JPH0419198B2 - - Google Patents

Info

Publication number
JPH0419198B2
JPH0419198B2 JP58142918A JP14291883A JPH0419198B2 JP H0419198 B2 JPH0419198 B2 JP H0419198B2 JP 58142918 A JP58142918 A JP 58142918A JP 14291883 A JP14291883 A JP 14291883A JP H0419198 B2 JPH0419198 B2 JP H0419198B2
Authority
JP
Japan
Prior art keywords
diamond
gas
reaction
hydrogen plasma
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58142918A
Other languages
Japanese (ja)
Other versions
JPS6033300A (en
Inventor
Nobuaki Shohata
Kazutaka Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58142918A priority Critical patent/JPS6033300A/en
Publication of JPS6033300A publication Critical patent/JPS6033300A/en
Publication of JPH0419198B2 publication Critical patent/JPH0419198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、水素ガス雰囲気下で炭化水素を熱分
解することによつて粒子状なしいは膜状ダイヤモ
ンドを析出させる方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for depositing particulate or film diamond by thermally decomposing hydrocarbons in a hydrogen gas atmosphere.

炭化水素ないしは炭素化合物気体の熱分解によ
つてダイヤモンドを合成する方法として、従来数
種の方法が知られている。例えば特開昭47−
42286に所載の方法は、水素ガスをキヤリアガス
として、ダイヤモンド種結晶粉末を触媒ヒーター
中に置き、以下の反応を利用してダイヤモンド種
結晶粒子径を増大させることができることを明ら
かにしている。
Several methods have been known to synthesize diamond by thermal decomposition of hydrocarbon or carbon compound gases. For example, JP-A-47-
42286 discloses that diamond seed crystal powder can be placed in a catalytic heater with hydrogen gas as a carrier gas and the diamond seed crystal particle size can be increased using the following reaction.

(1) CH4→C(ダイヤモンド)+2H2 (2) 2CO→C(ダイヤモンド)+CO2 (3) CnH2o+2→C(ダイヤモンド)+H2 (但しn≦5) しかし、一般にダイヤモンドの気相合成では、
ダイヤモンド以外の無定形炭素やグラフアイトの
析出が以後のダイヤモンドの生成を陥止してしま
う。このためダイヤモンド以外の無定形炭素やグ
ラフアイト等の非ダイヤモンド物質の生成を防止
する必要がある。
(1) CH 4 → C (diamond) + 2H 2 (2) 2CO → C (diamond) + CO 2 (3) CnH 2o+2 → C (diamond) + H 2 (however, n≦5) However, in general, the gas phase of diamond In synthesis,
The precipitation of amorphous carbon other than diamond and graphite prevents the subsequent formation of diamond. Therefore, it is necessary to prevent the formation of non-diamond substances such as amorphous carbon and graphite other than diamond.

この手段としてPt、Ir、Os、Re、Au、Pd、
Ru、Re、Au、Pd.Ru、Rh、Ag、Ni等の触媒ヒ
ーターの存在下、反応条件として、減圧ないしは
1〜10気圧の圧力で、900℃〜1200℃の温度範囲
で合成を行うことが明らかにされている。生成す
る無定形炭素ないしはグラフアイトは、前記の触
媒ヒーターの作用によつて、ダイヤモンド上で、 C(無定形又はグラフアイト)+2H2→CH4 なる反応で除去できることが知られている。
As a means of this, Pt, Ir, Os, Re, Au, Pd,
Synthesis is carried out in the presence of a catalytic heater such as Ru, Re, Au, Pd. Ru, Rh, Ag, Ni, etc., under reduced pressure or a pressure of 1 to 10 atm, and at a temperature range of 900°C to 1200°C. has been revealed. It is known that the generated amorphous carbon or graphite can be removed on diamond by the reaction of C (amorphous or graphite) + 2H 2 →CH 4 by the action of the catalyst heater described above.

しかしながら開示されている従来の方法では、
いずれもダイヤモンド種結晶を必要とし、また無
定形炭素ないしはグラフアイトの除去を完全に行
うことは不可能であつた。また確かに従来の方法
は、ダイヤモンド種結晶の小さい間、即ち、合成
反応初期の例えば0.1μm程度以下の種結晶径の間
のみ有効であつたが、種結晶が大きくなるにつれ
次第に触媒ヒーターの効果は薄れ、無定形炭素な
いしは、グラフアイト等の非ダイヤモンド物質が
多量に析出してしまい、その結果種結晶の成長は
陥止される問題があり、粒径の大きなダイヤモン
ドを得ることが困難であつた。また、ダイヤモン
ド種結晶以外の物質上にダイヤモンドを析出させ
ることや平坦な表面上に膜状のダイヤモンドを得
ることなどは不可能であつた。
However, in the disclosed conventional method,
Both methods require diamond seed crystals, and it is impossible to completely remove amorphous carbon or graphite. It is true that the conventional method was effective only while the diamond seed crystal was small, that is, during the seed crystal diameter of about 0.1 μm or less at the beginning of the synthesis reaction, but as the seed crystal became larger, the effect of the catalytic heater gradually increased. The diamond becomes thinner and a large amount of non-diamond substances such as amorphous carbon or graphite precipitates, resulting in the problem of inhibiting the growth of seed crystals, making it difficult to obtain diamonds with large grain sizes. Ta. Furthermore, it has been impossible to deposit diamond on materials other than diamond seed crystals, or to obtain a film of diamond on a flat surface.

また別の方法、例えば1982年発行のジヤパニー
ズ・ジヤーナル・オブ・アプライド・フイジツク
ス誌(Japanese Journal of Applied Phgsics)
第21巻第L183ページ所載の論文には約2000℃に
加熱したダングステン・ヒーターに水素ガスをキ
ヤリアとして、メタン(CH4)ガスを触媒加熱
し、熱分解させ、シリコンモリブデンないしは石
英ガラス基板上にダイヤモンドを析出させる方法
が述べられている。この方法は、ダイヤモンド以
外の物質上でダイヤモンドを析出させることがで
きる点で優れた方法であるが、タングステンヒー
タは約2000℃という高温に加熱されているため
に、タングステン自体の蒸気圧も高くなり、短時
間で消耗したり、蒸発したタングステンがダイヤ
モンド表面に付着したりする問題もある。また一
度加熱されたタングステンヒーターは、タングス
テン微結晶粒子の成長やガス分子の吸蔵等によ
り、極めてもろくなり、簡単に切断されやすくな
るため、頻繁にタングステンヒーターを交換せね
ばならず長時間装置を運転するのが困難である、
またタングステンヒーター線の経時変化には反応
ガスの熱分解条件の変動を招き広い面積に均一に
膜状ダイヤモンドを析出させることが困難である
などの難点もあつた。
Another method, such as the Japanese Journal of Applied Phgsics published in 1982.
The paper on page L183 of Volume 21 states that methane (CH 4 ) gas is catalytically heated and thermally decomposed using a dungsten heater heated to approximately 2000°C and hydrogen gas as a carrier. describes a method for depositing diamond. This method is excellent in that it allows diamond to be precipitated on materials other than diamond, but since the tungsten heater is heated to a high temperature of approximately 2000°C, the vapor pressure of tungsten itself is high. There is also the problem that it wears out in a short period of time, and that evaporated tungsten adheres to the diamond surface. In addition, once heated, the tungsten heater becomes extremely brittle and easily cut due to the growth of tungsten microcrystal particles and the absorption of gas molecules, so the tungsten heater must be replaced frequently and the equipment must be operated for long periods of time. difficult to do,
Further, there were other problems, such as changes in the tungsten heater wire over time, which caused changes in the thermal decomposition conditions of the reactant gas, making it difficult to uniformly deposit a film of diamond over a wide area.

更に他の方法として、減圧状態の反応気体を、
マイクロ波放電ないしは、高周波放電によつて発
生したプラズマガス中に置いた基板上に前記(1)式
の反応を起し、ダイヤモンドを析出させる方法
や、イオン化した炭素を基板に衝突させることに
よつて、膜状ダイヤモンドを合成する試みも示さ
れているが、いずれの方法によつても無定形炭素
ないしは、グラフアイトなどの非ダイヤモンド物
質の析出が生じるという問題があつた。
Still another method is to use the reaction gas under reduced pressure,
There is a method in which diamond is precipitated by causing the reaction of formula (1) above on a substrate placed in plasma gas generated by microwave discharge or high-frequency discharge, and a method in which diamond is precipitated by colliding ionized carbon with the substrate. Attempts have also been made to synthesize film-like diamond, but each method has the problem of precipitation of non-diamond substances such as amorphous carbon or graphite.

更にダイヤモンド種結晶以外の例えばSi、ヒ化
ガリウム(GaAs)やサフアイヤなどの単結晶基
板上に単結晶膜状に堆積させることは従来の方法
では不可能であつた。
Furthermore, it has been impossible to deposit a single crystal film on a single crystal substrate other than a diamond seed crystal, such as Si, gallium arsenide (GaAs), or saphire, using conventional methods.

その目的とする所は、以上の種々の欠点を改善
し、炭化水素の分解を促進し、かつ無定形遊離炭
素ないしはグラフアイトなどの非ダイヤモンドの
生成を阻止でき、粒子状なしいは膜状ダイヤモン
ドのみを析出することのできる気相合成方法及び
その装置を提供することにある。
The purpose of this is to improve the various drawbacks mentioned above, promote the decomposition of hydrocarbons, and prevent the formation of non-diamonds such as amorphous free carbon or graphite. An object of the present invention is to provide a vapor phase synthesis method and apparatus capable of precipitating only the above substances.

すなわち本発明は水素ガスの存在下で炭化水素
の気相反応によつて、粒子状ないしは、膜状ダイ
ヤモンドを析出させる方法において、水素プラズ
マより発生する紫外線や可視光などの放射光をダ
イヤモンドを析出させる基板上に照射する工程を
含むことを特徴とする気相合成方法、及びその内
部にヒーターが設置された反応室と、該反応室に
反応ガスを供給する反応ガス供給装置と、水素プ
ラズマ光透過壁を介して前記反応室に隣接して設
置されている水素プラズマ光発生室とを備えたこ
とを特徴とするダイヤモンドの気相合成装置であ
る。反応ガスを励起するためには、光によるガス
の加熱効果以外に光エネルギーにる直接励起があ
る特定の波長の光を用いて可能である。光の波長
が短いほど光のエネルギーは大きく反応ガス分子
の高エネルギーの非安定状態への励起が可能とな
るので化学反応の速やかな進行が期待できる。メ
タンから光化学反応によつてダイヤモンドを生成
するためには、メタンの吸収が極めて大きくなる
200mm以下の光を用いることが有効である。
That is, the present invention is a method for depositing particulate or film-like diamond by a gas phase reaction of hydrocarbons in the presence of hydrogen gas. A vapor phase synthesis method characterized by including a step of irradiating onto a substrate, a reaction chamber in which a heater is installed, a reaction gas supply device for supplying a reaction gas to the reaction chamber, and a hydrogen plasma light source. This diamond vapor phase synthesis apparatus is characterized by comprising a hydrogen plasma light generation chamber installed adjacent to the reaction chamber through a transparent wall. In order to excite the reactant gas, in addition to the heating effect of the gas by the light, direct excitation due to the light energy is possible using light of a certain wavelength. The shorter the wavelength of the light, the greater the energy of the light, which makes it possible to excite the reactant gas molecules to a high-energy unstable state, so it is expected that the chemical reaction will proceed more quickly. In order to produce diamonds from methane through a photochemical reaction, the absorption of methane must be extremely large.
It is effective to use light of 200 mm or less.

しかし、ハロゲンランプキセノンランプ高圧、
低圧水銀ランプはいずれも光強度の波長分布から
短波長域の光強度は極めて弱く、しかも184.7mm
程度までしかないためこれ以下の波長は利用でき
ない。
But halogen lamp xenon lamp high pressure,
All low-pressure mercury lamps have extremely weak light intensity in the short wavelength range due to the wavelength distribution of light intensity, and moreover, the light intensity is 184.7 mm.
Wavelengths below this cannot be used.

また反応管壁への反応生成物の付着による光の
基板への到達率の減少も極めて重大な問題であ
る。
Furthermore, a reduction in the rate of light reaching the substrate due to adhesion of reaction products to the walls of the reaction tube is also an extremely serious problem.

水素プラズマ光の光強度の波長分布は極めて短
波長側150mm程度付近の波長でも極めて強く、光
化学反応を利用する上で極めて有利である。
The wavelength distribution of the light intensity of hydrogen plasma light is extremely strong even on the short wavelength side of around 150 mm, which is extremely advantageous for utilizing photochemical reactions.

以下に本発明になる気相合成方法及びその装置
の実施例を図面によつて説明する。
Embodiments of the vapor phase synthesis method and apparatus thereof according to the present invention will be described below with reference to the drawings.

図は、本発明による気相反応装置の実施例であ
る。装置は、直径90mmの石英製反応室1および直
径50mmの石英パイプよりなる水素プラズマ光発生
室2からなつている。水素プラズマの発生には、
高周波電源12よりコイル3に高周波電力を供給
し、水冷壁4を装備した水素プラズマ光発生室内
にプラズマガスを発生させその時誘起される紫外
光を水素プラズマ光透過壁5を通して、あらかじ
め適当な温度に加熱した2インチのシリコン基板
6上に照射できるようにしてある。7は基板の加
熱のためのヒーターである。
The figure is an example of a gas phase reactor according to the invention. The apparatus consists of a quartz reaction chamber 1 with a diameter of 90 mm and a hydrogen plasma light generation chamber 2 made of a quartz pipe with a diameter of 50 mm. To generate hydrogen plasma,
High-frequency power is supplied to the coil 3 from the high-frequency power supply 12 to generate plasma gas in a hydrogen plasma light generation chamber equipped with a water-cooled wall 4, and the ultraviolet light induced at that time is passed through the hydrogen plasma light transmission wall 5 and heated to an appropriate temperature in advance. It is arranged so that it can be irradiated onto a heated 2-inch silicon substrate 6. 7 is a heater for heating the substrate.

水素ガスは水素プラズマ光発生室外部から導入
パイプ8′を介して導入する。また反応ガスはガ
ス供給装置11より、供給パイプ8を介して反応
室1に導入する。反応室1は石英製の反応管9で
作つてあり、760Torrから0.1Torrの全圧力下で
働くように、真空排気装置10で排気する。
Hydrogen gas is introduced from outside the hydrogen plasma light generation chamber through an introduction pipe 8'. Further, the reaction gas is introduced into the reaction chamber 1 from the gas supply device 11 via the supply pipe 8 . The reaction chamber 1 is made of a reaction tube 9 made of quartz, and is evacuated by a vacuum evacuation device 10 so as to work under a total pressure of 760 Torr to 0.1 Torr.

通常水素プラズマより発生する発光強度の波長
分布はその気体圧力依存性が極めて大きく、水素
プラズマ光発生室2の内部の圧力は別途設置した
排気装置13で調整する。水素プラズマ光発生の
ために使用する気体の圧力は通常10Torr〜
760Torrである。このため0.1Torr〜数十Torrの
反応室1との間に圧力差が生じる。隔壁5は水素
プラズマ光発生室内から、反応室へのガスの進入
を少くし、紫外ないしは可視光線などの光のみを
透過させる目的でガラス製の毛細管を束ねること
によつて製作した。毛細管の径はガス流に対して
高抵抗となる様にできる限り細い事が望ましい。
本実施例では、長さ20mm外径0.5mm内径0.3mmのも
のを束ねて接着固定した。水素プラズマ中で発生
する過剰イオンの反応室への侵入程度をコントロ
ールするために毛細管の隔壁に金属を蒸着し電極
となして、陥止電圧を印加することも有効であつ
た。また水素プラズマ透過壁としてMgF2のよう
な短波長の光をよく透過する材料を用いることも
できる。以上の様な装置を用い以下の条件で合成
反応を行なわせた。水素プラズマ光の発生には、
水素ガス流量を毎分5とし、ガス導入口4より
発生室に注入し4メガヘルツの高周波電力約
10KWを高周波電源12よりワークコイル3に投
入した。
Normally, the wavelength distribution of the emission intensity generated by hydrogen plasma is extremely dependent on gas pressure, and the pressure inside the hydrogen plasma light generation chamber 2 is adjusted by an exhaust device 13 installed separately. The pressure of the gas used for hydrogen plasma light generation is usually 10 Torr ~
It is 760 Torr. For this reason, a pressure difference between 0.1 Torr and the reaction chamber 1 of several tens of Torr occurs. The partition wall 5 was manufactured by bundling glass capillary tubes in order to reduce the intrusion of gas from the hydrogen plasma light generation chamber into the reaction chamber and to transmit only light such as ultraviolet or visible light. It is desirable that the diameter of the capillary tube be as small as possible so as to provide high resistance to the gas flow.
In this example, pieces having a length of 20 mm, an outer diameter of 0.5 mm, and an inner diameter of 0.3 mm were bundled and fixed by adhesive. In order to control the degree of intrusion of excess ions generated in the hydrogen plasma into the reaction chamber, it was also effective to deposit a metal on the partition wall of the capillary tube and use it as an electrode to apply a sink voltage. Furthermore, a material such as MgF 2 that easily transmits short wavelength light can also be used as the hydrogen plasma transmission wall. A synthetic reaction was carried out using the apparatus described above under the following conditions. To generate hydrogen plasma light,
Hydrogen gas is injected into the generation chamber from gas inlet 4 at a flow rate of 5 per minute, and high-frequency power of approximately 4 MHz is applied.
10KW was applied to the work coil 3 from the high frequency power supply 12.

プラズマ流の安定化のために発生室の管壁に沿
つてらせん状にガス流を作ることも有効であつ
た。プラズマ発生時の圧力は排気装置13を調節
することにより約20Torrとした。
It was also effective to create a spiral gas flow along the tube wall of the generation chamber to stabilize the plasma flow. The pressure during plasma generation was set to about 20 Torr by adjusting the exhaust device 13.

反応ガスは、メタンガス(CH4)を0.5Vol%含
むメタンガスと水素ガスの混合ガスを毎分2流
し、基板温度は約1000℃とした。反応室の圧力は
約100Torrとした。
As the reaction gas, a mixed gas of methane gas and hydrogen gas containing 0.5 vol% of methane gas (CH 4 ) was flowed twice per minute, and the substrate temperature was about 1000°C. The pressure in the reaction chamber was approximately 100 Torr.

以上の条件によつて、基板温度700℃〜1000℃
としたシリコン基板上に薄膜状のダイヤモンドを
成長させることができた。薄膜は0.1〜0.5μで成
長速度は1時間当り0.5μであつた。ただし、反応
ガス流量、反応室圧力、水素プラズマ光発生室圧
力、反応ガスのメタンと水素の混合比などは上記
条件以外の範囲でも適切な条件を組合せることに
よりダイヤモンドの成長は可能である。
Depending on the above conditions, the substrate temperature may range from 700℃ to 1000℃.
We were able to grow a thin film of diamond on a silicon substrate. The thin film was 0.1-0.5μ and the growth rate was 0.5μ per hour. However, it is possible to grow diamond by combining appropriate conditions with respect to the flow rate of the reaction gas, the pressure in the reaction chamber, the pressure in the hydrogen plasma light generation chamber, the mixing ratio of methane and hydrogen in the reaction gas, etc., in a range other than the above conditions.

ダイヤモンドであることは透過電子線回析パタ
ーンから確認した。
It was confirmed from the transmission electron diffraction pattern that it was diamond.

水素プラズマ光を照射しない場合には、ダイヤ
モンドの析出は起らずグラフアイト状の炭素膜な
いしは、粒子のみしか認められなかつた。
When hydrogen plasma light was not irradiated, no diamond precipitation occurred and only graphite-like carbon films or particles were observed.

以上のように、本発明による気相合成方法及び
その装置は水素ガスの存在下で炭化水素の気相反
応によつて、ダイヤモンド膜を容易に析出させる
ことができる。
As described above, the vapor phase synthesis method and apparatus according to the present invention can easily deposit a diamond film by vapor phase reaction of hydrocarbons in the presence of hydrogen gas.

水素プラズマ光源となる水素ガス中にアルゴ
ン、キセノン等の希ガスを1体積%から、10体積
%程度混合することによつて水素プラズマのみで
は得られない光強度の波長分布を得ることも容易
にできるので実用的価値は極めて大きい。
By mixing 1 to 10 volume% of a rare gas such as argon or xenon into the hydrogen gas that serves as the hydrogen plasma light source, it is easy to obtain a wavelength distribution of light intensity that cannot be obtained with hydrogen plasma alone. Because it can be done, the practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示す気相合成装置の概略
図。図中、1は反応室、2は水素プラズマ光発生
室、3はコイル、4は水冷壁、5は水素プラズマ
光透過壁、6は基板、7はヒーター、8は反応ガ
ス供給パイプ、8′は水素導入パイプ、9は反応
管、10,13は真空排気装置、11は反応ガス
供給装置、12は高周波電源である。
The figure is a schematic diagram of a vapor phase synthesis apparatus showing an embodiment of the present invention. In the figure, 1 is a reaction chamber, 2 is a hydrogen plasma light generation chamber, 3 is a coil, 4 is a water cooling wall, 5 is a hydrogen plasma light transmission wall, 6 is a substrate, 7 is a heater, 8 is a reaction gas supply pipe, 8' 1 is a hydrogen introduction pipe, 9 is a reaction tube, 10 and 13 are evacuation devices, 11 is a reaction gas supply device, and 12 is a high frequency power source.

Claims (1)

【特許請求の範囲】 1 水素ガスの存在下で炭化水素の気相反応によ
つて、粒子状ないしは、膜状ダイヤモンドを析出
させる方法において、水素プラズマより発生する
紫外線や可視光などの放射光をダイヤモンドを析
出させる基板上に照射する工程を含むことを特徴
とする気相合成方法。 2 その内部にヒーターが設置された反応室と、
該反応室に反応ガスを供給する反応ガス供給装置
と、水素プラズマ光透過壁を介して前記反応室に
隣接して設置されている水素プラズマ光発生室と
を備えたことを特徴とするダイヤモンドの気相合
成装置。
[Claims] 1. A method for depositing particulate or film diamond by a gas phase reaction of hydrocarbons in the presence of hydrogen gas, in which synchrotron radiation such as ultraviolet rays and visible light generated by hydrogen plasma is used. A vapor phase synthesis method comprising the step of irradiating a substrate on which diamond is to be deposited. 2 A reaction chamber in which a heater is installed,
A diamond-based diamond apparatus comprising: a reaction gas supply device for supplying a reaction gas to the reaction chamber; and a hydrogen plasma light generation chamber installed adjacent to the reaction chamber through a hydrogen plasma light transmission wall. Gas phase synthesis equipment.
JP58142918A 1983-08-04 1983-08-04 Process and apparatus for synthesizing diamond in gaseous phase Granted JPS6033300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142918A JPS6033300A (en) 1983-08-04 1983-08-04 Process and apparatus for synthesizing diamond in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142918A JPS6033300A (en) 1983-08-04 1983-08-04 Process and apparatus for synthesizing diamond in gaseous phase

Publications (2)

Publication Number Publication Date
JPS6033300A JPS6033300A (en) 1985-02-20
JPH0419198B2 true JPH0419198B2 (en) 1992-03-30

Family

ID=15326648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142918A Granted JPS6033300A (en) 1983-08-04 1983-08-04 Process and apparatus for synthesizing diamond in gaseous phase

Country Status (1)

Country Link
JP (1) JPS6033300A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60171295A (en) * 1984-02-14 1985-09-04 Mitsubishi Metal Corp Method for forming artificial diamond by vapor deposition
JPS61201694A (en) * 1985-02-28 1986-09-06 Nec Corp Vapor phase synthesis method for diamond
US5512102A (en) * 1985-10-14 1996-04-30 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD system under magnetic field
DE3690606C2 (en) * 1985-11-25 1995-09-21 Yoichi Hirose Diamond synthesis by chemical, vapour phase growth
JPS62295819A (en) * 1986-06-14 1987-12-23 Toyo Denji Kikai Seisakusho:Kk Correcting and straightening device for attitude of parts in vibrating feeder
JPS6385011A (en) * 1986-09-26 1988-04-15 Idemitsu Petrochem Co Ltd Production of diamond
JPH0676666B2 (en) * 1987-02-10 1994-09-28 株式会社半導体エネルギ−研究所 Carbon film production method
JPH02141494A (en) * 1988-07-30 1990-05-30 Kobe Steel Ltd Vapor phase synthetic device of diamond
US4981717A (en) * 1989-02-24 1991-01-01 Mcdonnell Douglas Corporation Diamond like coating and method of forming

Also Published As

Publication number Publication date
JPS6033300A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
JPS5891100A (en) Synthesizing method for diamond
JPS5927754B2 (en) Diamond synthesis method
JPH0419198B2 (en)
JPH0518796B2 (en)
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JPH0448758B2 (en)
JPS61236691A (en) Vapor phase synthesis of diamond
JPS6054996A (en) Synthesis of diamond
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPH0351675B2 (en)
JPS63297299A (en) Method for vapor synthesis of diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS60145995A (en) Preparation of diamond-shaped carbon
JPS63285192A (en) Synthesis of diamond in vapor phase
JPH0341436B2 (en)
JPS61201694A (en) Vapor phase synthesis method for diamond
JPS593098A (en) Synthesizing method of diamond
JP2585342B2 (en) Diamond vapor phase synthesis
JPH0480000B2 (en)
JPS63123898A (en) Synthesis of diamond by vapor-phase process
JPS60200896A (en) Process for synthesizing fibrous diamond
JPH0518794B2 (en)
JPH0518797B2 (en)
JPS6321296A (en) Method for synthesizing diamond in gaseous phase
JPS6357007A (en) Synthesis of diamond by gaseous phase method