JPS60191097A - Crystallizing method of artificial diamond - Google Patents

Crystallizing method of artificial diamond

Info

Publication number
JPS60191097A
JPS60191097A JP59044649A JP4464984A JPS60191097A JP S60191097 A JPS60191097 A JP S60191097A JP 59044649 A JP59044649 A JP 59044649A JP 4464984 A JP4464984 A JP 4464984A JP S60191097 A JPS60191097 A JP S60191097A
Authority
JP
Japan
Prior art keywords
diamond
substrate
reaction
reaction mixture
mixture gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59044649A
Other languages
Japanese (ja)
Other versions
JPS6327319B2 (en
Inventor
Noribumi Kikuchi
菊池 則文
Takayuki Shingyouchi
新行内 隆之
Hiroaki Yamashita
山下 博明
Akio Nishiyama
昭雄 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59044649A priority Critical patent/JPS60191097A/en
Publication of JPS60191097A publication Critical patent/JPS60191097A/en
Publication of JPS6327319B2 publication Critical patent/JPS6327319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase the crystallization velocity of diamond by incorporating a specified amt. of carbon monoxide into a reaction mixed gas consisting of hydrocarbons and hydrogen in crystallizing the artificial diamond. CONSTITUTION:A reaction mixed gas (hydrocarbons and hydrogen) is fed into the upper part of a reaction vessel 1 from an introducing pipe 2, and passed downward through a filament 3 and a substrate 5 on a bed plate 4. The pressure of the atmosphere in the vessel 1 is kept at 0.1-300Torr, and the filament 3 is heated at about 1,500-2,500 deg.C to activate the reaction mixed gas by heating. Consequently, the surface of the substrate 5 is heated to about 300-1,300 deg.C, and a diamond is deposited and formed on the surface of the substrate 5. At this time, the crystallization velocity of the diamond can be increased by incorporating 0.05-10vol% carbon monoxide into the reaction mixed gas.

Description

【発明の詳細な説明】 この発明は、人工ダイヤモンドの析出生成方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing artificial diamond by precipitation.

従来、人工ダイヤモンド析出生成方法としては多数の方
法が提案され、この中で反応混合ガスを加熱し、活性化
する手段どして、 (a)熱電子放射材、 (b) 高周波によるプラズマ放電、 (C) マイクロ波によるプラズマ放電、以上(a)〜
(C)のいずれかを採用する代表的方法が注目されてい
る。
Conventionally, many methods have been proposed for producing artificial diamond precipitates, and among them, as a means of heating and activating the reaction mixture gas, (a) thermionic emitting material, (b) plasma discharge by high frequency, (C) Plasma discharge by microwave, above (a) ~
Representative methods that adopt either (C) are attracting attention.

上記従来(a)方法は、第1図に概略断面図で示される
ように、石英製反応容器1内の上部に開口する反応混合
ガス導入管2によって流入された、炭化水素と水素で構
成された反応混合ガスを、熱電子放射材としての例えば
金属タングステン製フィラメント3および台板4上に支
持された基体5を通して下方に流し、この間反応容器l
内の雰囲気圧力を01〜300 torrに保持すると
共に、フィラメント3を1500〜2500℃に加熱し
て、反応混合ガスの加熱活性化と、所定間隔下方に配置
された基体表面の300〜1300℃の範囲内の温度へ
の加熱をはかシ、この状態で所定時間の反応を行なわし
めることにより基体5の表面にダイヤモンドを析出生成
せしめる方法であり、例えば4!i開昭58−9110
0号公報に記載される方法がこの方法に相当する方法で
ある。
The above conventional method (a), as shown in a schematic cross-sectional view in FIG. The reactant mixture gas flows downward through a filament 3 made of, for example, metal tungsten as a thermionic emitter and a substrate 5 supported on a base plate 4, during which time the reaction vessel l
At the same time, the filament 3 is heated to 1500 to 2500°C to activate the reaction mixture gas and to heat the surface of the substrate disposed below at a predetermined interval from 300 to 1300°C. This is a method in which diamond is precipitated and formed on the surface of the substrate 5 by heating it to a temperature within a range and carrying out a reaction in this state for a predetermined time. i Kaisho 58-9110
The method described in Publication No. 0 is a method corresponding to this method.

−また、上記従来(b)方法は、同じく第2図に概略断
面図で示されるように、石英製反応容器]内の中火部に
基体5を置き、この反応容器1の一方側に設けた反応混
合ガス導入管2から炭化水素と水素で構成された反応混
合ガスを流入し、一方反応容器lの他方側から排気し、
この間、反応容器1内の雰囲気圧力を数torr〜数1
0 torrに保持すると共に、反応容器lの中央外周
部に設けた高周波コイル6に、例えば周波数: 13.
56 MHz、出カニ500Wの条件を付加して反応容
器1内の基体5の周囲にプラズマ放電を誘起させ、この
プラズマ放電によって反応混合ガスの加熱活性化と基体
表面温度の上昇をはかシ、この状態で所定時間の反応を
行なわしめることにより基体表面にダイヤモンドを析出
生成せしめる方法であり、例えば特開昭、5 B−1,
、”3511 ’7号公報に記載されている方法がこれ
に相当するものである。
-Also, in the conventional method (b), as shown in the schematic cross-sectional view in FIG. A reaction mixture gas composed of hydrocarbons and hydrogen is introduced from the reaction mixture gas inlet pipe 2, and is exhausted from the other side of the reaction vessel l.
During this time, the atmospheric pressure in the reaction vessel 1 is maintained at several torr to several torr.
0 torr, and a high frequency coil 6 provided at the center outer periphery of the reaction vessel l is connected to a high frequency coil 6 having a frequency of, for example: 13.
56 MHz and a power output of 500 W to induce a plasma discharge around the substrate 5 in the reaction vessel 1, and this plasma discharge activates the reaction mixture gas by heating and increases the surface temperature of the substrate. This is a method of precipitating diamond on the surface of the substrate by carrying out a reaction for a predetermined period of time in this state.
The method described in ``3511 '7 publication corresponds to this method.

さらに、上記従来(C)方法は、同様に第3図に概略断
面図で示されるように、石英製反応容器l内の中火部に
基体5を置き、この反応容器lの上方に設けた反応混合
ガス導入管2かも、炭化水素と水素で構成された反応混
合ガスを流入し、一方反応容器lの下方から排気し、こ
の間、反応容器内の雰囲気圧力を0.1〜300 to
rrに保持し、一方反応容器lの中央外周部に設けた導
波管7を通して供給された、例えば2450MHzのマ
イクロ波をプラズマ調整用プランジャ8によって調整し
て、反応容器l内の基体5の周囲にプラズマ放電を発生
させ、このプラズマ放電によって反応混合ガスの加熱活
性化と基体表面温度の上昇をはかり、この状態で所定時
間の反応を行なわしめることにより基体表面にダイヤモ
ンドを析出生成せしめる方法であり、例えば特開昭58
−110494号公報に記載されている方法がこれに相
当する方法である。
Furthermore, in the conventional method (C), as similarly shown in the schematic cross-sectional view in FIG. A reaction mixture gas composed of hydrocarbons and hydrogen is also introduced into the reaction mixture gas inlet pipe 2, while being exhausted from the bottom of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel is maintained at 0.1 to 300 to
rr, and on the other hand, a microwave of, for example, 2450 MHz, which is supplied through a waveguide 7 provided at the central outer circumference of the reaction vessel l, is adjusted by a plasma adjustment plunger 8 to spread around the substrate 5 in the reaction vessel l. This is a method in which a plasma discharge is generated, the plasma discharge heats and activates the reaction mixture gas, and the temperature of the substrate surface increases, and by allowing the reaction to occur in this state for a predetermined period of time, diamond is precipitated and formed on the substrate surface. , for example, JP-A-58
The method described in Japanese Patent No.-110494 is a method corresponding to this.

しかし、これらの従来方法は、いずれも共通して基体表
面へのダイヤモンド析出生成速度が遅いという問題点が
ある。
However, all of these conventional methods have a common problem in that the rate of diamond precipitation on the substrate surface is slow.

そこて、本発明者等は、」二連のような観点から、上記
の従来人工ダイヤモンド析出生成方法におけるダイヤモ
ンドの析出生成速度の向上をはかるべく(υ[究を行な
つ/こ結果、上記の人工ダイヤモンド析出生成方法を実
施するに際して、炭化水素と水素とで構成された反応混
合ガスに、−酸化炭素(CO)を配合金有させると、基
体表面へのダイヤモンドの析出生成が一段と促進される
ようになるという知見を得だのである。
Therefore, the present inventors conducted research to improve the diamond precipitate formation rate in the conventional artificial diamond precipitate formation method described above from a dual perspective. When carrying out the method for producing artificial diamond precipitation, adding -carbon oxide (CO) to the reaction mixture gas composed of hydrocarbons and hydrogen further promotes the production of diamond precipitation on the surface of the substrate. We have gained the knowledge that this will happen.

この発明は、上5己知見にもとづいてなされたものであ
って、炭化水素と水素からなり、かつ熱電r放躬拐、高
周波によるプラズマ放電、あるいはマイクロ波によるプ
ラズマ放電などにより活性化された加熱反応混合ガスの
流れの中に置かれた加熱基体の表面に人工ダイヤモンド
を析出生成せしめるに際して、前記反応混合ガスに0.
05〜工0芥111チのCOを配合金有せしめて、前記
基体表面へのダイヤ七ン1゛の析出生成の促進をはかっ
た点に特徴を有するものである。
This invention was made based on the above-mentioned knowledge, and is made of hydrocarbons and hydrogen, and is heated by activated by thermoelectric radiation, high frequency plasma discharge, microwave plasma discharge, etc. When artificial diamond is precipitated and formed on the surface of a heated substrate placed in a flow of a reaction mixture gas, 0.0% is added to the reaction mixture gas.
The present invention is characterized in that it contains 0.05 to 0.111 g of CO as a compound to promote the precipitation of diamond 7.1 on the surface of the substrate.

なお、Coの配合含有量をO,’05〜1o容量係とし
たのは、005%未満の含有では所望のダイヤモンド析
出生成速度の向上効果が得られず、一方10%を越えて
配合すると、基体表面に析出する人工ダイヤモンド中の
酸素含有量が多くなりすぎて、ダイヤモンド結晶構造が
損なわれるようになるという理由によるものであり、中
でも0.05〜5容量チの配合金有が望ましい。
The reason why the content of Co is set as O,'05 to 1o by volume is that if the content is less than 0.05%, the desired effect of improving the diamond precipitation formation rate cannot be obtained, whereas if it is added in excess of 10%, This is because the oxygen content in the artificial diamond precipitated on the surface of the substrate becomes too high and the diamond crystal structure is impaired, and it is particularly desirable to have a compounded metal with a volume of 0.05 to 5.

つぎに、この発明の方法を実施例により具体的に12明
する。
Next, the method of the present invention will be specifically explained with reference to 12 examples.

実施例 ] 実施に際して、第1図に示される装置を用い、石英製反
応容器(1)の外径: 50 rtunφ、基体(5)
、平面10mm0×厚さ1 rurの寸法をもった金属
タングステン板材、 反応混合ガス組成、容量割合で、 H2/c H,/ 
CO= 100/110.2、 金属タングステン製フィラメント(3)と基体(5)の
表面との間隔:30mx 雰囲気圧力ニ 20 torr、 フィラメント(3)の加熱温度: 2000℃、フィラ
メントによる基体表面温度: ’i’oo℃、反応時間
:1時間、 の条件で実施して、基体5の表面に人工ダイヤ、モンド
を析出生成せしめた。
Example ] In carrying out the experiment, the apparatus shown in FIG. 1 was used, the outer diameter of the quartz reaction vessel (1) was 50 rtunφ, and the substrate (5) was
, a metal tungsten plate with dimensions of 10 mm in plane x 1 r in thickness, reaction mixture gas composition, volume ratio, H2/c H,/
CO = 100/110.2, Distance between metal tungsten filament (3) and surface of base (5): 30mx Atmospheric pressure: 20 torr, Heating temperature of filament (3): 2000°C, Surface temperature of base by filament: The reaction was carried out under the following conditions: 'i'oo°C, reaction time: 1 hour, and artificial diamond, diamond, was deposited on the surface of the substrate 5.

この結果、上記基体表面には平均層厚で4μmの人工ダ
イヤモンド膜が形成され、この人工ダイヤモンドは、天
然ダイヤモンドと同等のヌープ硬さで7000kg/m
11以上の高硬度を示し、かつX線回折でも天然ダイヤ
モンドと同じ回折結果を示した。
As a result, an artificial diamond film with an average layer thickness of 4 μm is formed on the surface of the substrate, and this artificial diamond has a Knoop hardness of 7000 kg/m, which is equivalent to that of natural diamond.
It exhibited a high hardness of 11 or more, and also showed the same diffraction results as natural diamond in X-ray diffraction.

一方、比較の目的で、反応混合ガスの組成を、容量割合
で、H2/CH,= 10 o/1とする以外は、同一
の条件で反応を行なわしめたところ、基体表面には平均
層厚で05μmの人工ダイヤモンド膜しか形成されず、
この結果より反応混合ガス中にCoを配合金有せしめれ
ば人工ダイヤモンドの析出生成速度が一段と向上するよ
うになることが明らかである。
On the other hand, for the purpose of comparison, the reaction was carried out under the same conditions except that the composition of the reaction mixture gas was changed to a volume ratio of H2/CH, = 10 o/1. Only an artificial diamond film of 0.05 μm was formed,
From this result, it is clear that if Co is included in the reaction mixture gas, the rate of precipitation of artificial diamond can be further improved.

実施例 2 実施に際して、第2図に示される装置を用い、石英製反
応容器(1)の外径:50mφ、基体(5):平面12
.7mmX厚さ4.8間の寸法をもった炭化タングステ
ン基超硬合金(Co:6重量%。
Example 2 In carrying out the experiment, the apparatus shown in FIG. 2 was used, the outer diameter of the quartz reaction vessel (1) was 50 mφ, and the substrate (5) was flat 12
.. Tungsten carbide-based cemented carbide (Co: 6% by weight) with dimensions of 7mm x thickness 4.8mm.

WC:残シ)製板材、 反応混合ガス組成:容量割合で、H2/C2H2/C0
w1oo : 5 : 1゜ 雰囲気圧力ニ 10 torr。
WC: Residue) plate material, reaction mixture gas composition: H2/C2H2/C0 in volume ratio
w1oo: 5: 1° Atmospheric pressure: 10 torr.

高周波コイル(6)への印加条件(周波数:13.56
MHz、出カニ500W)、 反応時間:1時間、 の条件で実施したところ、前記基体5の表面には平均層
厚で5μmの人工ダイヤモンド膜が形成された。
Application conditions to high frequency coil (6) (frequency: 13.56
MHz, power output 500W), reaction time: 1 hour, and an artificial diamond film with an average layer thickness of 5 μm was formed on the surface of the substrate 5.

この結果得られた人工ダイヤモンドは、同じくヌープ硬
さで7500 kg/myi、以上の高硬度を示し、か
つX線回折でも天然ダイヤモンドと同様の回折結果を示
しだ。
The resulting artificial diamond also showed a high hardness of over 7,500 kg/myi on the Knoop hardness, and also showed the same diffraction results as natural diamond in X-ray diffraction.

一方、同様に比較の目的で、反応混合ガス中にCOを配
合せず、その組成をH2/ C2H2= 100 / 
5とする以外は同一の条件で反応を行なわしめたところ
、基体表面には平均層厚で08μmのわずかな人工ダイ
ヤモンドしか析出生成することができなかった。
On the other hand, for the purpose of comparison, CO was not added to the reaction mixture gas and its composition was changed to H2/C2H2=100/
When the reaction was carried out under the same conditions except that No. 5 was used, only a small amount of artificial diamond with an average layer thickness of 08 μm could be precipitated on the surface of the substrate.

実施例 3 同様に実施に際して、第3図に示される装置を用い、 石英製反応容器(1)の外径:30uφ、基体(5):
平面12.’7mxX厚さ48朋の寸法をもった炭化タ
ングステン基超硬合金(TiC:10重量%、 Co:
 7重量楚、WC:残シ)製板材、反応混合ガス組成:
容量割合で、H2/ CI−(4/C0−10015/
3、 雰囲気圧力ニ 5 torr。
Example 3 In the same manner, the apparatus shown in FIG. 3 was used, and the outer diameter of the quartz reaction vessel (1) was 30 uφ, and the substrate (5) was
Plane 12. Tungsten carbide-based cemented carbide (TiC: 10% by weight, Co:
7 weight, WC: residual) plate material, reaction mixture gas composition:
In terms of capacity ratio, H2/CI-(4/C0-10015/
3. Atmospheric pressure: 5 torr.

マイクロ波: 2450 MHz。Microwave: 2450 MHz.

反応時間:1時間、 の条件でマイクロ波によるプラズマ放電を一利用して実
施した。この場合前記基体5の表面に平均層厚で45μ
mの人工ダイヤモンドが形成された。
The reaction time was 1 hour, and the reaction was carried out using microwave plasma discharge under the following conditions. In this case, the average layer thickness is 45 μm on the surface of the base 5.
m artificial diamonds were formed.

この結果得られた人工ダイヤモンドは、天然ダイヤモン
ドと同等のヌープ硬さで8oookg/miO高硬度を
示し、かつX線回折でも天然ダイヤモンドと同じ回折結
果を示した。
The artificial diamond obtained as a result showed a high hardness of 800 kg/miO with a Knoop hardness equivalent to that of natural diamond, and also showed the same diffraction results as natural diamond in X-ray diffraction.

また、比較の目的で、反応混合ガスの組成を、従来人工
ダイヤモンドの析出生成方法の場合と同じ、容量割合で
H2/ CHa = 100 / 5とする以外は、同
一の条件で反応を行なわしめたところ、基体5の表面に
は平均層厚で0.8μmのダイヤモンドしか形成しなか
った。
In addition, for the purpose of comparison, the reaction was carried out under the same conditions except that the composition of the reaction mixture gas was set to a volume ratio of H2/CHa = 100/5, which is the same as in the case of the conventional artificial diamond precipitation method. However, diamond with an average layer thickness of only 0.8 μm was formed on the surface of the substrate 5.

上述のように、この発明の方法によれば、反応混合ガス
中に一酸化炭素(CO)を配合金有させることによって
、人工ダイヤモンドを従来の炭化水素と水素で構成され
た反応混合ガスを使用する方法に比して一段と速い析出
生成速度で形成することができるのである。
As mentioned above, according to the method of the present invention, by adding carbon monoxide (CO) to the reaction mixture gas, artificial diamonds can be produced using a conventional reaction mixture gas composed of hydrocarbons and hydrogen. It is possible to form a precipitate at a much faster rate than with other methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はいずれも人工ダイヤモンドの析出生成装置
を示す概略断面図である。 1・・反応容器、 2・・・反応混合ガス導入管、:3
・熱電子放射材としてのフィラメント、4939合板、
 5“基体、 6 高周波コイル、7−導波管。 出願人 三菱金属株式会社 代理人 富 1) 和 夫 外1名 ≠1図 采2図 第3図 手 続 補 正 書 (自 発) 昭和59年 4月13日 特願昭59−44649号 2、発明の名称 人ロダイA7モンドの析出生成方法 3、補正をする者 事件との関係 特認4出願人 住所 東京都千代田区大手町−丁目512号氏名(名称
> (62G)三菱金属株式会社代表者 永 野 健 4、代理人 住所 東京都千代田区神田錦町−丁目23番地宗保第二
ビル8階 〒101 電話(03) 233−1(376・167
77、補正の内容 別紙の通り (1)明細書、第8頁、発明の詳細な説明の項、第7行
、 r H2/ C2H2/ Co Jとあるを、r t1
2/ 0216 / COJと訂正する。 以上
1 to 3 are schematic cross-sectional views showing an apparatus for producing artificial diamond. 1... Reaction container, 2... Reaction mixed gas introduction pipe, :3
・Filament as thermionic emitting material, 4939 plywood,
5 "Substrate, 6 - High frequency coil, 7 - Waveguide. Applicant: Mitsubishi Metals Co., Ltd. Agent Tomi 1) Kazuo and 1 other person ≠ 1 figure 2 figure 3 procedure amendment (self-motivated) 1972 Patent Application No. 59-44649 (April 13, 2017) 2, Name of the invention: Lodi A7 Monde's precipitation production method 3, Relationship with the person making the amendment case Special approval 4 Applicant address: 512-chome, Otemachi, Chiyoda-ku, Tokyo Name (62G) Mitsubishi Metals Co., Ltd. Representative Ken Nagano 4, Agent address 8th floor, Soho Daini Building, 23 Kanda Nishikicho-chome, Chiyoda-ku, Tokyo 101 Telephone (03) 233-1 (376-167)
77. Contents of the amendment As shown in the attached sheet (1) Specification, page 8, detailed description of the invention, line 7, r H2/ C2H2/ Co J, r t1
Corrected as 2/ 0216 / COJ. that's all

Claims (1)

【特許請求の範囲】[Claims] 炭化水素と水素からなり、かつ熱電子放射材、高周波に
よるプラズマ放電、あるいはマイクロ波によるプラズマ
放電などにより活性化された加熱反応混合ガスの流れの
中に置かれた加熱基体の表面に人工ダイ−ヤモンドを析
出生成せしめる方法において、[)1」記反応混合ガス
に005〜10容量係の一酸化炭素を含廟すしめて、前
記基体表面へのダイヤモンドの析出生成速度の向上をは
かることを特徴とする人工ダイヤモンドの析出生成方法
An artificial die is placed on the surface of a heated substrate placed in a flow of a heated reaction mixture consisting of hydrocarbons and hydrogen and activated by a thermionic radiation material, plasma discharge by high frequency, plasma discharge by microwave, etc. The method for precipitating and forming diamond, characterized in that carbon monoxide of 005 to 10 by volume is included in the reaction mixture gas as described in [1] above in order to improve the rate of forming diamond on the surface of the substrate. A method for producing artificial diamond precipitation.
JP59044649A 1984-03-08 1984-03-08 Crystallizing method of artificial diamond Granted JPS60191097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044649A JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044649A JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Publications (2)

Publication Number Publication Date
JPS60191097A true JPS60191097A (en) 1985-09-28
JPS6327319B2 JPS6327319B2 (en) 1988-06-02

Family

ID=12697286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044649A Granted JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Country Status (1)

Country Link
JP (1) JPS60191097A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
WO1987003307A1 (en) * 1985-11-25 1987-06-04 Showa Denko Kabushiki Kaisha Process for synthesizing diamond
JPS6321292A (en) * 1986-07-11 1988-01-28 Kyocera Corp Production of diamond film
JPS6321291A (en) * 1986-07-11 1988-01-28 Kyocera Corp Production of diamond film
JPS63166798A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
US4767608A (en) * 1986-10-23 1988-08-30 National Institute For Research In Inorganic Materials Method for synthesizing diamond by using plasma
JPH01130520A (en) * 1987-11-17 1989-05-23 Idemitsu Petrochem Co Ltd Synthesizing of diamond semiconductor
US4859493A (en) * 1987-03-31 1989-08-22 Lemelson Jerome H Methods of forming synthetic diamond coatings on particles using microwaves
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
WO1991014572A1 (en) * 1990-03-20 1991-10-03 Diamonex, Incorporated Diamond-on-a-substrate for electronic applications
US5068871A (en) * 1989-08-04 1991-11-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for synthesizing diamond and apparatus therefor
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process
US5225275A (en) * 1986-07-11 1993-07-06 Kyocera Corporation Method of producing diamond films
US5270114A (en) * 1987-03-30 1993-12-14 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5273825A (en) * 1987-03-30 1993-12-28 Crystallume Article comprising regions of high thermal conductivity diamond on substrates
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
US5277975A (en) * 1987-03-30 1994-01-11 Crystallume High thermal-conductivity diamond-coated fiber articles
US5400738A (en) * 1989-03-07 1995-03-28 Sumitomo Electric Industries, Ltd. Method for producing single crystal diamond film
US5633088A (en) * 1987-03-30 1997-05-27 Crystallume Diamond film and solid particle composite structure and methods for fabricating same
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
JPH0566360B2 (en) * 1985-07-31 1993-09-21 Kyocera Corp
WO1987003307A1 (en) * 1985-11-25 1987-06-04 Showa Denko Kabushiki Kaisha Process for synthesizing diamond
US5225275A (en) * 1986-07-11 1993-07-06 Kyocera Corporation Method of producing diamond films
JPS6321292A (en) * 1986-07-11 1988-01-28 Kyocera Corp Production of diamond film
JPS6321291A (en) * 1986-07-11 1988-01-28 Kyocera Corp Production of diamond film
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
US4767608A (en) * 1986-10-23 1988-08-30 National Institute For Research In Inorganic Materials Method for synthesizing diamond by using plasma
JPS63166798A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
US5284709A (en) * 1987-03-30 1994-02-08 Crystallume Diamond materials with enhanced heat conductivity
US5270114A (en) * 1987-03-30 1993-12-14 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5633088A (en) * 1987-03-30 1997-05-27 Crystallume Diamond film and solid particle composite structure and methods for fabricating same
US5304424A (en) * 1987-03-30 1994-04-19 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5277975A (en) * 1987-03-30 1994-01-11 Crystallume High thermal-conductivity diamond-coated fiber articles
US5273825A (en) * 1987-03-30 1993-12-28 Crystallume Article comprising regions of high thermal conductivity diamond on substrates
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US4859493A (en) * 1987-03-31 1989-08-22 Lemelson Jerome H Methods of forming synthetic diamond coatings on particles using microwaves
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
US4984534A (en) * 1987-04-22 1991-01-15 Idemitsu Petrochemical Co., Ltd. Method for synthesis of diamond
US4869924A (en) * 1987-09-01 1989-09-26 Idemitsu Petrochemical Company Limited Method for synthesis of diamond and apparatus therefor
JPH0573328B2 (en) * 1987-11-17 1993-10-14 Idemitsu Petrochemical Co
JPH01130520A (en) * 1987-11-17 1989-05-23 Idemitsu Petrochem Co Ltd Synthesizing of diamond semiconductor
US6265070B1 (en) 1988-03-07 2001-07-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US7144629B2 (en) 1988-03-07 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6583481B2 (en) 1988-03-07 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US5400738A (en) * 1989-03-07 1995-03-28 Sumitomo Electric Industries, Ltd. Method for producing single crystal diamond film
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process
US5068871A (en) * 1989-08-04 1991-11-26 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for synthesizing diamond and apparatus therefor
WO1991014572A1 (en) * 1990-03-20 1991-10-03 Diamonex, Incorporated Diamond-on-a-substrate for electronic applications

Also Published As

Publication number Publication date
JPS6327319B2 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
JPS60191097A (en) Crystallizing method of artificial diamond
JPS5891100A (en) Synthesizing method for diamond
JPH01282999A (en) Acoustic diaphragm and its manufacture
JPH0288497A (en) Production of single crystal diamond grain
US5071708A (en) Composite diamond grain
EP0320657B1 (en) Improved diamond growth process
JPS6320911B2 (en)
US5268201A (en) Composite diamond grain and method for production thereof
JPH0419198B2 (en)
JPS6054995A (en) Synthesis of diamond
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPH05195224A (en) Method of obtaining thickly adhered diamond coating film by using intermediate screen made of metal
JPS6286161A (en) Formation of artificial diamond film at high deposition forming rate
JPS63270394A (en) Flow type method for synthesizing diamond and apparatus therefor
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JPH01317112A (en) Polycrystalline diamond having high strength and production thereof
JPS60186499A (en) Method for depositing and forming artificial diamond
JPS60171295A (en) Method for forming artificial diamond by vapor deposition
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
JP2585342B2 (en) Diamond vapor phase synthesis
JP2686970B2 (en) Membrane diamond manufacturing method
JPH02145412A (en) Gas phase synthesis of diamond with large size
JPH0234917B2 (en)
JPS60200897A (en) Process for depositing and forming artificial diamond film
JPS58100670A (en) Chemical vapor deposition method