critical patent/JPS63107898A/en
Priority to US07/109,509 priority patent/US4767608A/en
Publication of JPS63107898A publication Critical patent/JPS63107898A/en
Publication of JPH0346436B2 publication Critical patent/JPH0346436B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To obtain diamond in the form of a film or a massive crystal having uniform properties or fine powder having a uniform particle size and uniform properties by decomposing or evaporating an org. compd. or a carbonaceous material in plasma and adiabatically expanding the resulting gas. CONSTITUTION:Plasma is generated by electric discharge in a gaseous hydrocarbon, gaseous hydrogen, an inert gas or a gaseous mixture of such gases. An org. compd. or a carbonaceous material is decomposed or evaporated in the plasma and the resulting gas is adiabatically expanded to deposit diamond on a substrate or in a vapor phase. The adiabatic expansion is carried out by introducing the gas in a plasmatic state into a space under lower pressure through a nozzle or an orifice to cause sudden volume expansion. The plasma used may be low temp. plasma generated by glow discharge but hot plasma by which the pressure of the gas and the temp. of the active species are made higher is preferably because it is more effective in adiabatic expansion.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマを用いるダイヤモンドの合成法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for synthesizing diamond using plasma.

従来技術 従来、放電を用い熱力学的に準安定領域でダイヤモンド
を合成する方法としては、次のような方法が知られてい
る。
Prior Art Conventionally, the following method is known as a method for synthesizing diamond in a thermodynamically metastable region using electric discharge.

1)放電を用い炭素イオンあるいは炭化水素イオンを作
り、これを電位勾配によって加速し、基体表面に衝突さ
せてダイヤモンドを析出させるイオンビーム法、イオン
ブレーティング法。
1) Ion beam method or ion brating method in which carbon ions or hydrocarbon ions are created using electric discharge, accelerated by a potential gradient, and collided with the surface of a substrate to deposit diamond.

2)炭化水素と水素の混合ガスを、グロー放電による低
温プラズマにより活性化させ、基体表面に析出させる活
性化気相析出法。
2) Activated vapor phase deposition method in which a mixed gas of hydrocarbon and hydrogen is activated by low-temperature plasma generated by glow discharge and deposited on the substrate surface.

しかし1.これらの方法はそれぞれ次のような欠点があ
る。
But 1. Each of these methods has the following drawbacks.

1)の方法は、常温で、各種の材料の基体表面へダイヤ
モンド状炭素膜を析出させることができる利点があるが
、加速されたイオンを用いるため、析出したダイヤモン
ドに欠陥が多く結晶性のよいダイヤモンドは得にくく、
またイオンビーム密度を高くできないので、析出速度が
おそい等の欠点があった。
Method 1) has the advantage of being able to deposit a diamond-like carbon film on the substrate surface of various materials at room temperature, but because accelerated ions are used, the deposited diamond has many defects and has poor crystallinity. Diamonds are difficult to obtain,
Furthermore, since the ion beam density cannot be increased, there are drawbacks such as a slow deposition rate.

2)の方法は各種の材料の基体上にダイヤモンド微結晶
を得ることができるが、グロー放電による低温プラズマ
を用いるため、ガス圧が通常0.3気圧以下と低くなけ
ればプラズマが発生せず、またイオン、ラジカル等の活
性種濃度も最大10%程度と低いため、ダイヤモンドの
成長速度がおそい(最大数μm/h )欠点があった。
Method 2) can obtain diamond microcrystals on substrates made of various materials, but since it uses low-temperature plasma caused by glow discharge, plasma will not be generated unless the gas pressure is low, usually 0.3 atmospheres or less. Furthermore, since the concentration of active species such as ions and radicals is as low as about 10% at most, the growth rate of diamond is slow (up to several μm/h 2 ), which is a drawback.

この低温プラズマでのガス(イオン、原子2分子)温度
は、およそ1600 ” K以下である。
The temperature of the gas (ions, two molecules of atoms) in this low-temperature plasma is about 1600''K or less.

また、1)、2)のいずれの方法も基体上にしかダイヤ
モンドを得ることができず、気相中で粉末として得るこ
とは不可能であった。
Furthermore, in both methods 1) and 2), diamond could only be obtained on the substrate, and it was impossible to obtain it as a powder in the gas phase.

本出願人はさきに従来法の欠点を改善する方法として直
流、低周波、高周波、マイクロ波を用いて、ガス温度1
700 K以上の高温プラズマを発生させ、このプラズ
マ中で有機化合物または炭素材を分解または蒸発させる
ことにより、ダイヤモンド゛  の成長速度が速く、膜
状のみならず、塊状あるいは粉末状のダイヤモンドを効
率よく合成する方法を開発した。(特願昭60−295
739号参照)この方法によると、高いガス圧、高い活
性種濃度により高速でダイヤモンドを得ることができる
が、プラズマの高い気体温度のため、冷媒による基体あ
るいは基体ホルダーの冷却、あるいはガスまたは冷媒の
吹きつけによる成長空間の温度コントロールが必要であ
る場合が多い。これらの方法による温度制御は基体温度
、成長空間温度の不均一を起こし易く、制御も難しい欠
点があった。
The applicant has previously proposed using direct current, low frequency, high frequency, and microwave as a method to improve the shortcomings of the conventional method.
By generating high-temperature plasma of 700 K or higher and decomposing or evaporating organic compounds or carbon materials in this plasma, the growth rate of diamond is fast, and it is possible to efficiently grow not only diamond in the form of a film but also in the form of lumps or powder. We have developed a method to synthesize this. (Special application 1986-295
(Refer to No. 739) According to this method, diamond can be obtained at high speed due to high gas pressure and high concentration of active species. It is often necessary to control the temperature of the growth space by spraying. Temperature control by these methods tends to cause non-uniformity in the substrate temperature and growth space temperature, and has the disadvantage that control is difficult.

発明の目的 本発明はその欠点をなくしようとするものであり、その
目的は、基体温度及び合成空間の温度を容易に均一温度
に制御することができ、これにより性質の均一な膜、塊
状結晶または粒度・性状の揃った微粉末を得る方法を提
供するにある。
OBJECT OF THE INVENTION The present invention aims to eliminate this drawback, and its purpose is to easily control the temperature of the substrate and the temperature of the synthesis space to a uniform temperature, thereby producing a film with uniform properties and bulk crystals. Another object of the present invention is to provide a method for obtaining fine powder with uniform particle size and properties.

発明の構成 本発明者は前記目的を達成すべく研究の結果、プラズマ
状態で得られた気体を断熱膨張させると均一な気体の急
冷ができ、基体温度2合成空間の温度を均一に制御し得
られ、前記目的を達成し得られることを知見し得た。こ
の知見に基づいて本発明を完成した。
Structure of the Invention As a result of research to achieve the above object, the present inventor found that by adiabatically expanding a gas obtained in a plasma state, the gas can be uniformly rapidly cooled, and the temperature of the substrate temperature 2 synthesis space can be uniformly controlled. It has been found that the above objective can be achieved. The present invention was completed based on this knowledge.

本発明の要旨は、炭化水素ガス、水素ガス及び不活性ガ
スから選ばれた単独ガスまたは混合ガスに、放電により
プラズマを発生させ、該プラズマ中で有機化合物または
炭素材を分解または蒸発させて得られる気体を、断熱膨
張させることにより、ダイヤモンドを基体上あるいは気
相中で析出させることを特徴とするプラズマを用いるダ
イヤモンドの合成法にある。
The gist of the present invention is to generate plasma by electric discharge in a single gas or a mixture of gases selected from hydrocarbon gas, hydrogen gas, and inert gas, and to decompose or evaporate organic compounds or carbon materials in the plasma. This method of synthesizing diamond using plasma is characterized in that diamond is precipitated on a substrate or in a gas phase by adiabatically expanding a gas produced by the plasma.

断熱膨張の方法は、前記プラズマ中で有機化合物または
炭素材を分解または蒸発させて得られるプラズマ状態の
気体を、ノズルまたはオリフィスを通じて、より低圧の
空間へ導き、急激な体積膨張させることにより得られる
The adiabatic expansion method is obtained by guiding a plasma-state gas obtained by decomposing or evaporating an organic compound or carbon material in the plasma to a lower pressure space through a nozzle or orifice, and rapidly expanding the volume. .

本発明の方法において用いるプラズマはグロー放電によ
る低温プラズマでもよいが、高いガス圧、高い活性種温
度の得られる熱プラズマの方が断熱膨張の効果が大きく
てよい。ここに言う熱プラズマとは、プラズマ中に化学
種の励起が電場により加速された電子との衝突による機
構に、化学種同志の熱運動中の衝突による機構が加わっ
た状態のプラズマであり、ガス温度はおよそ1700 
K以上である。
The plasma used in the method of the present invention may be a low-temperature plasma generated by glow discharge, but a thermal plasma with a high gas pressure and a high active species temperature may have a greater adiabatic expansion effect. Thermal plasma referred to here is a plasma in which the excitation of chemical species in the plasma collides with electrons accelerated by an electric field, and the mechanism resulting from collisions during thermal motion between chemical species is added. The temperature is approximately 1700
K or higher.

プラズマの発生は電気的放電によって行われ、その電源
は直流、低周波交流、高周波、マ・イクロ波いずれでも
よく、また有電極、無電極いずれの方法でもよい。本発
明で用いるプラズマ発生用ガスとしては、炭化水素ガス
、アルゴン、ヘリウム等の不活性ガス、あるいは水素ガ
スを単独または混合ガスとして用いる。
Plasma is generated by electrical discharge, and the power source may be direct current, low frequency alternating current, high frequency, or microwave, and either electroded or electrodeless methods may be used. As the plasma generating gas used in the present invention, a hydrocarbon gas, an inert gas such as argon or helium, or hydrogen gas is used alone or as a mixed gas.

不活性ガス、水素ガスをプラズマ発生用ガスとして用い
る場合は、炭素源として有機化合物あるいは炭素材をプ
ラズマ中に注入する。有機化合物としては、プラズマ中
で分解し、炭素を含むイオン種、ラジカル種を生成し得
るものであれば、ガス状、液状、固体状のいずれでもよ
い。例えば、メタン、エタン、プロパン、ブタン、エチ
レン。
When an inert gas or hydrogen gas is used as a plasma generating gas, an organic compound or carbon material is injected into the plasma as a carbon source. The organic compound may be gaseous, liquid, or solid, as long as it can be decomposed in plasma to generate carbon-containing ionic species or radical species. For example, methane, ethane, propane, butane, ethylene.

ベンゼン等の炭化水素、あるいはポリエチレン。Hydrocarbons such as benzene, or polyethylene.

ンの有機化合物であってもよい。It may also be a natural organic compound.

また、水素ガスをプラズマ発生用ガスに混合する場合は
一酸化炭素、二酸化炭素のような炭素源を用いてもよい
。また、炭素材としては電極用黒鉛などが用いられる。
Furthermore, when hydrogen gas is mixed with the plasma generating gas, a carbon source such as carbon monoxide or carbon dioxide may be used. Further, as the carbon material, graphite for electrodes or the like is used.

プラズマ発生用ガスの圧力は10−4〜5X10”気圧
までの範囲まで用いることができる。低い圧力ではダイ
ヤモンドの析出速度がおそく、高い圧力では容器の取り
扱いに手数がかかる。析出室の圧力は10−6〜10気
圧が用いられるが、膜状のダイヤモンドを得るためには
10−6〜1気圧、粉末状、塊状のダイヤモンドを得る
ためには104〜10気圧であるのが適当である。プラ
ズマ発生室と析出室は作動排気を行うこともできる。
The pressure of the plasma generating gas can range from 10-4 to 5 x 10" atmospheres. At low pressures, the rate of diamond deposition is slow, and at high pressures, it is difficult to handle the container. The pressure of the deposition chamber is 10" A pressure of -6 to 10 atm is used, but a suitable pressure is 10 -6 to 1 atm to obtain diamond in the form of a film, and 104 to 10 atm to obtain diamond in the form of powder or lumps.Plasma The generation chamber and the precipitation chamber can also be evacuated.

ノズルまたはオリフィスの寸法はガス流量、−次側ガス
圧、二次側ガス圧によって変化するが、上記圧力範囲で
は、穴径が0.5〜20龍、大損が0.3〜3Qmi+
が適当である。穴の数は1個、あるいは数個を用いる。
The dimensions of the nozzle or orifice vary depending on the gas flow rate, negative side gas pressure, and secondary side gas pressure, but in the above pressure range, the hole diameter is 0.5 to 20 mm and the large loss is 0.3 to 3 Qmi+.
is appropriate. One or several holes may be used.

また、ノズルまたはオリフィスは必要に応じて水冷を行
う。基体としては、モリブデン、ステンレスなどの金属
、シリコンなどの半導体、アルミナ等のセラミックス、
ダイヤモンド単結晶等が用いられる。基体温度は400
〜1700℃が望ましい。基体はノズルまたはオリフィ
スから出たガスで加熱されるが、必要に応じてヒーター
などによる補助加熱、あるいは冷媒、ガスなどによる冷
却を併用して温度調節を行うこともできる。
In addition, the nozzle or orifice is cooled with water if necessary. Substrates include metals such as molybdenum and stainless steel, semiconductors such as silicon, ceramics such as alumina,
Diamond single crystal etc. are used. Base temperature is 400
~1700°C is desirable. The substrate is heated by the gas emitted from the nozzle or orifice, but if necessary, the temperature can be adjusted using supplementary heating using a heater or the like, or cooling using a refrigerant, gas, or the like.

本発明の方法を実施する装置を図面に基づいて説明する
と、第1〜第4図となる。第1図は直流放電を、第2図
は交流放電を、第3図は高周波放電を、第4図はマイク
ロ波放電を用いた場合の概要図である。
The apparatus for carrying out the method of the present invention will be explained based on the drawings as shown in FIGS. 1 to 4. FIG. 1 is a schematic diagram of a case where DC discharge is used, FIG. 2 is an AC discharge, FIG. 3 is a high frequency discharge, and FIG. 4 is a schematic diagram using a microwave discharge.

第1図において、1は直流プラズマトーチ、2は直流電
源、3は基体、4はノズルまたはオリフィス、5はプラ
ズマ発生室、5′は析出室、6は排気装置、8〜8′は
ガス流量調節バルブを示す。
In Fig. 1, 1 is a DC plasma torch, 2 is a DC power source, 3 is a substrate, 4 is a nozzle or orifice, 5 is a plasma generation chamber, 5' is a deposition chamber, 6 is an exhaust device, and 8 to 8' are gas flow rates. The control valve is shown.

操作手順はまず排気装置6により析出室5′及びトーチ
部を真空にした後、バルブ8,8′を通じて所定のプラ
ズマ発生用ガス及び有機化合物ガスを供給する。析出室
5′を所定の圧力となした後、プラズマトーチ1に電源
2より電力を供給しプラズマを発生させ、ノズルまたは
オリフィス4を通じて析出室5′に噴出させる。基体3
のホルダーの位置を調節し、基体3上にダイヤモンドを
析出させる。また、第3図に示すように、基体。
The operating procedure is as follows: First, the deposition chamber 5' and the torch section are evacuated by the exhaust device 6, and then predetermined plasma generating gas and organic compound gas are supplied through the valves 8, 8'. After the deposition chamber 5' is brought to a predetermined pressure, power is supplied to the plasma torch 1 from the power source 2 to generate plasma, which is ejected through the nozzle or orifice 4 into the deposition chamber 5'. Base body 3
The position of the holder is adjusted, and diamond is deposited on the substrate 3. Moreover, as shown in FIG. 3, a base body.

基体ホルダーを取り除いて気相中でダイヤモンド粉末を
合成することもできる。
It is also possible to remove the substrate holder and synthesize diamond powder in the gas phase.

第2図において、11は交流放電用電極で、下方の電極
は中央に穴がおいており、ノズルを兼ねている。12は
交流電源で、他は第1図と同じである。運転の手順は直
流放電の場合と同じであり、ノズルまたはオリフィスを
通じて電極間の放電により生じたプラズマ気体を析出室
5′に噴出させ、基体上あるいは気相中でダイヤモンド
を成長させる。
In FIG. 2, 11 is an electrode for AC discharge, and the lower electrode has a hole in the center and also serves as a nozzle. 12 is an AC power supply, and the others are the same as in FIG. The operating procedure is the same as in the case of direct current discharge, in which plasma gas generated by the discharge between the electrodes is ejected into the deposition chamber 5' through a nozzle or orifice, and diamond is grown on the substrate or in the gas phase.

このように有電極放電では一方の電極をノズルまたはオ
リフィスとすることもできる。
In this way, in electroded discharge, one electrode can also be used as a nozzle or an orifice.

第3図において、21は高周波プラズマトーチ、22は
高周波電源、23はワークコイル、24は固体液体原料
導入装置、25は生成ダイヤモンド粉体の受は皿で、他
は第1図と同じである。ワークコイル23の代わりに電
極を用い容量結合でプラズマを発生させることもできる
。この場合も発生させたプラズマ気体をノズルまたはオ
リフィスを通じて析出室5′に噴出させてダイヤモンド
微粉末を生成させる。また、第1図に示すように基体を
置くことにより、膜状または塊状のダイヤモンドを得る
ことができる。
In Fig. 3, 21 is a high-frequency plasma torch, 22 is a high-frequency power source, 23 is a work coil, 24 is a solid-liquid raw material introduction device, 25 is a tray for receiving the produced diamond powder, and the other parts are the same as in Fig. 1. . Plasma can also be generated by capacitive coupling using electrodes instead of the work coil 23. In this case as well, the generated plasma gas is ejected into the precipitation chamber 5' through a nozzle or orifice to generate fine diamond powder. Furthermore, by placing the substrate as shown in FIG. 1, diamond in the form of a film or a lump can be obtained.

第4図において、31はマイクロ波プラズマトーチ、3
2はマイクロ波発振機、33は導波管で、他は第1図と
同じである。この場合も第1図におけると同様に基体上
あるいは気相中でダイヤモンドを成長させることができ
る。なお、第4図に示す空洞共振器型のプラズマトーチ
の代わりに同軸電極型のプラズマトーチを用いることが
できる。
In FIG. 4, 31 is a microwave plasma torch;
2 is a microwave oscillator, 33 is a waveguide, and the others are the same as in FIG. In this case as well, diamond can be grown on the substrate or in the gas phase as in FIG. Note that a coaxial electrode type plasma torch can be used instead of the cavity resonator type plasma torch shown in FIG.

実施例1゜ 斗会モミ45V−78Aの放電を10分間行わせ、約9
03のシリコン基板上に厚さ4μ閑のダイヤモンド多結
晶膜を得た。ノズル径はIM、析出室の圧力は8Tor
r、 M仮はアルミナホルダーに乗せただけで、基板温
度は約750℃であった。膜の構造の同定はX線回折お
よびラマン散乱スペクトルで行った。膜厚の均一性は±
2%内に収まっていた。
Example 1 Discharge of 45V-78A was carried out for 10 minutes, and approximately 9
A diamond polycrystalline film with a thickness of 4 μm was obtained on a silicon substrate of No. 03. The nozzle diameter is IM, and the pressure in the precipitation chamber is 8 Torr.
R and M were simply placed on an alumina holder, and the substrate temperature was approximately 750°C. The structure of the film was identified by X-ray diffraction and Raman scattering spectra. Uniformity of film thickness is ±
It was within 2%.

実施例2゜ 第2図に示す装置を用い、バルブ8よりメタンガス20
0 ml/m、 3 ’よりアルゴン12j!/m、8
′ −より水素86/raを流し、5011z、85V
−9OAの放電を10分間行わせ、モリブデン基板上に
厚さ7μmのダイヤモンド膜を得た。ノズル径は31m
、析出室圧力は0.2気圧、基板温度は920℃であっ
た。
Example 2 Using the apparatus shown in FIG. 2, methane gas 20
0 ml/m, argon 12j from 3'! /m, 8
' - Flow hydrogen 86/ra, 5011z, 85V
-9OA discharge was performed for 10 minutes to obtain a 7 μm thick diamond film on the molybdenum substrate. Nozzle diameter is 31m
The deposition chamber pressure was 0.2 atm, and the substrate temperature was 920°C.

実施例3゜ 第3図に示す装置(基板ホルダー取付け)を用い、バル
ブ8より0.6 g/mのアルコール蒸気とアルゴン2
1/lsの混合ガス、8′よりアルゴン81/m、8′
よりアルゴン16f/mと水素101/mの混合ガスを
流し、周波数4MH2、真空管プレート人力12kWの
高周波により9分間放電させ、モリブデン基板上に厚さ
18μmのダイヤモンド膜を得た。ノズル径は9.6f
i、析出室圧力は0.6気圧、基板温度は約1100℃
であった。
Example 3 Using the apparatus shown in Fig. 3 (substrate holder attached), 0.6 g/m alcohol vapor and argon 2 were supplied from valve 8.
1/ls mixed gas, 8' to argon 81/m, 8'
A mixed gas of 16 f/m of argon and 101/m of hydrogen was flowed, and a high frequency wave with a frequency of 4 MH2 and a vacuum tube plate power of 12 kW was used to discharge for 9 minutes to obtain a diamond film with a thickness of 18 μm on the molybdenum substrate. Nozzle diameter is 9.6f
i, Deposition chamber pressure is 0.6 atm, substrate temperature is approximately 1100°C
Met.

実施例4゜ 第3図に示す装置を用い、バルブ8よりプロパン400
 ml/mとアルゴン41/mの混合ガス、8′より7
)Ltゴ:/ 12 lim、 8′よりアルゴン25
C/mと水素10j!!/mの混合ガスを流し、真空管
プレート入カフ0kWの放電により、30分間に受は皿
25上に粒径150±20人のダイヤモンド粉末約1g
を得た。ノズル径は2龍、析出室圧力は1気圧、放電室
圧力は約3気圧であった。
Example 4 Using the apparatus shown in Figure 3, 400 ml of propane was supplied from valve 8.
Mixed gas of ml/m and argon 41/m, 8' to 7
) Lt go: / 12 lim, argon 25 from 8'
C/m and hydrogen 10j! ! By flowing a mixed gas of /m and discharging at 0 kW through a vacuum tube plate cuff, approximately 1 g of diamond powder with a particle size of 150 ± 20 particles was deposited on the plate 25 in 30 minutes.
I got it. The nozzle diameter was 2 mm, the precipitation chamber pressure was 1 atm, and the discharge chamber pressure was about 3 atm.

実施例5゜ 第4図に示す装置を用い、バルブ8よりメタン100 
ml/11とアルゴン21/+の混合ガス、8′よりア
ルゴン31/m、8′よりアルゴンIOC/+と水素3
.51/mの混合ガスを流し、2.45 GHz、 4
.7 kHのマイクロ波放電を10分間行い、シリコン
基板上に厚さ7μmのダイヤモンド膜を得た。ノズル径
は3鶴、析出室圧力は0.1気圧、基板温度は890℃
であった。
Example 5 Using the apparatus shown in FIG. 4, methane 100
Mixed gas of ml/11 and argon 21/+, argon 31/m from 8', argon IOC/+ and hydrogen 3 from 8'
.. Flowing a mixed gas of 51/m, 2.45 GHz, 4
.. Microwave discharge at 7 kHz was performed for 10 minutes to obtain a diamond film with a thickness of 7 μm on the silicon substrate. The nozzle diameter is 3 cranes, the precipitation chamber pressure is 0.1 atm, and the substrate temperature is 890°C.
Met.

発明の効果 本発明の方法によると、高温のプラズマを用いて、ダイ
ヤモンドを合成する際に、水冷、ガス吹き付は等による
基体の冷却、あるいはガス注入による成長空間の冷却が
不必要となり、成長温度のより均一な分布を得ることが
でき、これにより性質の均一な膜、結晶または粒度、性
状の揃った微粉体が得られる優れた作用効果を奏し得ら
れる。
Effects of the Invention According to the method of the present invention, when synthesizing diamond using high-temperature plasma, it is not necessary to cool the substrate by water cooling, gas blowing, etc., or to cool the growth space by gas injection. It is possible to obtain a more uniform temperature distribution, thereby achieving an excellent effect of obtaining a film with uniform properties, crystals, or fine powder with uniform particle size and properties.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の方法を実施する装置の概要図で、第1図
は直流放電、第2図は交流放電、第3図は高周波放電、
第4図はマイクロ波放電を用いてプラズマを発生させて
ダイヤモンドの合成を行う装置の実施態様図である。 1:直流プラズマトーチ、 2:直流電源、    3:基体、 4:ノズルまたはオリフィス、 5:プラズマ発生室、 5′ :析出室、6:排気装置
、    7:ガス供給装置、8.8’、81:バルブ
、 11:電掻、      12:交流電源、21:高周
波プラズマトーチ、 22:高周波電源、   23:ワークコイル、24:
固体、液体原料の導入装置、 25:受は皿、 31:マイクロ波プラズマトーチ、 32:マイクロ波発振機、33:4波管。 第 7  図 第  2  m 第  3  図 第  チ  図゛
The drawings are schematic diagrams of the apparatus for carrying out the method of the present invention, in which Fig. 1 shows DC discharge, Fig. 2 shows AC discharge, Fig. 3 shows high-frequency discharge,
FIG. 4 is an embodiment of an apparatus for synthesizing diamond by generating plasma using microwave discharge. 1: DC plasma torch, 2: DC power supply, 3: Substrate, 4: Nozzle or orifice, 5: Plasma generation chamber, 5': Deposition chamber, 6: Exhaust device, 7: Gas supply device, 8.8', 81 : Valve, 11: Electric scraper, 12: AC power supply, 21: High frequency plasma torch, 22: High frequency power supply, 23: Work coil, 24:
Introducing device for solid and liquid raw materials, 25: Receiving dish, 31: Microwave plasma torch, 32: Microwave oscillator, 33: 4-wave tube. Figure 7 Figure 2 m Figure 3 Figure H

Claims (1)

【特許請求の範囲】[Claims] 炭化水素ガス、水素ガス及び不活性ガスから選ばれた単
独ガスまたは混合ガスに、放電によりプラズマを発生さ
せ、該プラズマ中で有機化合物または炭素材を分解また
は蒸発させて得られる気体を、断熱膨張させることによ
り、ダイヤモンドを基体上あるいは気相中で析出させる
ことを特徴とするプラズマを用いるダイヤモンドの合成
法。
Plasma is generated by electric discharge in a single gas or a mixture of gases selected from hydrocarbon gas, hydrogen gas, and inert gas, and the gas obtained by decomposing or evaporating organic compounds or carbon materials in the plasma is adiabatically expanded. A method of synthesizing diamond using plasma, which is characterized by depositing diamond on a substrate or in a gas phase by
JP61252391A 1986-10-23 1986-10-23 Method for synthesizing diamond with plasma Granted JPS63107898A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61252391A JPS63107898A (en) 1986-10-23 1986-10-23 Method for synthesizing diamond with plasma
US07/109,509 US4767608A (en) 1986-10-23 1987-10-19 Method for synthesizing diamond by using plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61252391A JPS63107898A (en) 1986-10-23 1986-10-23 Method for synthesizing diamond with plasma

Publications (2)

Publication Number Publication Date
JPS63107898A true JPS63107898A (en) 1988-05-12
JPH0346436B2 JPH0346436B2 (en) 1991-07-16

Family

ID=17236672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61252391A Granted JPS63107898A (en) 1986-10-23 1986-10-23 Method for synthesizing diamond with plasma

Country Status (2)

Country Link
US (1) US4767608A (en)
JP (1) JPS63107898A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300394A (en) * 1988-02-01 1995-11-14 Sumitomo Electric Ind Ltd Diamond and its vapor-phase synthesis
JPH07305173A (en) * 1994-03-17 1995-11-21 Shin Etsu Chem Co Ltd Production of body having superhard carbon film and device therefor
JPH0978240A (en) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd Hard carbon film forming device and production of hard carbon film forming substrate
JP2018146668A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Pellicle film and manufacturing method of pellicle film

Families Citing this family (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210099A (en) * 1987-02-26 1988-08-31 Nissin Electric Co Ltd Preparation of diamond film
US4972250A (en) * 1987-03-02 1990-11-20 Microwave Technology, Inc. Protective coating useful as passivation layer for semiconductor devices
US5087959A (en) * 1987-03-02 1992-02-11 Microwave Technology, Inc. Protective coating useful as a passivation layer for semiconductor devices
US4859493A (en) * 1987-03-31 1989-08-22 Lemelson Jerome H Methods of forming synthetic diamond coatings on particles using microwaves
US4932331A (en) * 1987-10-16 1990-06-12 Canon Kabushiki Kaisha Novel single-bond carbon film and process for the production thereof
US5270028A (en) * 1988-02-01 1993-12-14 Sumitomo Electric Industries, Ltd. Diamond and its preparation by chemical vapor deposition method
JPH08757B2 (en) * 1988-12-26 1996-01-10 住友電気工業株式会社 Diamond and its vapor phase synthesis method
US6224952B1 (en) * 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
GB8810111D0 (en) * 1988-04-28 1988-06-02 Jones B L Diamond growth
JPH0757039B2 (en) * 1988-05-09 1995-06-14 株式会社ケンウッド Acoustic diaphragm and manufacturing method thereof
EP0371145B1 (en) * 1988-05-28 1994-02-16 Sumitomo Electric Industries, Ltd. Process for vapor-phase synthesis of diamond
JPH0288497A (en) * 1988-06-09 1990-03-28 Toshiba Corp Production of single crystal diamond grain
WO1990005701A1 (en) * 1988-11-16 1990-05-31 Andrew Carey Good Diamond production
US5258206A (en) * 1989-01-13 1993-11-02 Idemitsu Petrochemical Co., Ltd. Method and apparatus for producing diamond thin films
JPH0794360B2 (en) * 1989-01-24 1995-10-11 住友電気工業株式会社 Gas phase synthesis of diamond
US5882740A (en) * 1989-03-17 1999-03-16 Ishizuka Research Institute Ltd. Method of producing diamond of controlled quality and product produced thereby
US5510157A (en) * 1989-03-17 1996-04-23 Ishizuka Research Institute, Ltd. Method of producing diamond of controlled quality
JPH02248397A (en) * 1989-03-20 1990-10-04 Onoda Cement Co Ltd Method and device for producing diamond
US4943345A (en) * 1989-03-23 1990-07-24 Board Of Trustees Operating Michigan State University Plasma reactor apparatus and method for treating a substrate
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process
US5087434A (en) * 1989-04-21 1992-02-11 The Pennsylvania Research Corporation Synthesis of diamond powders in the gas phase
US5099788A (en) * 1989-07-05 1992-03-31 Nippon Soken, Inc. Method and apparatus for forming a diamond film
JPH0780718B2 (en) * 1989-08-04 1995-08-30 トヨタ自動車株式会社 Diamond synthesizing method and synthesizing apparatus
US5164040A (en) * 1989-08-21 1992-11-17 Martin Marietta Energy Systems, Inc. Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
JP2837700B2 (en) * 1989-08-23 1998-12-16 ティーディーケイ株式会社 Method for forming diamond-like thin film
US5130111A (en) * 1989-08-25 1992-07-14 Wayne State University, Board Of Governors Synthetic diamond articles and their method of manufacture
US5023109A (en) * 1989-09-06 1991-06-11 General Atomics Deposition of synthetic diamonds
US5273731A (en) * 1989-09-14 1993-12-28 General Electric Company Substantially transparent free standing diamond films
US5110579A (en) * 1989-09-14 1992-05-05 General Electric Company Transparent diamond films and method for making
US5540904A (en) * 1989-12-11 1996-07-30 General Electric Company Isotopically-pure carbon-12 or carbon-13 polycrystalline diamond possessing enhanced thermal conductivity
US5112458A (en) * 1989-12-27 1992-05-12 Tdk Corporation Process for producing diamond-like films and apparatus therefor
GB2240113A (en) * 1990-01-02 1991-07-24 Shell Int Research Preparation of adsorbent carbonaceous layers
US5091208A (en) * 1990-03-05 1992-02-25 Wayne State University Novel susceptor for use in chemical vapor deposition apparatus and its method of use
US5075094A (en) * 1990-04-30 1991-12-24 The United States Of America As Represented By The Secretary Of The Navy Method of growing diamond film on substrates
US5316795A (en) * 1990-05-24 1994-05-31 Houston Advanced Research Center Halogen-assisted chemical vapor deposition of diamond
US5071677A (en) * 1990-05-24 1991-12-10 Houston Advanced Research Center Halogen-assisted chemical vapor deposition of diamond
US5071670A (en) * 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US7494638B1 (en) 1990-08-30 2009-02-24 Mitsubishi Corporation Form of carbon
DE4030675C2 (en) * 1990-09-28 1998-10-29 Philips Patentverwaltung Device and method for depositing materials on a substrate
US5314540A (en) * 1991-03-22 1994-05-24 Nippondenso Co., Ltd. Apparatus for forming diamond film
DE69233144T2 (en) * 1991-05-10 2004-05-13 Celestech, Inc., Irvine Plasma coating process
US5204144A (en) * 1991-05-10 1993-04-20 Celestech, Inc. Method for plasma deposition on apertured substrates
DE4115930C1 (en) * 1991-05-16 1992-08-27 Utp Schweissmaterial Gmbh & Co Kg, 7812 Bad Krozingen, De
JPH059735A (en) * 1991-07-09 1993-01-19 Kobe Steel Ltd Vapor synthesis of diamond
US5429069A (en) * 1991-07-11 1995-07-04 Fang; Pao-Hsien Method for growing diamond crystals utilizing a diffusion fed epitaxy
US5227038A (en) * 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
CA2077773A1 (en) * 1991-10-25 1993-04-26 Thomas R. Anthony Microwave, rf, or ac/dc discharge assisted flame deposition of cvd diamond
EP0552547A1 (en) * 1991-12-23 1993-07-28 General Electric Company Diamond films
EP0556517A1 (en) * 1991-12-26 1993-08-25 General Electric Company Diamond films
US5445887A (en) * 1991-12-27 1995-08-29 Casti; Thomas E. Diamond coated microcomposite sintered body
CA2091665C (en) * 1992-04-07 2003-01-07 Peter George Tsantrizos Process for the synthesis of fullerenes
GB2267733A (en) * 1992-05-13 1993-12-15 Gen Electric Abrasion protective and thermal dissipative coating for jet engine component leading edges.
US5876684A (en) * 1992-08-14 1999-03-02 Materials And Electrochemical Research (Mer) Corporation Methods and apparati for producing fullerenes
JP3194820B2 (en) * 1992-09-03 2001-08-06 株式会社神戸製鋼所 Method for forming oriented diamond film
US5635254A (en) * 1993-01-12 1997-06-03 Martin Marietta Energy Systems, Inc. Plasma spraying method for forming diamond and diamond-like coatings
US5674572A (en) * 1993-05-21 1997-10-07 Trustees Of Boston University Enhanced adherence of diamond coatings employing pretreatment process
US5433977A (en) * 1993-05-21 1995-07-18 Trustees Of Boston University Enhanced adherence of diamond coatings by combustion flame CVD
US5501740A (en) * 1993-06-04 1996-03-26 Applied Science And Technology, Inc. Microwave plasma reactor
US5556475A (en) * 1993-06-04 1996-09-17 Applied Science And Technology, Inc. Microwave plasma reactor
US5560779A (en) * 1993-07-12 1996-10-01 Olin Corporation Apparatus for synthesizing diamond films utilizing an arc plasma
US5405515A (en) * 1993-08-17 1995-04-11 Fang; Pao-Hsien Method and apparatus for production of a carbon nitride
GB2282390B (en) * 1993-09-23 1997-04-30 Opa Method for obtaining diamond and diamond-like films
US5464667A (en) * 1994-08-16 1995-11-07 Minnesota Mining And Manufacturing Company Jet plasma process and apparatus
US5628824A (en) * 1995-03-16 1997-05-13 The University Of Alabama At Birmingham Research Foundation High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition
US5731148A (en) * 1995-06-07 1998-03-24 Gen-Probe Incorporated Adduct protection assay
US6406760B1 (en) 1996-06-10 2002-06-18 Celestech, Inc. Diamond film deposition on substrate arrays
US6173672B1 (en) 1997-06-06 2001-01-16 Celestech, Inc. Diamond film deposition on substrate arrays
US6203898B1 (en) * 1997-08-29 2001-03-20 3M Innovatave Properties Company Article comprising a substrate having a silicone coating
US6858080B2 (en) * 1998-05-15 2005-02-22 Apollo Diamond, Inc. Tunable CVD diamond structures
US6582513B1 (en) * 1998-05-15 2003-06-24 Apollo Diamond, Inc. System and method for producing synthetic diamond
US8591856B2 (en) * 1998-05-15 2013-11-26 SCIO Diamond Technology Corporation Single crystal diamond electrochemical electrode
DE10081682D2 (en) * 1999-06-18 2002-07-25 Schoenefeld Christa Process for the dynamic chemical production of diamond-like carbon structures, diamond-like carbon structures and uses of diamond-like carbon structures
DK2251344T3 (en) * 2001-01-25 2016-05-09 Us Of America Represented By The Secretary Dept Of Health And Human Services Formulation of boronic acid
JP2004538230A (en) 2001-08-08 2004-12-24 アポロ ダイアモンド,インコーポレイティド System and method for producing synthetic diamond
CA2584508A1 (en) * 2002-05-09 2003-11-09 Institut National De La Recherche Scientifique Method for producing single-wall carbon nanotubes
US8220489B2 (en) 2002-12-18 2012-07-17 Vapor Technologies Inc. Faucet with wear-resistant valve component
US7866342B2 (en) 2002-12-18 2011-01-11 Vapor Technologies, Inc. Valve component for faucet
US7866343B2 (en) 2002-12-18 2011-01-11 Masco Corporation Of Indiana Faucet
US6904935B2 (en) 2002-12-18 2005-06-14 Masco Corporation Of Indiana Valve component with multiple surface layers
US8555921B2 (en) 2002-12-18 2013-10-15 Vapor Technologies Inc. Faucet component with coating
US20040154528A1 (en) * 2003-02-11 2004-08-12 Page Robert E. Method for making synthetic gems comprising elements recovered from humans or animals and the product thereof
EP1704116A1 (en) * 2004-01-17 2006-09-27 Nanocompound GmbH Nanocarbon fullerenes (ncf), method for producing ncf and use of the latter in the form of nanocompounds
DE102004041146A1 (en) * 2004-01-17 2005-08-18 Nanocompound Gmbh Nanoparticulate carbon structure with carbon in a hexagonal and/or cubic modification together with oxygen, hydrogen, nitrogen and incombustible impurities, useful in coatings and polishing pastes
US7687146B1 (en) 2004-02-11 2010-03-30 Zyvex Labs, Llc Simple tool for positional diamond mechanosynthesis, and its method of manufacture
WO2005080645A2 (en) * 2004-02-13 2005-09-01 Apollo Diamond, Inc. Diamond structure separation
DE102004034667A1 (en) * 2004-07-18 2006-02-09 Heraeus Quarzglas Gmbh & Co. Kg Producing synthetic diamond particles comprises exposing hydrogen and fluidized carbon seed particles to an energy source
CN100508144C (en) * 2005-06-20 2009-07-01 日本电信电话株式会社 Diamond semiconductor element and method for manufacturing same
US20070026205A1 (en) 2005-08-01 2007-02-01 Vapor Technologies Inc. Article having patterned decorative coating
DE102007041544A1 (en) * 2007-08-31 2009-03-05 Universität Augsburg Method of making DLC layers and doped polymers or diamond-like carbon layers
US8747963B2 (en) * 2009-01-23 2014-06-10 Lockheed Martin Corporation Apparatus and method for diamond film growth
EP3988686A1 (en) * 2020-10-26 2022-04-27 Nadir S.r.l. Process for manufacturing a catalytic coating and device for heterogeneous catalysis
US11802053B2 (en) * 2021-06-10 2023-10-31 Daniel Hodes Method and apparatus for the fabrication of diamond by shockwaves

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1298369A (en) * 1970-05-01 1972-11-29 Inst Fizicheskoi Khim An Sssr A method of synthesising diamond
GB1599668A (en) * 1977-06-02 1981-10-07 Nat Res Dev Semiconductors
US4504519A (en) * 1981-10-21 1985-03-12 Rca Corporation Diamond-like film and process for producing same
US4434188A (en) * 1981-12-17 1984-02-28 National Institute For Researches In Inorganic Materials Method for synthesizing diamond
JPS6055480B2 (en) * 1982-08-23 1985-12-05 住友電気工業株式会社 Diamond vapor phase synthesis method
JPS59137311A (en) * 1983-01-21 1984-08-07 Natl Inst For Res In Inorg Mater Method for synthesizing polycrystalline diamond
US4495044A (en) * 1983-05-17 1985-01-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Diamondlike flakes
JPS59232991A (en) * 1983-06-16 1984-12-27 Sumitomo Electric Ind Ltd Production of thin diamond film
JPS60127293A (en) * 1983-12-15 1985-07-06 Asahi Chem Ind Co Ltd Production of diamond
JPS60180999A (en) * 1984-02-24 1985-09-14 Nec Corp Method for synthesizing diamond
JPS60191097A (en) * 1984-03-08 1985-09-28 Mitsubishi Metal Corp Crystallizing method of artificial diamond
US4663183A (en) * 1984-09-10 1987-05-05 Energy Conversion Devices, Inc. Glow discharge method of applying a carbon coating onto a substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300394A (en) * 1988-02-01 1995-11-14 Sumitomo Electric Ind Ltd Diamond and its vapor-phase synthesis
JPH07305173A (en) * 1994-03-17 1995-11-21 Shin Etsu Chem Co Ltd Production of body having superhard carbon film and device therefor
JPH0978240A (en) * 1995-09-12 1997-03-25 Shin Etsu Chem Co Ltd Hard carbon film forming device and production of hard carbon film forming substrate
JP2018146668A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Pellicle film and manufacturing method of pellicle film

Also Published As

Publication number Publication date
JPH0346436B2 (en) 1991-07-16
US4767608A (en) 1988-08-30

Similar Documents

Publication Publication Date Title
JPS63107898A (en) Method for synthesizing diamond with plasma
Mitsuda et al. Development of a new microwave plasma torch and its application to diamond synthesis
US5368897A (en) Method for arc discharge plasma vapor deposition of diamond
JPH02141494A (en) Vapor phase synthetic device of diamond
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS62158195A (en) Synthesizing method of diamond
JPS6054996A (en) Synthesis of diamond
JPS6221757B2 (en)
JPH0481552B2 (en)
JP2766668B2 (en) Synthesis method without diamond powder
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH03174397A (en) Method and device for synthesizing rigid substance
JPH0532489A (en) Synthesis of diamond using plasma
JPS593098A (en) Synthesizing method of diamond
JPH01157497A (en) Production of granular diamond
JPS63117996A (en) Device for synthesizing diamond in vapor phase
JPS63270393A (en) Method for synthesizing diamond
JPH085748B2 (en) Gas phase synthesis of diamond
JPS6265997A (en) Method and apparatus for synthesizing diamond
JPH01290594A (en) High-speed synthesizing method for diamond utilizing co, co2 as carbon source
JPS63117995A (en) Device for synthesizing diamond in vapor phase
JPS6330397A (en) Method for synthesizing diamond
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPS63215597A (en) Production of diamond film or diamond like film
JPS60127292A (en) Production of diamond

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term