JPH02145412A - Gas phase synthesis of diamond with large size - Google Patents

Gas phase synthesis of diamond with large size

Info

Publication number
JPH02145412A
JPH02145412A JP63296300A JP29630088A JPH02145412A JP H02145412 A JPH02145412 A JP H02145412A JP 63296300 A JP63296300 A JP 63296300A JP 29630088 A JP29630088 A JP 29630088A JP H02145412 A JPH02145412 A JP H02145412A
Authority
JP
Japan
Prior art keywords
diamond
filament
substrate
base plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296300A
Other languages
Japanese (ja)
Inventor
Kunio Komaki
小巻 邦雄
Masaaki Yanagisawa
柳沢 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63296300A priority Critical patent/JPH02145412A/en
Publication of JPH02145412A publication Critical patent/JPH02145412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the subject diamond particle with a large size in a high yield by depositing the diamond on a base plate having the surface of a recessed shape parallel in the longitudinal direction of a filament. CONSTITUTION:A base plate 5 made of a metal with a high melting point and having the surface of a recessed shape parallel in the longitudinal direction of a filament is placed in a reaction tank 1 made of a metal. The filament 4 is then electrically charged for heating and the raw gas is simultaneously introduced from a gas-charge opening 2 to be excited. Among gas flows containing radical ions released from the filament 4, the gas flow released downwards is bent by a gas flow generated from a part of the base plate 5 directly under the filament 4 where is especially at high temperatures and forced to be blown on the base plate 5, thus forming the objective diamond particle with 100-200mum diameter on the side surface of the base plate 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相法によるダイヤモンドの合成法に関し、更
に詳しくは熱フイラメント法による基板上に大粒径のダ
イヤモンドを析出させるダイヤモンドの合成法に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for synthesizing diamond by a vapor phase method, and more particularly to a method for synthesizing diamond by depositing large-diameter diamonds on a substrate by a hot filament method. .

〔従来の技術〕[Conventional technology]

気相法によるダイヤモンド合成は炭化水素、アルコール
、アセトン等の原料ガスを用い、これに水素ガス等を混
合し、マイクロ波プラズマ、高周波プラズマ、直流放電
等の励起手段により前記混合ガスを分解し、基板等の上
にダイヤモンドを析出する方法である。
Diamond synthesis by the vapor phase method uses raw material gases such as hydrocarbons, alcohol, acetone, etc., mixes hydrogen gas etc. with this, decomposes the mixed gas by excitation means such as microwave plasma, high frequency plasma, direct current discharge, etc. This is a method in which diamond is deposited on a substrate or the like.

また原料ガスを励起させるのにタングステン、タンタル
等のフィラメントを加熱することにより原料ガスからダ
イヤモンドを析出させる方法も知られており、原料ガス
に水蒸気、酸素、−酸化炭素を添加することも行なわれ
ている。
It is also known to precipitate diamonds from the raw material gas by heating a filament of tungsten, tantalum, etc. to excite the raw material gas, and adding water vapor, oxygen, and carbon oxide to the raw material gas is also known. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

気相法によるダイヤモンド生成は炭化水素等が先ず励起
分解し、ラジカルやイオンの生成があり、これからダイ
ヤモンドが基板等に析出するといわれている。
It is said that when diamond is produced by the gas phase method, hydrocarbons and the like are first excited and decomposed to generate radicals and ions, from which diamond is deposited on a substrate and the like.

従来の方法では励起源から放出されたラジカルイオンの
内、基板方向に放出された−・部がダイヤモンド化する
のに過ぎず、はとんどはそのまま消滅してしまい、ダイ
ヤモンドの成長速度もSかった。
In the conventional method, of the radical ions emitted from the excitation source, only the - portion emitted toward the substrate becomes diamond, and most of them disappear as they are, and the growth rate of diamond also slows down to S. won.

また析出基板」二でのダイヤモンドの核発生密度を制御
する車は難しく、粒径が120gm前後を越えると粒同
士が合体し、膜状となってしまった。
Furthermore, it is difficult to control the density of diamond nucleation in the deposition substrate, and when the particle size exceeds about 120 gm, the particles coalesce together and form a film.

本発明の目的は大粒径の独立ダイヤモンド粒を効率よく
合成することにある。
An object of the present invention is to efficiently synthesize large-sized independent diamond grains.

〔課題を解決するための手段〕[Means to solve the problem]

ダイヤモンド合成装置の励起源、特に熱フィラメントに
よる加熱で生ずるガス流の分布とダイヤモンドの析出領
域を比較したところ、分布がほぼ−・致することが明ら
かになった。すなわちダイヤモンドを形成するイオン、
ラジカル等はガス流の内部に多く存在していることが予
想される。
A comparison of the distribution of the gas flow generated by the excitation source of a diamond synthesis device, particularly heating by a hot filament, and the diamond precipitation area revealed that the distributions almost matched. i.e. ions that form diamonds,
It is expected that many radicals and the like exist inside the gas flow.

本発明者はこの事に着目し、励起源から放出されるガス
流を曲げるため、フィラメント長手方向に平行に凹面の
形状を有する析出基板を設けることにより、特に粒状の
ダイヤモンドが高速で成長することを見出し、本発明を
完成するに至った。
The inventor of the present invention focused on this fact, and by providing a deposition substrate having a concave shape parallel to the longitudinal direction of the filament in order to bend the gas flow emitted from the excitation source, it was possible to grow particularly granular diamond at high speed. They discovered this and completed the present invention.

すなわち、本件発明の要旨は熱フィラメントにより原料
ガスを励起する気相法ダイヤモンドの合成法において、
フィラメント長手方向に平行に凹面の形状を有する基板
十にダイヤモンドを析出させることを特徴とする気相法
大粒径ダイヤモンドの合成法にある。
In other words, the gist of the present invention is that in a vapor phase diamond synthesis method in which raw material gas is excited by a hot filament,
A method for synthesizing large-grain diamond by a vapor phase method, which is characterized by depositing diamond on a substrate having a concave shape parallel to the longitudinal direction of a filament.

以下、本発明を例を示して詳しく説明する。Hereinafter, the present invention will be explained in detail with reference to examples.

図1は励起源に通電加熱したフィラメンI・を用いた場
合で本発明の合成法を示したものである。
FIG. 1 shows the synthesis method of the present invention in the case where an electrically heated filament I. is used as an excitation source.

図で1は周囲を囲む金属製等の反応槽である。この反応
槽にはガス導入口2、ガス摺出r−13が設置されてい
る。又、4は励起源である通電加熱されたフィラメント
、5はフィラメントからのガス流を曲げるための加熱さ
れた基板とダイヤモンドの析出基板を兼ねたものである
。この基板はフィラメントからの放射熱で加熱され、フ
ィラメント直下の部分では特に高温となる。すなわちフ
ィラメント4から放出されたラジカル、イオンを含むガ
ス流のうち、下方に放出されたものはフィラメント直下
の基板5の特に高温になっている部分から生じたガス流
によって曲げられ、基板5の横の面に吹き付けられる。
In the figure, 1 is a reaction tank made of metal or the like that surrounds the reactor. This reaction tank is equipped with a gas inlet 2 and a gas sliding outlet r-13. Further, 4 is an electrically heated filament which is an excitation source, and 5 is a heated substrate for bending the gas flow from the filament, which also serves as a diamond deposition substrate. This substrate is heated by radiant heat from the filament, and the portion directly below the filament becomes particularly high temperature. In other words, among the gas flows containing radicals and ions released from the filament 4, those released downward are bent by the gas flow generated from the particularly high temperature part of the substrate 5 directly below the filament, and are sprayed onto the surface.

すなわち、この基板5の横の面にはフィラメントから横
方向に放出されるガス流の他に、下方に放出されたガス
流が加わり高速でダイヤモンドが形成する。
That is, in addition to the gas flow released laterally from the filament, a gas flow released downward is added to the lateral surface of the substrate 5, forming diamonds at high speed.

以上のことから基板5はフィラメントからのガス流を曲
げるための温度の高い部分と、それより温度の低いダイ
ヤモンドの析出する部分に構成され両名のつなぎめはガ
ス流を乱さず、かつ析出基板面にガス流が集中するよう
になだらかな連続な面となっている事が好ましい。また
この方法で基板5の横の面に形成するダイヤモンドは理
由は不明であるが基板上での核発生密度が低くなり粒状
となる。
From the above, the substrate 5 is composed of a high-temperature part for bending the gas flow from the filament and a lower-temperature part for depositing diamond. It is preferable that the surface be a smooth continuous surface so that the gas flow is concentrated on the surface. Further, the diamond formed on the lateral surface of the substrate 5 by this method has a low nucleation density on the substrate and becomes granular, although the reason is unknown.

図1で示した合成装置は本発明を実施するための1例で
あるのでガス流を曲げるための基板とダイヤモンドを析
出させるための基板を一体となるように設置されている
が、本発明は前記のような作用からなっているので、ガ
ス流を曲げるための基板とダイヤモンドを析出させるた
めの基板が別々になっていたとしても、全体の構成がフ
ィラメント方向に基板が凹面となっている配置のすべて
が含まれる。
The synthesis apparatus shown in FIG. 1 is an example for carrying out the present invention, so the substrate for bending the gas flow and the substrate for depositing diamond are installed so as to be integrated. Because of the above-mentioned action, even if the substrate for bending the gas flow and the substrate for depositing diamond are separate, the overall configuration is such that the substrate has a concave surface in the direction of the filament. Includes everything.

またガス流を曲げるための基板の材質は800℃以上、
好ましくは1000℃以上に加熱できる物質であれば何
でもよい。たとえば、W、 No、 Ta、 T1Ni
、 Crなどの高融点金属板が好ましい。これらの基板
を通常の熱フィラメント法ダイヤモンド合成に用いた場
合、核発生密度は1x105個/mm’程であるのに対
して、本発明の手法ではl X 10’個/mtn’に
まで低下し、ダイヤモンド粒が120 #Lm以上に成
長しても粒同士が合体して膜状となる嚇は少ない。
In addition, the material of the substrate for bending the gas flow is 800℃ or higher,
Preferably, any substance that can be heated to 1000°C or higher may be used. For example, W, No, Ta, T1Ni
, Cr or other high melting point metal plates are preferred. When these substrates are used for conventional hot filament method diamond synthesis, the nucleation density is about 1 x 105/mm', whereas in the method of the present invention, it is reduced to l x 10'/mtn'. Even if the diamond grains grow to 120 #Lm or more, there is little danger that the grains will coalesce and form a film.

この手法で基板上に析出したダイヤモンド粒は基板を酸
溶解する事により回収できる0例えば基板にNoを用い
た場合硝酸:塩酸:水=3:l:5で混合した溶液によ
り基板のみを溶解できる。
Diamond grains deposited on the substrate using this method can be recovered by dissolving the substrate in acid. For example, if No is used for the substrate, only the substrate can be dissolved with a solution of nitric acid: hydrochloric acid: water = 3:1:5. .

本方法に用いられるダイヤモンド析出原料、フィラメン
ト材等については公知の気相法に用いられる材料と全く
同じで良い。
The diamond precipitation raw materials, filament materials, etc. used in this method may be exactly the same as those used in known gas phase methods.

〔実施例〕〔Example〕

図2に示す形状の基板を図1の装置内に設置した。基板
の材質はモリブデンで厚さ100μ騰、表面を#100
のエメリー紙で研磨している。
A substrate having the shape shown in FIG. 2 was placed in the apparatus shown in FIG. The material of the board is molybdenum with a thickness of 100μ and a #100 surface.
Polished with emery paper.

反応炉は直径20CI11.高さ20ce、容積約6文
で内部に直径0.4mm、長さ30mmのタンタルフィ
ラメントを設けている。
The reactor has a diameter of 20CI11. It has a height of 20 ce, a volume of about 6 cm, and a tantalum filament with a diameter of 0.4 mm and a length of 30 mm inside.

フィラメント温度を2450℃、基板温度をフィラメン
ト直下で約1200℃、横の部分で約1000℃に保ち
ガス状エタノールと水素を3cc/分、 100cc/
分の割合で混合、反応炉に導入し、反応圧力90Tor
rで3時間反応させた。反応後基板上の析出物を観察し
たところ、基板のフィラメント直下の部分は何も析出し
ていないのに対し、横の部分には直径100〜200 
grsのダイヤモンド粒が析出していた。またこの粒の
核発生密度は4.1個/mtn’で基板を酸溶解し析出
したダイヤモンド秤量したところ40.2m gであっ
た。
Keep the filament temperature at 2450°C, the substrate temperature at about 1200°C directly below the filament, and at about 1000°C on the side, and feed gaseous ethanol and hydrogen at 3 cc/min and 100 cc/min.
Mixed at a ratio of 100 to 200 m, introduced into the reactor, and set the reaction pressure to 90 Torr.
The reaction was carried out at r for 3 hours. When we observed the precipitates on the substrate after the reaction, we found that there was no precipitate on the part directly below the filament, but on the side part there was a deposit of 100 to 200 mm in diameter.
Diamond grains of grs were precipitated. The nucleation density of these particles was 4.1/mtn', and the diamond precipitated by dissolving the substrate in acid was weighed and found to be 40.2 mg.

〔比較例〕[Comparative example]

基板に縦40mm、横20s+m、厚さ100psのモ
リブデンの平面基板を用い、基板温度をフィラメント直
下で約1000℃とし、他の条件は実施例と同様にして
実験を行った。
The experiment was conducted using a flat molybdenum substrate with a length of 40 mm, a width of 20 s+m, and a thickness of 100 ps, and the substrate temperature was set at about 1000° C. directly below the filament, and other conditions were the same as in the examples.

3時間の合成後、基板上に析出物を観察したところ基板
の中央部分に厚さ30psの膜状のダイヤモンドが析出
した。基板を酸で溶解し、析出したダイヤモンドを秤量
したところ、15.8mgであった。
After 3 hours of synthesis, the precipitates on the substrate were observed, and a diamond film with a thickness of 30 ps was precipitated in the center of the substrate. When the substrate was dissolved with acid and the precipitated diamond was weighed, it was found to be 15.8 mg.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を使用することにより大粒径のダイヤモン
ド粒が高収率で合成可能になる。
By using the method of the present invention, large diameter diamond grains can be synthesized in high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明を実施する装置の1例の断面図である。 図2は本発明を実施する基板形状の1例を示す斜視図で
ある。 l・・・・・・反応槽、   2・・・・・・ガス導入
口、3・・・・・・ガス排出口、 4・・・・・・励起
源5・・・・・・析出基板
FIG. 1 is a cross-sectional view of an example of an apparatus for implementing the present invention. FIG. 2 is a perspective view showing an example of the shape of a substrate for implementing the present invention. l...Reaction tank, 2...Gas inlet, 3...Gas outlet, 4...Excitation source 5...Deposition substrate

Claims (1)

【特許請求の範囲】 1、熱フィラメントにより原料ガスを励起する気相法ダ
イヤモンドの合成法において、フィラメント長手方向に
平行に凹面の形状を有する基板上にダイヤモンドを析出
させることを特徴とする気相法大粒径ダイヤモンドの合
成法。 2、析出するダイヤモンドの粒径が120μm以上であ
る請求項1記載の気相法大粒径ダイヤモンドの合成法。
[Claims] 1. A vapor phase diamond synthesis method in which a source gas is excited by a hot filament, characterized in that diamond is deposited on a substrate having a concave shape parallel to the longitudinal direction of the filament. Synthesis method of large-grain diamond. 2. The method for synthesizing large-grain diamond by vapor phase method according to claim 1, wherein the particle size of the precipitated diamond is 120 μm or more.
JP63296300A 1988-11-25 1988-11-25 Gas phase synthesis of diamond with large size Pending JPH02145412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296300A JPH02145412A (en) 1988-11-25 1988-11-25 Gas phase synthesis of diamond with large size

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296300A JPH02145412A (en) 1988-11-25 1988-11-25 Gas phase synthesis of diamond with large size

Publications (1)

Publication Number Publication Date
JPH02145412A true JPH02145412A (en) 1990-06-04

Family

ID=17831768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296300A Pending JPH02145412A (en) 1988-11-25 1988-11-25 Gas phase synthesis of diamond with large size

Country Status (1)

Country Link
JP (1) JPH02145412A (en)

Similar Documents

Publication Publication Date Title
JPS5891100A (en) Synthesizing method for diamond
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPS6320911B2 (en)
JPS60231494A (en) Manufacture of diamond superfines
JPS61163195A (en) Synthesizing method for diamond in gas phase and its apparatus
JPH0518796B2 (en)
JPH02145412A (en) Gas phase synthesis of diamond with large size
JPS6221757B2 (en)
JPH0419198B2 (en)
JPS63270394A (en) Flow type method for synthesizing diamond and apparatus therefor
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JPS5918197A (en) Gaseous phase synthesis of diamond
JP2585342B2 (en) Diamond vapor phase synthesis
JPS60200896A (en) Process for synthesizing fibrous diamond
JPS63297299A (en) Method for vapor synthesis of diamond
JPH0667797B2 (en) Diamond synthesis method
JPS6261109B2 (en)
JP2773442B2 (en) Diamond production method
JPH01167299A (en) Diamond synthesis by vapor phase method
JPH08208207A (en) Vapor phase synthesis of boron nitride
JPH0733580B2 (en) Method for producing cubic boron nitride film
JPS6261108B2 (en)
JPH0448758B2 (en)
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS6335495A (en) Diamond vapor phase synthesizer of high-efficiency