JPH07300394A - Diamond and its vapor-phase synthesis - Google Patents

Diamond and its vapor-phase synthesis

Info

Publication number
JPH07300394A
JPH07300394A JP7103914A JP10391495A JPH07300394A JP H07300394 A JPH07300394 A JP H07300394A JP 7103914 A JP7103914 A JP 7103914A JP 10391495 A JP10391495 A JP 10391495A JP H07300394 A JPH07300394 A JP H07300394A
Authority
JP
Japan
Prior art keywords
diamond
gas
plasma
carbon
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7103914A
Other languages
Japanese (ja)
Inventor
Keiichiro Tanabe
敬一朗 田辺
Takahiro Imai
貴浩 今井
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7103914A priority Critical patent/JPH07300394A/en
Publication of JPH07300394A publication Critical patent/JPH07300394A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the thermal conductivity of a diamond by generating a plasma under a prescribed pressure in a gaseous mixture of H2 gas, an inert gas and a carbon-containing compound gas having a molar ratio satisfying a specific condition, thereby forming a diamond film on a substrate. CONSTITUTION:An inert gas such as Ar is introduced into a quartz tube 2 having a diameter of about <=50mm and evacuated through an evacuation port 3 and a plasma is generated in the tube to clean a substrate 1 made of Mo, etc. A mixed gas containing H2 gas (A), an inert gas (B) and a carbon-containing compound gas (C) such as methane gas at a molar ratio satisfying the conditions of 0.001 <=B/(A+B+C) <=0.95 and 0.001 <=C/(A+B+C) $0.1 is introduced into the tube through an introducing port 4. A plasma 5 is generated with microwave having a frequency of >=1 kHz, especially 2500MHz under a pressure of 5-760 Torr to deposit a diamond film having a film thickness of >=5mum and satisfying the formula 0.3<=E/sq. rt. F<=3 (E is average crystal particle diameter and F is film thickness) on a substrate 1 heated at about 700-1200 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学的気相合成法によ
り、高品質のダイヤモンドを高速で合成または被覆する
方法に関するものであり、高熱伝導性、低誘電性、高透
光性、高比弾性、高強度、耐摩耗性等を要求される分
野、例えば窓材、振動板、切削工具、ヒートシンク、I
Cボンダー等に応用できるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing or coating high quality diamond at a high speed by a chemical vapor phase synthesis method, which has a high thermal conductivity, a low dielectric property, a high translucency and a high transparency. Fields requiring specific elasticity, high strength, wear resistance, etc., such as window materials, diaphragms, cutting tools, heat sinks, I
It can be applied to C bonders and the like.

【0002】[0002]

【従来の技術】従来、ダイヤモンドは高温、高圧下の熱
力学的平衡状態において合成されてきたが、近年、非平
衡状態を積極的に利用した気相からの合成法(CVD
法)によってもダイヤモンドの合成が可能となってい
る。ダイヤモンドの気相合成法としては、一般に10倍
(体積)以上の水素で希釈した炭化水素を用い、ガスを
プラズマもしくは熱フィラメントで励起する方法が提案
されている。例えば、特開昭58−91100号には、
炭化水素と水素との混合ガスを、1000℃以上に加熱
した熱電子放射材によって予備加熱した後、混合ガスを
加熱した基板表面に導入して炭化水素の熱分解でダイヤ
モンドを析出する方法が、また特開昭58−11049
4号には、水素ガスをマイクロ波無電極放電中を通過さ
せた後に炭化水素と混合して同じようにダイヤモンドを
析出する方法が、更に特開昭59−3098号には、水
素ガスと不活性ガスとの混合ガスにマイクロ波を導入し
てマイクロ波プラズマを発生させ、この中に基板を設置
して、300〜1300℃の温度で加熱し、炭化水素を
分解してダイヤモンドを析出する方法が記載されてい
る。
2. Description of the Related Art Conventionally, diamond has been synthesized in a thermodynamic equilibrium state under high temperature and high pressure, but in recent years, a synthesis method from a vapor phase (CVD) which positively utilizes a non-equilibrium state.
Method) has also made it possible to synthesize diamond. As a vapor phase synthesis method of diamond, a method in which a hydrocarbon diluted with 10 times (volume) or more of hydrogen is generally used and a gas is excited by plasma or a hot filament has been proposed. For example, in JP-A-58-91100,
A method in which a mixed gas of hydrocarbon and hydrogen is preheated by a thermoelectron emitting material heated to 1000 ° C. or higher, and then the mixed gas is introduced to a heated substrate surface to deposit diamond by thermal decomposition of hydrocarbon, In addition, JP-A-58-11049
No. 4 discloses a method in which hydrogen gas is passed through a microwave electrodeless discharge and then mixed with hydrocarbon to deposit diamond in the same manner. A method in which microwaves are introduced into a mixed gas with an active gas to generate microwave plasma, a substrate is placed therein, and heating is performed at a temperature of 300 to 1300 ° C. to decompose hydrocarbons and deposit diamond. Is listed.

【0003】[0003]

【発明が解決しようとする課題】このような従来のダイ
ヤモンド気相合成法は、基本的に水素及び炭素を含む原
料ガス(例えば、炭素水素系ガス)のみを用いる為に、
50Torr程度までの比較的低圧でしかプラズマを安
定して生成することが出来ず、ダイヤモンドの合成条
件、合成速度、合成面積等が制約される問題があり、応
用面で不十分であった。本発明はこれらの課題を解決し
ようとするものである。
Since such a conventional diamond vapor phase synthesis method basically uses only a raw material gas containing hydrogen and carbon (for example, a carbon hydrogen gas),
The plasma can be stably generated only at a relatively low pressure up to about 50 Torr, and there is a problem that the synthesis conditions, the synthesis rate, the synthesis area, etc. of diamond are limited, and it was insufficient in terms of application. The present invention is intended to solve these problems.

【0004】[0004]

【課題を解決するための手段】本発明者らは、安定で活
性度の高いプラズマを発生するために各種の条件を検討
した結果、混合ガスの条件を次の通りにした場合に極め
て高速度でダイヤモンドを合成できることを見い出し
た。即ち、5〜760Torrの圧力で水素ガス
(A)、不活性ガス(B)及び有機化合物ガス(C)
を、それらのモル比が、 0.001≦B/(A+B+C)≦0.95 及び 0.001≦C/(A+B+C)≦0.1 なる条件を満たすように含む混合ガスの存在下、より好
ましくは、30〜600Torrの圧力で3種のガスの
モル比が、 0.01≦B/(A+B+C)≦0.95で、 0.002≦C/(A+B+C)≦0.08 なる条件を満たすように含む混合ガスの存在下で、プラ
ズマを発生させ、ダイヤモンド合成すると、不活性ガス
を使用しない場合に比べて数百倍(数十μm/h)の成
長速度で、かつ均一に、広い面積(数十平方ミリ)上に
ダイヤモンドを合成し得ることを見い出した。本発明の
方法において、上記3種のガスのモル比は、 0.05≦B/(A+B+C)≦0.8で、 0.005≦C/(A+B+C)≦0.05 なる条件を満たすのが最も好ましい。
As a result of studying various conditions for generating stable and highly active plasma, the inventors of the present invention have found that when the conditions of the mixed gas are as follows, extremely high speed is achieved. It was found that diamond can be synthesized with. That is, at a pressure of 5 to 760 Torr, hydrogen gas (A), inert gas (B) and organic compound gas (C)
More preferably in the presence of a mixed gas containing them such that the molar ratios thereof are 0.001 ≦ B / (A + B + C) ≦ 0.95 and 0.001 ≦ C / (A + B + C) ≦ 0.1. Satisfies the condition that the molar ratio of the three kinds of gas at a pressure of 30 to 600 Torr is 0.01 ≦ B / (A + B + C) ≦ 0.95 and 0.002 ≦ C / (A + B + C) ≦ 0.08. When plasma is generated in the presence of a mixed gas containing, and diamond synthesis is performed, the growth rate is several hundred times (several tens of μm / h) compared with the case where no inert gas is used, and a large area ( It has been found that diamonds can be synthesized on the surface of tens of square millimeters). In the method of the present invention, the molar ratios of the above-mentioned three kinds of gas satisfy the following conditions: 0.05 ≦ B / (A + B + C) ≦ 0.8 and 0.005 ≦ C / (A + B + C) ≦ 0.05. Most preferred.

【0005】本発明においてプラズマの発生源として
は、直流または交流の電磁界のどちらを用いても良く、
後者の場合、周波数1KHZ以上の高周波もしくはマイ
クロ波が操作性の面から好ましい。より好ましくは、5
00MHZ以上のマイクロ波を用いる。投入電力は、一
般に1W/cm2以上である。本発明で用いる不活性ガ
スの種類は、ヘリウム、ネオン、アルゴン、クリプト
ン、キセノン、あるいはこれらの混合物でよく、いずれ
を用いても効果は変わらないが、安価で入手し安いアル
ゴンが好ましい。
In the present invention, either a direct current or an alternating current electromagnetic field may be used as the plasma generation source,
In the latter case, more than the high-frequency or microwave frequency 1 kH Z is preferred in view of operability. More preferably 5
00MH Z above using microwaves. Input power is generally 1 W / cm 2 or more. The type of inert gas used in the present invention may be helium, neon, argon, krypton, xenon, or a mixture thereof, and the effect is the same regardless of which is used, but argon is preferable because it is inexpensive and easily available.

【0006】炭素含有化合物ガスは、CVD条件下で気
体である炭素を含む化合物ガス、例えば気体状のメタ
ン、エタン等の脂肪族炭化水素またはベンゼン等の芳香
族炭化水素であってもよく、一酸化炭素、二酸化炭素等
の無機化合物、アルコール、チオール、ケトン、エーテ
ル等の分子に少量の酸素、窒素、硫黄等のヘテロ原子を
含む有機化合物であっても良い。本発明においては、ア
ルゴン等の不活性ガスがプラズマ発生雰囲気中に存在し
ている為に、プラズマ出力が数十W以上という通常の条
件でなくても、出力が数十W以下という低出力で、数百
Torr以上の圧力領域でも安定して活性度の高いプラ
ズマを生成することが可能であり、通常プラズマが集中
するので適正な基板温度(700〜1200℃)でダイ
ヤモンドを被覆する事が困難な3次元的な基材にもダイ
ヤモンドを被覆することができる。基材の材質は、従来
のCVD法で用いられているものと同様である。特に好
ましい基材は、Si、Mo、W、Ta、Nb、Zr、
B、C、Al、SiC、Si34、MoC、Mo2C、
WC、W2C、TaC、NbC、BN、B4C、AlN、
TiC、TiN、Tiなどである。
The carbon-containing compound gas may be a compound gas containing carbon which is a gas under CVD conditions, for example, gaseous methane, ethane or other aliphatic hydrocarbons or benzene or other aromatic hydrocarbons. It may be an inorganic compound such as carbon oxide or carbon dioxide, or an organic compound containing a small amount of a hetero atom such as oxygen, nitrogen or sulfur in the molecule such as alcohol, thiol, ketone or ether. In the present invention, since an inert gas such as argon is present in the plasma generation atmosphere, even if the plasma output is not a normal condition of tens of watts or more, the output is as low as tens of watts or less. , It is possible to stably generate plasma with high activity even in a pressure region of several hundred Torr or more, and it is difficult to coat diamond at an appropriate substrate temperature (700 to 1200 ° C.) because plasma is usually concentrated. It is possible to coat even a three-dimensional substrate with diamond. The material of the base material is the same as that used in the conventional CVD method. Particularly preferred substrates are Si, Mo, W, Ta, Nb, Zr,
B, C, Al, SiC, Si 3 N 4 , MoC, Mo 2 C,
WC, W 2 C, TaC, NbC, BN, B 4 C, AlN,
TiC, TiN, Ti and the like.

【0007】また、本発明の条件範囲では粒径数百μm
以上のダイヤモンド粒子を高速で成長させることも可能
である。ここで活性度の高いプラズマは、プラズマの発
光分光分析及びプラズマの目視によって確認できる。つ
まり、発光分光分析によれば、活性度の高いプラズマで
は相対的にH2連続帯の強度が弱く、H(α)等の水素
ラジカルならびにC2およびCHラジカルの強度が強い
ことに特徴がある。又、目視によってもC2ラジカル
(スワンバンド)の緑色がかった発光を帯びることが多
く観察される。このような現象から、本発明の条件下で
は原料ガスの分解がより効率良く行われているものと考
えられる。
Further, within the condition range of the present invention, the particle size is several hundred μm.
It is also possible to grow the above diamond particles at a high speed. Here, the highly active plasma can be confirmed by optical emission spectroscopic analysis of the plasma and visual observation of the plasma. That is, according to the emission spectroscopic analysis, the intensity of the H 2 continuous band is relatively weak in the plasma having high activity, and the intensity of hydrogen radicals such as H (α) and C 2 and CH radicals is strong. . In addition, it is often observed visually that the C 2 radical (swan band) emits greenish light. From such a phenomenon, it is considered that the raw material gas is decomposed more efficiently under the conditions of the present invention.

【0008】本発明の不活性ガスの添加効果は、上述の
ように5Torr以上760Torr以下の圧力範囲で
現れる。一般に、圧力が低いと、成長速度が遅くなり、
圧力が高いと、プラズマの収縮が顕著になる為析出面積
が狭くなる。従って好ましい圧力範囲は、30Torr
以上600Torr以下の範囲である。実用的な析出面
積(数十平方ミリ)で析出速度の増加効果をもたらす為
には、60Torr以上400Torr以下の圧力範囲
がより好ましい。原料ガスが、水素ガス(A)、不活性
ガス(B)及び炭素含有化合物ガス(C)の必須成分に
加え、ドーピングガス(D)、例えばジボラン(B
26)、窒素(N2)を含む場合にも、不活性ガスの添
加効果は同様に現れる。この様な場合には、水素ガス
(A)、不活性ガス(B)、炭素含有化合物ガス(C)
及びドーピングガス(D)のモル比が D/(A+B+C+D)≦0.4 なる条件を満たすように各ガスを混合して用いるのが好
ましい。0.4<D/(A+B+C+D)なる条件では
本発明効果が小さくなる。なお、プラズマを用いたダイ
ヤモンドの気相合成においては、どの様な手法を用いて
も本発明の効果が現れるが、前述の様に、プラズマの発
生源としては500MHZ以上のマイクロ波を用いるの
が最も好ましい。
The effect of adding the inert gas of the present invention appears in the pressure range from 5 Torr to 760 Torr as described above. In general, lower pressure will result in slower growth rate,
When the pressure is high, the shrinkage of plasma becomes remarkable and the deposition area becomes narrow. Therefore, the preferable pressure range is 30 Torr.
The above range is 600 Torr or less. The pressure range of 60 Torr or more and 400 Torr or less is more preferable in order to bring about the effect of increasing the deposition rate in a practical deposition area (several tens of square millimeters). In addition to the essential components of the hydrogen gas (A), the inert gas (B) and the carbon-containing compound gas (C), the source gas is a doping gas (D) such as diborane (B).
2 H 6), even when containing nitrogen (N 2), the addition effect of the inert gas emerges in the same manner. In such a case, hydrogen gas (A), inert gas (B), carbon-containing compound gas (C)
It is preferable to mix and use each gas so that the molar ratio of the doping gas (D) is D / (A + B + C + D) ≦ 0.4. Under the condition of 0.4 <D / (A + B + C + D), the effect of the present invention becomes small. Incidentally, in the vapor phase synthesis of diamond using a plasma, but also it appears the effect of the present invention using any like technique, as described above, using a microwave over 500 mH Z is as a source of plasma Is most preferred.

【0009】本発明の方法により得られたダイヤモンド
膜成長表面の平均結晶粒径(E)及び成長膜厚(F)
を、光学顕微鏡及び査型電子顕微鏡(SEM)により観
察したところ、平均結晶粒径(E)が成長膜厚(F)に
対して比較的大きいことが特徴であることがわかった。
そして、この様に比較的大きな結晶粒径を持つダイヤモ
ンドでは、透過型電子顕微鏡(TEM)観察により、転
位等の結晶欠陥やアモルファスカーボン等の非ダイヤモ
ンド成分の析出が多いと考えられているダイヤモンド結
晶粒界が少なく、低欠陥結晶であることがわかった。
又、紫外から赤外領域における透過スペクトル測定から
高い透光性を示すこと、熱伝導率測定から高い熱伝導率
を有するなど、多くのダイヤモンド本来の特性を示すこ
ともわかった。
The average crystal grain size (E) and the grown film thickness (F) of the growth surface of the diamond film obtained by the method of the present invention
When observed with an optical microscope and a scanning electron microscope (SEM), it was found that the average crystal grain size (E) was relatively large with respect to the grown film thickness (F).
In a diamond having such a relatively large crystal grain size, it is considered that crystal defects such as dislocations and precipitation of non-diamond components such as amorphous carbon are often observed by observation with a transmission electron microscope (TEM). It was found that there were few grain boundaries and the crystals had low defects.
It was also found that the diamond exhibits many original characteristics such as a high light-transmittance measured by a transmission spectrum in the ultraviolet to infrared region and a high thermal conductivity measured by a thermal conductivity measurement.

【0010】そしてこの結晶粒径の大きさが効果を示す
のは、膜厚(F)が5μm以上で、平均結晶粒径(E)
と膜厚(F)が 0.3≦E/√F≦3 なる関係を満たす場合である。E/√F<0.3又は3
<E/√Fの範囲では、上記ダイヤモンドの特性が低下
する。そして本発明法によれば容易にこの領域のダイヤ
モンドを得ることが出来る。
The effect of this crystal grain size is that the average crystal grain size (E) is obtained when the film thickness (F) is 5 μm or more.
And the film thickness (F) satisfy the relation of 0.3 ≦ E / √F ≦ 3. E / √F <0.3 or 3
In the range of <E / √F, the characteristics of the diamond are deteriorated. According to the method of the present invention, diamond in this region can be easily obtained.

【0011】本発明で利用するダイヤモンド合成用の装
置を第1図〜第3図に示す。第1図はマイクロ波プラズ
マCVD装置、第2図は高周波プラズマCVD装置、第
3図が直流プラズマCVD装置のそれぞれ概略図であ
る。図中、1は基材、2は石英管、3は真空排気口、4
は供給ガス導入口、5は発生プラズマ、6はマグネトロ
ン、7は導波管、8はプランジャー、9はRF電源、1
0はDC電源、11は基材支持台、12は絶縁シール、
13はカソードである。一般に、石英管は、50mm以
上の直径を有する。次に、本発明の効果を実施例及び比
較例によって具体的に説明する。
An apparatus for synthesizing diamond used in the present invention is shown in FIGS. 1 to 3. FIG. 1 is a schematic diagram of a microwave plasma CVD apparatus, FIG. 2 is a schematic diagram of a high frequency plasma CVD apparatus, and FIG. 3 is a schematic diagram of a direct current plasma CVD apparatus. In the figure, 1 is a substrate, 2 is a quartz tube, 3 is a vacuum exhaust port, 4
Is a supply gas inlet, 5 is a generated plasma, 6 is a magnetron, 7 is a waveguide, 8 is a plunger, 9 is an RF power source, 1
0 is a DC power supply, 11 is a substrate support, 12 is an insulating seal,
13 is a cathode. Generally, the quartz tube has a diameter of 50 mm or more. Next, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples.

【0012】[0012]

【実施例】【Example】

(実施例1) ダイヤモンド合成法として、マイクロ波
プラズマCVD法(以下、μ−PCVDという。)、高
周波プラズマCVD法(以下、RF−PCVDとい
う。)、直流プラズマCVD法(以下、DC−PCVD
という。)のいずれかの方法を用いた(第1表及びおよ
び第2表参照)。基材としては、40×35×10mm
3のモリブデン板を#600のダイヤモンドパウダーで
最終研磨したものを用いた。まず、図面の石英管2の中
に不活性ガスを導入口4から導入し、圧力1Torrで
プラズマ発生源によりプラズマ5を発生させ、そのプラ
ズマでモリブデン板を5分間クリーニングした。
(Example 1) As a diamond synthesis method, a microwave plasma CVD method (hereinafter, referred to as μ-PCVD), a high frequency plasma CVD method (hereinafter, referred to as RF-PCVD), a direct current plasma CVD method (hereinafter, DC-PCVD).
Say. ) Was used (see Tables 1 and 2). As the base material, 40 × 35 × 10 mm
A molybdenum plate of No. 3 was finally polished with # 600 diamond powder and used. First, an inert gas was introduced into the quartz tube 2 shown in the drawing through the inlet 4, a plasma 5 was generated by a plasma generation source at a pressure of 1 Torr, and the molybdenum plate was cleaned with the plasma for 5 minutes.

【0013】その後、第1表及び第2表に示す条件でプ
ラズマCVDを行い、気相合成したダイヤモンドにより
モリブデン板を被覆した。合成中の基材表面温度を光学
式パイロメーターにより測定したところ、800〜12
00℃の範囲であった。また、プラズマCVD法で形成
したダイヤモンド膜について、走査型電子顕微鏡による
表面観察及び膜厚観察、X線回析及びラマン散乱分光法
による結晶性の評価を行ったところ、第1表及び第2表
に示すような結果が得られた。なお、表中、「Dia」
はダイヤモンドを、「a−c」はアモルファスカーボン
を示す。不活性ガスの全ガスに対するモル比、炭素含有
化合物ガスの全ガスに対するモル比及び反応圧力が本発
明の条件範囲内にあれば、ダイヤモンドの蒸着速度を、
例えば400μm/hと非常に高速にすることが可能で
ある。
After that, plasma CVD was performed under the conditions shown in Tables 1 and 2, and the molybdenum plate was coated with vapor phase synthesized diamond. When the surface temperature of the base material during synthesis was measured by an optical pyrometer, it was 800 to 12
It was in the range of 00 ° C. The diamond film formed by the plasma CVD method was subjected to surface observation and film thickness observation by a scanning electron microscope, and crystallinity evaluation by X-ray diffraction and Raman scattering spectroscopy. The results shown in are obtained. In the table, "Dia"
Indicates diamond, and “ac” indicates amorphous carbon. If the molar ratio of the inert gas to the total gas, the molar ratio of the carbon-containing compound gas to the total gas and the reaction pressure are within the conditions of the present invention, the deposition rate of diamond is
For example, it is possible to achieve a very high speed of 400 μm / h.

【0014】一方、本発明の条件範囲外では、不活性ガ
スを添加せずに高圧力でプラズマを発生させようとして
もプラズマは安定して生じず、例えプラズマを発生でき
たとしてもダイヤモンド膜はアモルファスカーボンを含
む粗悪なものであり、しかも蒸着速度は最大でも2μm
/hと遅くなる。又、第2表に示す試料No.18〜2
2の熱伝導率を簡易型サーミスタを用いた熱伝導率測定
装置により測定したところ、本発明の条件で製造された
試料においては2W/cmKから15W/cmKという
高熱伝導性が確認されたのに対し、比較条件で製造され
た試料においては2W/cmK未満であった。
On the other hand, outside the conditions of the present invention, even if an attempt is made to generate plasma at a high pressure without adding an inert gas, the plasma is not stably generated, and even if the plasma can be generated, the diamond film is not formed. It is an inferior material containing amorphous carbon, and the vapor deposition rate is 2 μm at maximum.
/ H becomes slower. In addition, the sample No. shown in Table 2 was used. 18-2
When the thermal conductivity of 2 was measured by a thermal conductivity measuring device using a simple thermistor, it was confirmed that the samples manufactured under the conditions of the present invention had high thermal conductivity of 2 W / cmK to 15 W / cmK. On the other hand, it was less than 2 W / cmK in the sample manufactured under the comparative conditions.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例2) 第1表に示す試料No.4
から剥離したダイヤモンド板(10×10×0.2mm
3)を40×34×10mm3のモリブデン板上に置き、
マイクロ波出力800W、圧力300Torrの条件
下、水素流量1000SCCM、アルゴン流量500S
CCM及びエタノール流量40SCCMで導入しなが
ら、3時間、マイクロ波プラズマCVDを行ったとこ
ろ、ダイヤモンド板の厚さは0.2mmから1mmに成
長した。このダイヤモンド板は、元の試料No.4ダイ
ヤモンド板と同様に、X線回析及びラマン分光法によっ
て結晶性の良い、(100)優先配向のダイヤモンドで
あることが判った。
(Example 2) Sample No. 1 shown in Table 1 Four
Diamond plate peeled from (10 x 10 x 0.2 mm
3 ) is placed on a 40 × 34 × 10 mm 3 molybdenum plate,
Microwave output 800W, pressure 300 Torr, hydrogen flow 1000SCCM, argon flow 500S
When microwave plasma CVD was carried out for 3 hours while introducing CCM and ethanol at a flow rate of 40 SCCM, the thickness of the diamond plate grew from 0.2 mm to 1 mm. This diamond plate is the original sample No. As with the 4 diamond plate, it was found by X-ray diffraction and Raman spectroscopy that the diamond had good crystallinity and had a (100) preferred orientation.

【0018】(実施例3) 直径40mm及び厚さ20
mmのモリブデン板の中心付近に、超高圧法により作成
した粒径250μmのダイヤモンド単結晶砥粒5個を置
き、アルゴン流量2000SCCM、水素流量1000
SCCM、アセチレン流量20SCCM、マイクロ波出
力800W、圧力500Torrの条件で、5時間マイ
クロ波プラズマCVDを行ったところ、直径1mmの単
結晶砥粒5個が得られた。X線回析及びラマン分光法に
より、結晶性の良いダイヤモンドであることが確認され
た。
Example 3 Diameter 40 mm and thickness 20
In the vicinity of the center of the mm-mm molybdenum plate, 5 diamond single crystal abrasive grains having a grain size of 250 μm prepared by the ultra-high pressure method were placed, and the argon flow rate was 2000 SCCM and the hydrogen flow rate was 1000.
When microwave plasma CVD was performed for 5 hours under the conditions of SCCM, acetylene flow rate 20 SCCM, microwave output 800 W, and pressure 500 Torr, 5 single crystal abrasive grains with a diameter of 1 mm were obtained. It was confirmed by X-ray diffraction and Raman spectroscopy that the diamond had good crystallinity.

【0019】(実施例4) 40×35×10mm3
モリブデン板の中心に、超高圧法により作成した直径3
mmのダイヤモンド単結晶粒を置き、ヘリウム流量20
00SCCM、水素流量500SCCM、プロパン流量
20SCCM、マイクロ波出力200W、圧力600T
orrの条件で、5時間マイクロ波プラズマCVDを行
ったところ、直径4mmに増加していた。表面は少しグ
ラファイト化している様であったが、クロム酸処理が進
行するにつれてダイヤモンドの自形がはっきりと現れ
た。これはX線回析及びラマン分光法によりダイヤモン
ドであることが確認された。
Example 4 A center of a 40 × 35 × 10 mm 3 molybdenum plate having a diameter of 3 formed by an ultra-high pressure method
mm diamond single crystal grains are placed and the helium flow rate is 20
00SCCM, hydrogen flow rate 500SCCM, propane flow rate 20SCCM, microwave output 200W, pressure 600T
When microwave plasma CVD was performed for 5 hours under the condition of orr, the diameter increased to 4 mm. Although the surface seemed to be a little graphitized, diamond automorphism appeared clearly as the chromic acid treatment proceeded. It was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.

【0020】(実施例5) 直径40mm及び厚さ30
mmのモリブデン板を#600のダイヤモンド砥石によ
る研磨後、アルゴン流量200SCCM、水素流量20
0SCCM、メタン流量4SCCM、マイクロ波出力
1.5KW、圧力760Torrの条件で、1時間マイ
クロ波プラズマCVDを行ったところ、モリブデン板中
心部に直径500μmのダイヤモンド粒子が成長してい
た。これはX線回析及びラマン分光法によりダイヤモン
ドであることが確認された。
Example 5 Diameter 40 mm and thickness 30
After polishing a mm-mm molybdenum plate with a # 600 diamond grindstone, the flow rate of argon is 200 SCCM and the flow rate of hydrogen is 20.
When microwave plasma CVD was performed for 1 hour under the conditions of 0 SCCM, methane flow rate 4 SCCM, microwave output 1.5 KW, and pressure 760 Torr, diamond particles having a diameter of 500 μm were grown in the center of the molybdenum plate. It was confirmed to be diamond by X-ray diffraction and Raman spectroscopy.

【0021】(実施態様) 本発明のより好ましい実施
態様を次に示す。1.プラズマ発生の為に、周波数が1
KHZ以上、特に500MHZ以上のマイクロ波を用い
る。2.使用する炭素含有化合物ガスとして、CVD条
件下で気体の脂肪族炭化水素、芳香族炭化水素、アルコ
ール、チオール、ケトン、エーテル、一酸化炭素、二酸
化炭素等から選ばれた少なくとも1種の化合物を用い
る。3.不活性ガスとして、ヘリウム、ネオン、アルゴ
ン、クリプトン、キセノンから選ばれた少なくとも1種
を用いる。4.プラズマの発生に対する投入電力が、1
W/cm2以上であり、圧力が60〜400Torrで
ある。5.反応管径が直径50mm以上である。6.ダ
イヤモンド生成反応部における混合ガスの流速が0.1
cm/sec以上、5cm/sec以下である。7.水
素ガス(A)、不活性ガス(B)、炭素含有化合物ガス
(C)からなる混合ガスのモル比が、 0.05≦B/(A+B+C)≦0.8 及び 0.005≦C/(A+B+C)≦0.05 の条件を満たす。
(Embodiment) A more preferred embodiment of the present invention will be described below. 1. Frequency is 1 due to plasma generation
A microwave of KH Z or higher, particularly 500 MH Z or higher is used. 2. As the carbon-containing compound gas to be used, at least one compound selected from aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, thiols, ketones, ethers, carbon monoxide, carbon dioxide, etc., which is gaseous under CVD conditions, is used. . 3. At least one selected from helium, neon, argon, krypton, and xenon is used as the inert gas. 4. Input power for plasma generation is 1
It is W / cm 2 or more and the pressure is 60 to 400 Torr. 5. The diameter of the reaction tube is 50 mm or more. 6. The flow rate of the mixed gas in the diamond formation reaction part is 0.1.
It is not less than cm / sec and not more than 5 cm / sec. 7. The molar ratio of the mixed gas consisting of hydrogen gas (A), inert gas (B), and carbon-containing compound gas (C) is 0.05 ≦ B / (A + B + C) ≦ 0.8 and 0.005 ≦ C / ( The condition of A + B + C) ≦ 0.05 is satisfied.

【0022】[0022]

【発明の効果】本発明の方法は、以下の様な効果を有す
る。数百μm/h以上という非常に高速でもダイヤモン
ドを合成することが可能であり、析出面積の減少を押え
た状態(数十平方ミリ)でも数十μm/hという高速で
ダイヤモンドを合成できる。又、ダイヤモンド膜成長の
みならず、ダイヤモンド粒子の成長も選択的に安定し
て、且つ高速(数十μm/h以上)で行える。更に、従
来、高圧法に依っていたダイヤモンドヒートシンクやダ
イヤモンド砥粒への応用が可能であり、又、高熱伝導
性、低誘電性、高透光性、高比弾性、高強度、耐摩耗性
等が要求される分野、例えば、窓材、振動板、切削工
具、ヒートシンク、ICボンダへの薄膜(数μm以下)
のみならず、基材(数十μm以上)としてダイヤモンド
を提供する事も可能となる。加えて、本発明の方法は、
プラズマトーチ等を利用する高温プラズマ装置等に比べ
て、従来の装置に容易に適用可能であり、安定操業、設
備コスト、原料コストの点で優れている。
The method of the present invention has the following effects. It is possible to synthesize diamond at a very high speed of several hundreds μm / h or more, and even in a state where the reduction of the deposition area is suppressed (tens of square millimeters), diamond can be synthesized at a high speed of several tens μm / h. Further, not only the diamond film growth but also the growth of diamond particles can be selectively and stably performed at a high speed (several tens μm / h or more). Furthermore, it can be applied to diamond heat sinks and diamond abrasive grains that have hitherto depended on the high-pressure method, and also has high thermal conductivity, low dielectric properties, high translucency, high specific elasticity, high strength, wear resistance, etc. Areas where is required, such as window materials, diaphragms, cutting tools, heat sinks, IC bonder thin films (less than a few μm)
Not only can diamond be provided as a base material (several tens of μm or more). In addition, the method of the present invention comprises
Compared to a high temperature plasma device using a plasma torch and the like, it can be easily applied to conventional devices and is excellent in stable operation, equipment cost, and raw material cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】マイクロ波プラズマCVD装置の概略図であ
る。
FIG. 1 is a schematic view of a microwave plasma CVD apparatus.

【図2】高周波プラズマCVD装置の概略図である。FIG. 2 is a schematic view of a high frequency plasma CVD apparatus.

【図3】直流プラズマCVD装置の概略図である。FIG. 3 is a schematic diagram of a DC plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

1:基材 2:石英管 3:真空排気口 4:供給ガス導入口 5:発生プラズマ 6:マグネトロン 7:導波管 8:プランジャー 9:RF電源 10:DC電源 11:基板支持台 12:絶縁シール 13:カソード 1: Base material 2: Quartz tube 3: Vacuum exhaust port 4: Supply gas inlet port 5: Generated plasma 6: Magnetron 7: Waveguide 8: Plunger 9: RF power source 10: DC power source 11: Substrate support 12: Insulation seal 13: Cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水素ガス(A)、不活性ガス(B)及び
炭素含有化合物ガス(C)を、それらのモル比が 0.001≦B/(A+B+C)≦0.95 および 0.001≦C/(A+B+C)≦0.1 なる条件を満たすように含む混合ガスを反応容器中に導
き、5〜760Torrの圧力下、直流または交流の電
磁界によってプラズマを発生させて基体上にダイヤモン
ドを形成することを特徴とするダイヤモンドの気相合成
法。
1. A hydrogen gas (A), an inert gas (B) and a carbon-containing compound gas (C) having a molar ratio of 0.001 ≦ B / (A + B + C) ≦ 0.95 and 0.001 ≦. A mixed gas containing C / (A + B + C) ≦ 0.1 is introduced into a reaction vessel, and plasma is generated by a DC or AC electromagnetic field under a pressure of 5 to 760 Torr to form diamond on a substrate. A vapor phase synthesis method of diamond characterized by:
【請求項2】 気相合成法により形成され、表面ダイヤ
モンド膜の平均結晶粒径(E)および膜厚(F)が、 0.3≦E/√F≦3 なる関係を満たし、かつ膜厚(F)が5μm以上である
ことを特徴とするダイヤモンド。
2. The average crystal grain size (E) and the film thickness (F) of the surface diamond film formed by the vapor phase synthesis method satisfy the relationship of 0.3 ≦ E / √F ≦ 3, and the film thickness (F) is 5 μm or more, a diamond.
JP7103914A 1988-02-01 1995-04-27 Diamond and its vapor-phase synthesis Pending JPH07300394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7103914A JPH07300394A (en) 1988-02-01 1995-04-27 Diamond and its vapor-phase synthesis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-22640 1988-02-01
JP2264088 1988-02-01
JP7103914A JPH07300394A (en) 1988-02-01 1995-04-27 Diamond and its vapor-phase synthesis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1023386A Division JP2689269B2 (en) 1988-02-01 1989-02-01 Diamond and its vapor phase synthesis method

Publications (1)

Publication Number Publication Date
JPH07300394A true JPH07300394A (en) 1995-11-14

Family

ID=26359900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7103914A Pending JPH07300394A (en) 1988-02-01 1995-04-27 Diamond and its vapor-phase synthesis

Country Status (1)

Country Link
JP (1) JPH07300394A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055118A (en) * 2015-09-10 2017-03-16 国立研究開発法人産業技術総合研究所 Microwave plasma cvd device, synthesizing method of diamond using the same, and synthesized diamond

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS63107898A (en) * 1986-10-23 1988-05-12 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with plasma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS63107898A (en) * 1986-10-23 1988-05-12 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017055118A (en) * 2015-09-10 2017-03-16 国立研究開発法人産業技術総合研究所 Microwave plasma cvd device, synthesizing method of diamond using the same, and synthesized diamond

Similar Documents

Publication Publication Date Title
US5776552A (en) Process for the vapor phase synthesis of diamond and highly crystalline diamond
US5270028A (en) Diamond and its preparation by chemical vapor deposition method
JPH02233591A (en) Method for forming single crystal diamond layer
JP4294140B2 (en) Diamond thin film modification method, diamond thin film modification and thin film formation method, and diamond thin film processing method
JP3605634B2 (en) Vapor phase synthesis of cubic boron nitride
US5624719A (en) Process for synthesizing diamond in a vapor phase
EP0327051B1 (en) Diamond and its preparation by chemical vapor deposition method
JP2689269B2 (en) Diamond and its vapor phase synthesis method
JPS60127293A (en) Production of diamond
JPH07300394A (en) Diamond and its vapor-phase synthesis
US6656444B1 (en) Methods for synthesizing high-efficiency diamond and material and diamond material produced thereby
JPH01157412A (en) Substrate with diamond film
JP2962631B2 (en) Method for producing diamond-like carbon thin film
JPH0665744A (en) Production of diamond-like carbon thin film
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPH075432B2 (en) Gas phase synthesis of diamond
JP2636167B2 (en) Gas phase synthesis of diamond
JPH03174397A (en) Method and device for synthesizing rigid substance
JP4480192B2 (en) Method for synthesizing high purity diamond
JPH0481552B2 (en)
JPH01301586A (en) Vapor synthesis of diamond
JPH05139889A (en) Diamond crystal
Zvanya et al. Toroidal plasma enhanced CVD of diamond films
JPS60127292A (en) Production of diamond
JP2008285405A (en) Diamond thin film, modifying method of diamond thin film, modification of diamond thin film and thin film formation method, and processing method of diamond thin film