JPH075432B2 - Gas phase synthesis of diamond - Google Patents

Gas phase synthesis of diamond

Info

Publication number
JPH075432B2
JPH075432B2 JP63144185A JP14418588A JPH075432B2 JP H075432 B2 JPH075432 B2 JP H075432B2 JP 63144185 A JP63144185 A JP 63144185A JP 14418588 A JP14418588 A JP 14418588A JP H075432 B2 JPH075432 B2 JP H075432B2
Authority
JP
Japan
Prior art keywords
gas
diamond
plasma
container
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63144185A
Other languages
Japanese (ja)
Other versions
JPH01313393A (en
Inventor
敬一朗 田辺
貴浩 今井
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63144185A priority Critical patent/JPH075432B2/en
Priority to DE68913157T priority patent/DE68913157T2/en
Priority to EP89906433A priority patent/EP0371145B1/en
Priority to US07/931,494 priority patent/US5380516A/en
Priority to PCT/JP1989/000531 priority patent/WO1989011556A1/en
Publication of JPH01313393A publication Critical patent/JPH01313393A/en
Priority to US08/279,088 priority patent/US5624719A/en
Publication of JPH075432B2 publication Critical patent/JPH075432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、化学気相合成(CVD)法によるダイヤモン
ドの合成法、詳しくは、高純度、高結晶性で用途の広い
ダイヤモンドを、安価に、しかも高速で合成可能な気相
合成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for synthesizing diamond by a chemical vapor deposition (CVD) method, and more specifically, to a diamond having high purity, high crystallinity, and versatility at low cost. Moreover, the present invention relates to a gas phase synthesis method capable of high-speed synthesis.

〔従来の技術〕[Conventional technology]

従来、人造ダイヤモンドは、高温、高圧下の熱力学的平
衡状態において合成されてきたが、最近は、気相からの
ダイヤモンドの合成が可能となっている。
Conventionally, artificial diamond has been synthesized in a thermodynamic equilibrium state under high temperature and high pressure, but recently, it is possible to synthesize diamond from a vapor phase.

この気相合成法は、通常、10倍以上の水素で希釈した炭
化水素ガスを用い、このガスをプラズマもしくは熱フィ
ラメントで励起して反応室中の基材上にダイヤモンド層
を形成している。
In this vapor phase synthesis method, a hydrocarbon gas diluted with 10 times or more of hydrogen is usually used, and this gas is excited by plasma or a hot filament to form a diamond layer on the substrate in the reaction chamber.

なお、従来法の中には、原料ガスを予熱し、これを加熱
基板の表面に導入してダイヤモンド析出のための炭化水
素の熱分解を行わしめる方法(特許第1272728号)等も
ある。
Among the conventional methods, there is a method (Patent No. 1272728) in which a source gas is preheated and introduced into the surface of a heating substrate to thermally decompose hydrocarbons for diamond precipitation.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のダイヤモンド気相合成法は、化学反応を起こすた
めの熱投入法等は種々考えられてはいるが、いずれの方
法も、基本的には多量の水素を用いており、そのため、
原料ガスが高価につき、また、水素がダイヤモンド中に
取込まれて、純度、結晶性等を悪くしたり、ダイヤモン
ドの合成条件、合成速度、合成可能面積、基材材質等が
制約されるなどの問題があった。
In the conventional diamond vapor phase synthesis method, various methods such as a heat input method for causing a chemical reaction have been considered, but both methods basically use a large amount of hydrogen, and therefore,
The raw material gas is expensive, and hydrogen is taken into the diamond to deteriorate the purity, crystallinity, etc., and the diamond synthesis conditions, synthesis rate, synthesizable area, base material, etc. are restricted. There was a problem.

特開昭59−30709号公報に示されるように、ハロゲン原
子、水素原子、炭素原子を反応系に供給して極めて低い
圧力範囲、導入電力でダイヤモンドを合成することも考
えられているが、この方法は高純度化に関して不充分な
点があり、また、原料ガスのコスト、合成速度等にも問
題があり、工業的なダイヤモンド合成が望み難い。この
原因は、原料ガスの組成が適切でないことにあると思わ
れる。
As disclosed in Japanese Patent Laid-Open No. 59-30709, it has been considered to synthesize a diamond by supplying a halogen atom, a hydrogen atom and a carbon atom to a reaction system in an extremely low pressure range and an introduced power. The method is insufficient in terms of high purification, and there are problems in cost of raw material gas, synthesis rate, etc., and it is difficult to expect industrial diamond synthesis. The cause seems to be that the composition of the raw material gas is not appropriate.

この発明は、これ等の問題点を無くすことを課題として
いる。
The present invention aims to eliminate these problems.

〔課題を解決するための手段〕[Means for Solving the Problems]

発明者等は、各種のガス条件を検討した結果、化合物ガ
ス中に含まれることのある水素以外には水素を使用しな
い次の様な条件下において安定なプラズマが生成し、結
晶性の良いダイヤモンドを高速、大面積に合成し得るこ
とを見い出した。
As a result of studying various gas conditions, the inventors have found that stable plasma is generated under the following conditions in which hydrogen other than hydrogen that may be contained in the compound gas is not used, and diamond with good crystallinity is obtained. It has been found that can be synthesized in a large area at high speed.

即ち、この発明の方法は、フッ素ガス、塩素ガス、もし
くはその両者と、酸素ガス、窒素酸化物、二酸化硫黄ガ
スの中から選ばれた少なくとも1種のガスと、炭素を含
む化合物ガスとの混合ガス、又はこの混合ガスに更に不
活性ガスを加えた混合ガスを反応容器中に導入し、その
容器中に電磁界によるプラズマを発生させて容器中に配
置した基材上にダイヤモンドを生成するものであり、こ
の方法によると、従来のCVD(chemical vapor depositi
on)法に比べて数倍の成長速度で均一に、しかも広範囲
(数十平方ミリ)の領域に水素等を含まない高純度、高
結晶性のダイヤモンドが得られることが判った。
That is, the method of the present invention comprises mixing fluorine gas, chlorine gas, or both with at least one gas selected from oxygen gas, nitrogen oxides, and sulfur dioxide gas, and a compound gas containing carbon. A gas, or a mixed gas obtained by adding an inert gas to this mixed gas, is introduced into a reaction container, and plasma is generated by an electromagnetic field in the container to generate diamond on a substrate arranged in the container. According to this method, the conventional CVD (chemical vapor depositi
It has been found that a diamond of high purity and high crystallinity can be obtained uniformly at a growth rate several times higher than that of the (on) method, and in which a wide range (tens of square millimeters) does not contain hydrogen and the like.

高純度化には酸素ガス、窒素酸化物、二酸化硫黄ガスの
少なくともどれかを用いたことが有効に作用している。
即ち、フッ素ガス(F2)、塩素ガス(Cl2)のみを炭素
を含む化合物ガスと組合わせて用いると合成されたダイ
ヤモンド中にフッ素、塩素が混入し易いが、先に挙げた
ガスを用いると、合成条件によっては、酸素ガスがフッ
素、塩素を連れ出してくれるので、高純度が得られる。
また、その連れ出しで反応炉の壁面に対するフッ素、塩
素の付着が減り装置のいたみ等も減少する。
The use of at least one of oxygen gas, nitrogen oxides, and sulfur dioxide gas effectively works for high purification.
That is, when fluorine gas (F 2 ) or chlorine gas (Cl 2 ) alone is used in combination with a compound gas containing carbon, fluorine and chlorine are easily mixed in the synthesized diamond, but the above-mentioned gases are used. And, depending on the synthesis conditions, oxygen gas takes out fluorine and chlorine, so high purity can be obtained.
Further, by taking it out, the adhesion of fluorine and chlorine to the wall surface of the reaction furnace is reduced, and the damage of the device is reduced.

なお、プラズマ発生源は、直流、交流の電磁界のどちら
を用いたものでよいが、後者の場合には、周波数1KHz以
上の高周波もしくはマイクロ波であることが操作性も良
くて好ましい。より好ましくは、300MHz以上のマイクロ
波を用いるとよい。
It should be noted that the plasma generation source may use either a direct current or an alternating current electromagnetic field, but in the latter case, a high frequency having a frequency of 1 KHz or more or a microwave is preferable because of good operability. More preferably, a microwave of 300 MHz or higher is used.

また、使用ガスの混合比は、非ダイヤモンド炭素の析出
等を防止して高純度、高結晶性の膜を得る上で、原料ガ
ス中のフッ素(F)、塩素(Cl)、酸素(O)、炭素
(C)の原子比が(F+Cl+O)/C=5〜0.05、より好
ましくは1.8〜0.09の範囲にあり、一方、炭素化合物中
に水素を含有する場合には、フッ素(F)、塩素(C
l)、酸素(O)と炭素(C)、水素(H)の原子比
が、(F+Cl+O)/(C+H)=4〜0.01、より好ま
しくは0.9〜0.04の範囲にあるようにするのがよい。
In addition, the mixing ratio of the gases used is such that fluorine (F), chlorine (Cl), oxygen (O) in the raw material gas is used in order to prevent deposition of non-diamond carbon and obtain a high-purity, highly crystalline film. , The atomic ratio of carbon (C) is (F + Cl + O) / C = 5 to 0.05, more preferably 1.8 to 0.09, while when the carbon compound contains hydrogen, fluorine (F), chlorine (C
l), the atomic ratio of oxygen (O) to carbon (C), hydrogen (H) is (F + Cl + O) / (C + H) = 4 to 0.01, and more preferably 0.9 to 0.04. .

また、不活性ガスを併用する場合には、不活性ガス
(X)とフッ素(F)、塩素(Cl)、酸素(O)、窒素
(N)、硫黄(S)、炭素(C)の原子比を、X/(F+
Cl+O+C)=100〜0、より好ましくは、20〜0.01に
するのがよい。
When an inert gas is used in combination, the inert gas (X) and fluorine (F), chlorine (Cl), oxygen (O), nitrogen (N), sulfur (S), carbon (C) atoms are used. The ratio is X / (F +
Cl + O + C) = 100 to 0, more preferably 20 to 0.01.

不活性ガスの使用は、広い圧力範囲でのプラズマ発生を
可能にし、成長速度をより一層速め、さらに、大面積へ
のコーディングを容易にすると云う効果があるので、極
めて好ましいことと云える。
The use of an inert gas is extremely preferable because it has the effect of enabling plasma generation in a wide pressure range, further increasing the growth rate, and facilitating the coding of a large area.

次に、この発明で用いる不活性ガスとしては、He(ヘリ
ウム)、Ne(ネオン)、Ar(アルゴン)、Kr(クリプト
ン)、Xe(キセノン)の中から選ばれたものの一種、或
いはこれ等の複数種の混合ガスを挙げることができる
が、ダイヤモンドの量産性、製造コストを考えると、中
でも、安価で入手し易いアルゴンガスが好ましい。
Next, as the inert gas used in the present invention, one kind selected from He (helium), Ne (neon), Ar (argon), Kr (krypton), and Xe (xenon), or these A mixed gas of a plurality of types can be mentioned, but in view of mass productivity and production cost of diamond, an argon gas which is inexpensive and easy to obtain is particularly preferable.

また、炭素を含む化合物ガスは、例えば、ガス状のメタ
ン、エタン、アセチレン、プロパン、天然ガス、一酸化
炭素、二酸化炭素や、アルコール等の分子に少量の酸
素、窒素、硫黄を含む有機化合物であってもよい。さら
に、炭素を含む化合物はCF4、C2F6、C3F8、c−C4F8、C
5F12、CHF3、CBrF3、CC14、CC13F、CC12F2、CC1F3等の
ハロゲンを含有する化合物であってもよい。
The compound gas containing carbon is, for example, an organic compound containing a small amount of oxygen, nitrogen, or sulfur in molecules such as gaseous methane, ethane, acetylene, propane, natural gas, carbon monoxide, carbon dioxide, and alcohol. It may be. Furthermore, compounds containing carbon are CF4, C2F6, C3F8, c-C4F8, C
It may be a compound containing halogen such as 5F12, CHF3, CBrF3, CC14, CC13F, CC12F2, CC1F3.

以上に、上述したことを含めて、この発明の好ましい態
様を整理して示す。
The preferred embodiments of the present invention including the above are summarized and shown above.

(1) プラズマ発生源は、交流の電磁界を利用する場
合、周波数1KHz以上の高周波又はマイクロ波を用い、よ
り好ましくは300MHz以上のマイクロ波を用いる。
(1) When using an alternating electromagnetic field, the plasma generation source uses a high frequency or a microwave having a frequency of 1 KHz or more, and more preferably a microwave of 300 MHz or more.

(2) 他のガスと混合して用いる炭素を含む化合物ガ
スは、脂肪族炭化水素、芳香族炭化水素、アルコール、
ケトン等より選ばれた1種又は2種以上のガスとする。
(2) The compound gas containing carbon used by mixing with other gas is an aliphatic hydrocarbon, an aromatic hydrocarbon, an alcohol,
One or more gases selected from ketones and the like are used.

(3) プラズマの発生に要する投入電力は1w/cm3
上、反応室内圧力は5〜760Torrとする。
(3) The input power required to generate plasma is 1 w / cm 3 or more, and the pressure in the reaction chamber is 5 to 760 Torr.

(4) ダイヤモンド生成反応部における混合ガスの流
速は0.1cm/sec以上にする。
(4) The flow rate of the mixed gas in the diamond formation reaction section is set to 0.1 cm / sec or more.

(5) ガスの混合比は、原料ガス中の原料比が、(F
+Cl+O)/C=5〜0.05、より好ましくは1.8〜0.09。
(5) The mixing ratio of the gases is such that the raw material ratio in the raw material gas is (F
+ Cl + O) /C=5-0.05, more preferably 1.8-0.09.

又は、炭素を含む化合物ガス中に水素を含むときは、 (F+Cl+O)/(C+H)=4〜0.01、より好ましく
は0.9〜0.04。
Alternatively, when hydrogen is contained in the compound gas containing carbon, (F + Cl + O) / (C + H) = 4 to 0.01, more preferably 0.9 to 0.04.

(6) 不活性ガス(X)を併用する場合の原子比は、 X/(F+Cl+O+C)=100〜0、より好ましくは20〜
0.01。
(6) When the inert gas (X) is used in combination, the atomic ratio is X / (F + Cl + O + C) = 100 to 0, more preferably 20 to
0.01.

かかる、この発明の方法においては、基板温度(120〜1
200℃)、反応管内圧力、混合ガスの比率、ガスの流速
等の製造条件を容易に制御可能であり、ダイヤモンド被
覆が困難であった3次元的な基材にも容易に被覆可能で
あり、さらに、積極的に水素を使用しないため、水素脆
化し易い基材にも被覆可能である。
In such a method of the present invention, the substrate temperature (120-1
(200 ° C), reaction tube pressure, mixed gas ratio, gas flow rate, and other manufacturing conditions can be easily controlled, and three-dimensional substrates that were difficult to coat with diamond can be easily coated. Furthermore, since hydrogen is not actively used, it is possible to coat even a substrate that is easily embrittled by hydrogen.

また、製造条件を変えることにより、数百μm以上のダ
イヤモンド大粒子の高速成長も可能である。
Further, by changing the manufacturing conditions, it is possible to grow large diamond particles having a diameter of several hundred μm or more at a high speed.

なお、プラズマを用いたダイヤモンドの気相合成におい
ては、μ波が最も優れている。また電極を反応容器内に
含まない構造の装置はプラズマが安定するので望まし
い。また基材の温度を制御するためには、基材を冷却す
ることもでき、また加熱機構を用いてもよい。通常はこ
のような機構を反応容器内に入れるとプラズマ等が乱れ
るので絶縁体で作製することができる。
In the vapor phase synthesis of diamond using plasma, μ wave is the best. Further, an apparatus having a structure in which an electrode is not included in the reaction container is desirable because the plasma is stable. Further, in order to control the temperature of the base material, the base material may be cooled or a heating mechanism may be used. Normally, when such a mechanism is put in a reaction vessel, plasma or the like is disturbed, so that it can be made of an insulator.

また基材について言えば、SiやSi3N4、SiC、BN、B4C、A
lNなどのセラミックまたMo、W、Ta、Nbなどの高融点金
属また基材温度を低くする場合には、Cu、Al、超硬など
からなる金属や合金を用いることができる。酸素を含有
する雰囲気の場合は分割して生じるH2との分圧をコント
ロールする必要がある。又、本発明条件下にて発生する
プラズマは、従来の主な原料ガスとして、水素ガスを用
いる方法に対し、発光分光分析により次の様な違いがあ
る事も判明した。つまり本発明条件下で発生するプラズ
マは相対的にH2連続帯の強度が弱く、H(α)等水素原
子強度が強い。この様な現象から本発明条件下では従来
法よりも原料ガスの分解がより効率良く行われているも
のと考えられる。
Speaking of the base material, Si, Si 3 N 4 , SiC, BN, B 4 C, A
Ceramics such as 1N, refractory metals such as Mo, W, Ta and Nb, or metals or alloys made of Cu, Al, cemented carbide or the like can be used to lower the substrate temperature. In the case of an atmosphere containing oxygen, it is necessary to control the partial pressure of H 2 generated by division. It was also found by the emission spectroscopy analysis that the plasma generated under the conditions of the present invention has the following differences from the conventional method using hydrogen gas as the main source gas. That is, the plasma generated under the conditions of the present invention has a relatively weak H 2 continuous band strength and a strong hydrogen atom strength such as H (α). From such a phenomenon, it is considered that the raw material gas is decomposed more efficiently under the conditions of the present invention than in the conventional method.

又、従来例では炭素を含む化合物ガスの濃度が水素ガス
に対し数vol%(0.8〜2.0vol%)という過飽和度の低い
状態からのダイヤモンドの析出であるのに対し、本発明
条件下でのダイヤモンドの析出は従来より数百倍以上で
あるため低欠陥・高品質のダイヤモンド膜の析出が可能
になると思われる。
Further, in the conventional example, the concentration of the compound gas containing carbon is several vol% (0.8 to 2.0 vol%) with respect to hydrogen gas, which is the deposition of diamond from a state of low supersaturation. Since the deposition of diamond is several hundred times more than that of the conventional method, it is considered possible to deposit a diamond film with low defects and high quality.

〔実施例〕〔Example〕

先ず、第1図乃至第4図に、この発明に利用するダイヤ
モンド合成用の装置の概略図を示す。
First, FIGS. 1 to 4 show schematic views of a diamond synthesizing apparatus used in the present invention.

第1図はマイクロ波プラズマCVD装置(以下これをμ−P
CVDと云う)、第2図は高周波プラズマCVD装置(以下RF
−PCVDと云う)、第3図は直流プラズマCVD装置(以下D
C−PCVDと云う)、第4図は、高周波高温プラズマCVD装
置(以下、RF−HPCVDと云う)であって、この発明に
は、これ等の装置のいずれかを用いればよい。図の1は
基材、2は反応石英管、3は真空排気口、4は原料ガス
導入口、5は発生プラズマ、6はマグネトロン、7は導
波管、8はプラズマ位置の調整用プランジャー、9はRF
電源、10はDC電源、11は基材支持台、12は絶縁シール、
13はカソードである。なお、第4図の石英管2は冷却可
能となっている。
Figure 1 shows a microwave plasma CVD system (hereinafter referred to as μ-P
Fig. 2 shows a high-frequency plasma CVD device (hereinafter referred to as RF).
-PCVD), Fig. 3 shows DC plasma CVD equipment (hereinafter D
FIG. 4 shows a high frequency high temperature plasma CVD apparatus (hereinafter referred to as RF-HPCVD), and any of these apparatuses may be used in the present invention. In the figure, 1 is a base material, 2 is a reaction quartz tube, 3 is a vacuum exhaust port, 4 is a source gas introduction port, 5 is plasma generated, 6 is a magnetron, 7 is a waveguide, and 8 is a plasma position adjusting plunger. , 9 is RF
Power supply, 10 DC power supply, 11 base material support, 12 insulation seal,
13 is a cathode. The quartz tube 2 shown in FIG. 4 can be cooled.

次に、上記の4種の装置によるこの発明の具体例と比較
例について述べる。
Next, specific examples and comparative examples of the present invention using the above four types of devices will be described.

使用装置及びその他の製造条件は各々第1表、第2表に
示す通りである。また、使用基材は、実施例、比較例と
も2インチ(φ50.8mm)のSi単結晶ウエハを#5000のダ
イヤモンドパウダーで最終研磨したものである。この基
材を図の反応石英管2内に保持して先ず2内に原料ガス
を導入し、圧力1Torrにてプラズマ発生源によりプラズ
マを発生させ、素速く管内圧力の上昇を図って第1表に
示す管内圧力を保ちながら表に記載の時間をかけてダイ
ヤモンドを基材上に成長合成した。なお、基材の表面温
度はプラズマを瞬時中断して光学式パイロメータにより
測定を行なった。
The apparatus used and other manufacturing conditions are as shown in Table 1 and Table 2, respectively. In addition, the base material used was a 2-inch (φ50.8 mm) Si single crystal wafer that was finally polished with # 5000 diamond powder in both the examples and comparative examples. This substrate was held in the reaction quartz tube 2 shown in the figure, and the raw material gas was first introduced into the tube 2. Plasma was generated by the plasma generation source at a pressure of 1 Torr, and the pressure inside the tube was quickly raised to obtain the results shown in Table 1. The diamond was grown and synthesized on the base material for the time shown in the table while maintaining the tube pressure shown in. The surface temperature of the base material was measured by an optical pyrometer by instantaneously interrupting the plasma.

そして、各試料No.の条件で得られたダイヤモンドにつ
いて走査型電子顕微鏡による表面観察、膜厚測定、X線
回折、ラマン散乱分光法により結晶性の評価を行った。
その結果を第1表、第2表に併せて示す。第1表中、本
発明の実施例はNOガスを加えた試料No.4である。
Then, the diamond obtained under the conditions of each sample No. was subjected to surface observation by a scanning electron microscope, film thickness measurement, X-ray diffraction, and Raman scattering spectroscopy to evaluate crystallinity.
The results are also shown in Tables 1 and 2. In Table 1, the example of the present invention is sample No. 4 to which NO gas was added.

なお、第1表、第2表とも「Dia」はダイヤモンド、「g
r」はグラファイト、「a−c」はアモルファスカーボ
ンを示す。また、Fはフッ素、Clは塩素、Oは酸素、C
は炭素、Xは1種又は2種以上の不活性ガスを示す。ま
た、第1表試料No.2サンプルのラマン分光スペクトル、
紫外、可視領域の透過スペクトルを各々第5、6図に示
す、第5図より非常に結晶性の良いダイヤモンド膜であ
る事が、第6図より225nmを吸収端にもち紫外から赤外
領域において、高い透光性を有する事がわかる。それか
ら窓材等への応用に関しても非常に有力な手法であると
考えられる。又、Ti/Mo/Aμ電極を蒸着し電気抵抗率を
測定したところ1012Ωcm以上の値を示しダイヤモンド蒸
着後でも安定し非常に高抵抗を示す事が特徴であること
がわかった。
In Tables 1 and 2, "Dia" is diamond and "g".
“R” indicates graphite, and “ac” indicates amorphous carbon. F is fluorine, Cl is chlorine, O is oxygen, and C
Represents carbon and X represents one or more inert gases. In addition, the Raman spectrum of the sample No. 2 sample in Table 1,
The transmission spectra in the ultraviolet and visible regions are shown in Figs. 5 and 6, respectively, and the fact that the diamond film has much better crystallinity than in Fig. 5 shows that it has an absorption edge of 225 nm from Fig. 6 in the ultraviolet to infrared region. It can be seen that it has high translucency. It is also considered to be a very effective method for application to window materials. Further, when Ti / Mo / Aμ electrodes were vapor-deposited and the electrical resistivity was measured, it was found that the characteristic was that it showed a value of 10 12 Ωcm or more and was stable and extremely high resistance even after diamond vapor deposition.

〔効果〕 以上述べたこの発明によれば、従来法と違ってプラズマ
CVD法によるダイヤモンド合成に、ハロゲン系のフッ素
ガス、塩素ガスに炭素を含む化合物ガスを加えたもの
に、更に、酸素ガス、窒素酸化物、二酸化硫黄ガスの少
なくともどれかを加えたガスを用いるので、下記の効果
が得られる。
[Effect] According to the present invention described above, unlike the conventional method, the plasma
For the diamond synthesis by the CVD method, a gas obtained by adding a compound gas containing carbon to halogen-based fluorine gas, chlorine gas, and at least one of oxygen gas, nitrogen oxide, and sulfur dioxide gas is used. The following effects can be obtained.

(1) 化合物ガスに含まれることのある水素原子以外
には、水素を使用しないので、チタン等の水素脆化し易
い基材に対してもダイヤモンドコーティングが可能にな
る。
(1) Since hydrogen is not used other than hydrogen atoms that may be contained in the compound gas, diamond coating is possible even on a substrate such as titanium that is easily embrittled by hydrogen.

(2) 水素を含まない高純度、高結晶性のダイヤモン
ド膜等が得られる。
(2) A highly pure and highly crystalline diamond film containing no hydrogen can be obtained.

(3) 製造条件次第では100μm/H以上の高速で膜状に
も粒状にも選択的に成長させ得る。
(3) Depending on the manufacturing conditions, it can be grown selectively in a film or granular form at a high speed of 100 μm / H or more.

(4) 形状の複雑な基材に対してダイヤモンドをコー
ティングでき、かつ大面積領域への成長も可能になる。
(4) Diamond can be coated on a base material having a complicated shape, and growth to a large area is possible.

(5) 不活性ガスを併用する方法では、広い圧力範囲
でのプラズマ発生が可能になるので、成長速度の更なる
向上、ダイヤモンドの更なる大面積化が図れる。
(5) In the method of using an inert gas together, plasma can be generated in a wide pressure range, so that the growth rate can be further improved and the diamond area can be further increased.

(6) 酸素原子によるフッ素、塩素の除去効果が生じ
て合成されるダイヤモンドの純度がより高まり、合成装
置の痛み等も減少する。
(6) Oxygen atoms have the effect of removing fluorine and chlorine, and the purity of the synthesized diamond is further increased, and the pain of the synthesizer is reduced.

(7) 酸素ガス、窒素酸化物、二酸化硫黄ガスは安価
であるので原料ガスのコストが下がり、経済的に有利に
なる。
(7) Oxygen gas, nitrogen oxides, and sulfur dioxide gas are inexpensive, so the cost of raw material gas is reduced, which is economically advantageous.

また、上の効果により、従来高圧法によっていたダイヤ
モンドヒートシンク、ダイヤモンド砥粒等への用途が開
け、さらに、高熱伝導性、定誘導性、高透光性、高比弾
性、高強度、耐摩耗性等を必要とされる分野への数μm
以下の薄膜のみならず、数十μm以上の基材としての提
供も可能になる。
In addition, due to the above effects, it can be used for diamond heat sinks, diamond abrasive grains, etc., which were conventionally produced by the high-pressure method, and also has high thermal conductivity, constant induction, high translucency, high specific elasticity, high strength, and wear resistance. A few μm to the required field
It is possible to provide not only the following thin film but also a substrate having a thickness of several tens of μm or more.

このほか、使用する装置は従来装置でよく、この従来装
置を用いても製造する製造工程が特に変わったり増加し
たりする訳ではないので、安定操業、設備コストの面で
も優れている。
In addition, the apparatus to be used may be a conventional apparatus, and even if the conventional apparatus is used, the manufacturing process for manufacturing does not particularly change or increase, so that it is excellent in terms of stable operation and equipment cost.

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第4図は、いずれもこの発明の方法に使用可
能なプラズマCVD装置の概略図である。 また、第5図及び第6図、第1表試料No.2のラマン分光
スペクトルと、紫外、可視領域の透過スペクトルを示す
グラフである。 1……基材、2……石英管、 3……真空排気口、4……原料ガス導入口、 5……発生プラズマ、6……マグネトロン、 7……導波管、8……プランジャー、 9……RF電源、10……DC電源、 11……基材支持台、12……絶縁シール、 13……カソード、14……冷却水。
1 to 4 are all schematic views of a plasma CVD apparatus usable in the method of the present invention. 5 and 6 and FIG. 1 are graphs showing Raman spectroscopic spectra of Sample No. 2 in Table 1 and transmission spectra in the ultraviolet and visible regions. 1 ... Substrate, 2 ... Quartz tube, 3 ... Vacuum exhaust port, 4 ... Raw material gas inlet port, 5 ... Generated plasma, 6 ... Magnetron, 7 ... Waveguide, 8 ... Plunger , 9 ... RF power supply, 10 ... DC power supply, 11 ... Base material support, 12 ... Insulation seal, 13 ... Cathode, 14 ... Cooling water.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−30709(JP,A) 特開 昭61−36200(JP,A) 特開 昭62−265198(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-30709 (JP, A) JP-A-61-36200 (JP, A) JP-A-62-265198 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フッ素ガス又は塩素ガスもしくはその両者
と、酸素ガス、窒素酸化物、二酸化硫黄ガスの中から選
ばれた少なくとも1種のガスと、炭素を含む化合物ガス
を反応容器中に導入し、直流又は交流の電磁界により前
記容器中にプラズマを発生させて容器中に保持した基材
上にダイヤモンドを生成することを特徴とするダイヤモ
ンドの気相合成法。
1. A fluorine gas, a chlorine gas, or both, at least one gas selected from oxygen gas, nitrogen oxides, and sulfur dioxide gas, and a compound gas containing carbon are introduced into a reaction vessel. A method for vapor phase synthesis of diamond, characterized in that plasma is generated in the container by an electromagnetic field of direct current or alternating current to generate diamond on a substrate held in the container.
【請求項2】フッ素ガス又は塩素ガスもしくはその両者
と、酸素ガス、窒素酸化物、二酸化硫黄ガスの中から選
ばれた少なくとも1種のガスと、不活性ガスと、炭素を
含む化合物ガスを反応容器中に導入し、直流又は交流の
電磁界により前記容器中にプラズマを発生させて容器中
に保持した基材上にダイヤモンドを生成することを特徴
とするダイヤモンドの気相合成法。
2. A reaction of fluorine gas or chlorine gas or both with at least one gas selected from oxygen gas, nitrogen oxides and sulfur dioxide gas, an inert gas and a compound gas containing carbon. A method for vapor phase synthesis of diamond, which comprises introducing into a container and generating plasma in the container by an electromagnetic field of direct current or alternating current to generate diamond on a substrate held in the container.
JP63144185A 1988-05-28 1988-06-10 Gas phase synthesis of diamond Expired - Fee Related JPH075432B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63144185A JPH075432B2 (en) 1988-06-10 1988-06-10 Gas phase synthesis of diamond
DE68913157T DE68913157T2 (en) 1988-05-28 1989-05-25 METHOD FOR PRODUCING DIAMOND FROM THE STEAM PHASE.
EP89906433A EP0371145B1 (en) 1988-05-28 1989-05-25 Process for vapor-phase synthesis of diamond
US07/931,494 US5380516A (en) 1988-05-28 1989-05-25 Process for synthesizing diamond in a vapor phase
PCT/JP1989/000531 WO1989011556A1 (en) 1988-05-28 1989-05-25 Process for vapor-phase synthesis of diamond
US08/279,088 US5624719A (en) 1988-05-28 1994-07-22 Process for synthesizing diamond in a vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63144185A JPH075432B2 (en) 1988-06-10 1988-06-10 Gas phase synthesis of diamond

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10548494A Division JP2636167B2 (en) 1994-05-19 1994-05-19 Gas phase synthesis of diamond

Publications (2)

Publication Number Publication Date
JPH01313393A JPH01313393A (en) 1989-12-18
JPH075432B2 true JPH075432B2 (en) 1995-01-25

Family

ID=15356179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63144185A Expired - Fee Related JPH075432B2 (en) 1988-05-28 1988-06-10 Gas phase synthesis of diamond

Country Status (1)

Country Link
JP (1) JPH075432B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371145B1 (en) * 1988-05-28 1994-02-16 Sumitomo Electric Industries, Ltd. Process for vapor-phase synthesis of diamond
US5071677A (en) * 1990-05-24 1991-12-10 Houston Advanced Research Center Halogen-assisted chemical vapor deposition of diamond
US5198263A (en) * 1991-03-15 1993-03-30 The United States Of America As Represented By The United States Department Of Energy High rate chemical vapor deposition of carbon films using fluorinated gases

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930709A (en) * 1982-08-13 1984-02-18 Toa Nenryo Kogyo Kk Method for synthesizing carbon film and carbon granule in vapor phase
JPS6136200A (en) * 1984-07-25 1986-02-20 Sumitomo Electric Ind Ltd Method for vapor-phase synthesis of diamond
JPS62265198A (en) * 1986-05-14 1987-11-18 Hitachi Ltd Method for synthesizing diamond

Also Published As

Publication number Publication date
JPH01313393A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
US5776552A (en) Process for the vapor phase synthesis of diamond and highly crystalline diamond
US5186973A (en) HFCVD method for producing thick, adherent and coherent polycrystalline diamonds films
JPH08151296A (en) Method for forming single crystal diamond film
US5380516A (en) Process for synthesizing diamond in a vapor phase
JPH0948693A (en) Method for forming diamond single crystal film
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
JPH075432B2 (en) Gas phase synthesis of diamond
EP0327051B2 (en) Diamond and its preparation by chemical vapor deposition method
JPS61222915A (en) Vapor-phase synthesis of diamond
JPH02107596A (en) Synthesizing method for diamond
JPH0372038B2 (en)
JP2636167B2 (en) Gas phase synthesis of diamond
JPH085748B2 (en) Gas phase synthesis of diamond
JP2689269B2 (en) Diamond and its vapor phase synthesis method
Park et al. Structural characterization of diamond thin films prepared by plasma jet
JPH01201098A (en) Synthesis of diamond
JP4480192B2 (en) Method for synthesizing high purity diamond
Zhang et al. Diamond growth by hollow cathode arc chemical vapor deposition at low pressure range of 0.02–2 mbar
JPS60186500A (en) Method for synthesizing diamond from vapor phase
JPH03141199A (en) Production of single crystal cvd diamond
JPH07300394A (en) Diamond and its vapor-phase synthesis
JPH04300291A (en) Method for preparing diamond film
JPH07157394A (en) Formation of diamond single crystal film
Sumitomo et al. Fabrication of Diamond Films by Microwave Plasma CVD at Low Hydrogen Concentration
Zhangzhan et al. DIAMOND FILMS FROM CH3OH SYSTEMS

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees