JPS616199A - Process and apparatus for synthesizing diamond in gaseous phase - Google Patents

Process and apparatus for synthesizing diamond in gaseous phase

Info

Publication number
JPS616199A
JPS616199A JP59127776A JP12777684A JPS616199A JP S616199 A JPS616199 A JP S616199A JP 59127776 A JP59127776 A JP 59127776A JP 12777684 A JP12777684 A JP 12777684A JP S616199 A JPS616199 A JP S616199A
Authority
JP
Japan
Prior art keywords
diamond
substrate
reaction tube
plasma
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127776A
Other languages
Japanese (ja)
Other versions
JPH0518798B2 (en
Inventor
Kazutaka Fujii
和隆 藤井
Nobuaki Shohata
伸明 正畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59127776A priority Critical patent/JPS616199A/en
Publication of JPS616199A publication Critical patent/JPS616199A/en
Publication of JPH0518798B2 publication Critical patent/JPH0518798B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Abstract

PURPOSE:To synthesize diamond in the gaseous phase at low temp. with high speed by decomposing and exciting a gaseous mixture consisting of hydrocarbon and H2 in the discharge of high frequency or microwave and irradiating generated plasma with ultraviolet rays or visible rays. CONSTITUTION:After setting a substrate 1 having the surface cleaned by chemical etching on a susceptor 2, the inside of a quartz reaction tube 4 is evacuated 5 to 10<-6>Torr. Then, simultaneously inside of a vacuum vessel 6 is replaced with N2 7 or evacuated 10 to 10<-6>Torr. Then, after evacuating the inside of the reaction tube 4 previously, the substrate 1 is heated to a specified temp. by a halogen lamp 12 and hydrocarbon 13 and H2 14 are introduced into the reaction tube 4, and high frequency is impressed using a high frequency oscillator 17. After generating plasma by this method the light from a generator 20 of ultraviolet rays or visible rays is irradiated, and reaction is carried out for a specified time. As the result, a diamond film is formed on the substrate at low temp. with high speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相からダイヤモンドを基板上に析出させる
方法及びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for depositing diamond on a substrate from a gas phase.

(従来技術とその問題点) 炭素化合物気体の熱分解によってダイヤモンドを合成す
る方法として、従来数種の方法が翔られている。例えば
、特開昭47−42286 に記載の方法は、水素ガス
をキャリアカスとしてダイヤモンド棟結晶粉末を触媒ヒ
ーター中に置き、以下の反応を利用してダイヤモンド独
結晶の粒子径を増大させることがでさることを明らかに
している。
(Prior art and its problems) Several methods have been used to synthesize diamond by thermal decomposition of carbon compound gas. For example, in the method described in JP-A-47-42286, diamond ridge crystal powder is placed in a catalyst heater using hydrogen gas as a carrier gas, and the particle size of diamond single crystal can be increased using the following reaction. It reveals something.

CnH2n+2−) C(ダイヤモンド)+H2(但し
n≦5)また、一般にダイヤモンドの気相脅威では、ダ
イヤモンド以外の無定形炭素やグラファイトの析出が以
後のダイヤモンドの析出を阻止してしまうが。
CnH2n+2-) C (diamond) + H2 (however, n≦5) Generally, in the case of a diamond gas phase threat, the precipitation of amorphous carbon and graphite other than diamond prevents the subsequent precipitation of diamond.

白金、パラジウム等の触媒ヒーターの作用によって、ダ
イヤモンド上で下記の反応によ“って除去できることを
述べている。
It states that by the action of a catalytic heater such as platinum or palladium, it can be removed by the following reaction on diamond.

C(無定形炭素ないしゲラファイト) +’2H,→C
H4しかしながら、夕゛イヤモンドを成長させる為に、
ダイヤモンド種結晶を必要とするという欠点がある。す
なわち、他の物質からなる基板上にダイヤモンドを析出
させることができない欠点がある。
C (amorphous carbon or gelaphite) +'2H, →C
H4 However, in order to grow the evening diamond,
It has the disadvantage of requiring a diamond seed crystal. That is, there is a drawback that diamond cannot be deposited on a substrate made of other materials.

更に、ダイヤモンド種結晶を高GArこ保持しなければ
なりない欠点を有している。また、ダイヤモンドを合成
するプロセスに加えて共析する非ダイヤモンド炭素を除
去するプロセスを行なわなければならγよい欠点を有し
ている。
Furthermore, it has the disadvantage that the diamond seed crystal must be maintained at a high GAr. Furthermore, it has the disadvantage that in addition to the process of synthesizing diamond, a process of removing eutectoid non-diamond carbon must be performed.

また、別の方法、例えば1982年元行のジヤパニーズ
・ジャーナル・オブ・アプライド・フィジクス結(Ja
panese Journal o(Applied 
Physics)第21巻第L 183ページ記載のn
浦文には、約20(10℃に力a熱したタングステンヒ
ーターに水素をキャリアガスとしてメタンカスを接触加
熱し、熱分解ささせ、シリコン、モリブデンないしは石
英ガラス基板上にダイヤモンドを析出させる方法が述へ
られている。
There are also other methods, such as the Japanese Journal of Applied Physics published in 1982.
panese Journal o(Applied
Physics) Volume 21, No. L, page 183 n
Urabun describes a method in which methane gas is heated in contact with a tungsten heater heated to approximately 20°C (10°C) using hydrogen as a carrier gas, thermally decomposed, and diamond is deposited on a silicon, molybdenum, or quartz glass substrate. I'm being discouraged.

この方法は、ダイヤモンド以外の物質上にダイヤモンド
を析出させるこきができる点で優れた方法であるが、タ
ングステン中ヒーターが約2(100°C吉いう高配に
加熱されているために、タングステン自体の蒸気圧も高
くなり、短時間で消耗したり、蒸発したタングステンが
、ダイヤモンド表面に付着したりする問題もある。また
、一度加熱したタングステン・ヒーターは、タングステ
ンと炭素の文応やガス分子の吸嫉与(こより、極めても
ろくなり、簡単に切酊1されやすくなるため頻gにタン
グステン争ヒーl−を変換せねばならず、長時間装(l
を運騎するのか困蝿である。また、タングステン・ヒー
ター〜の経時変化は1反応ガスの熱分解東注の変動を招
き、広い面積に均一に、A伏ダイヤモンドを析出させる
のは内扇である。更に、ダイヤモンドの析出偏度は高く
、実用上の用途が限られてしまう欠点を有している。
This method is an excellent method in that it allows diamond to be precipitated on materials other than diamond, but since the heater in the tungsten is heated to a high temperature of about 2 (100°C), the tungsten itself The vapor pressure also increases, causing problems such as being consumed in a short period of time and evaporated tungsten adhering to the diamond surface.Also, once heated, the tungsten heater is unable to react due to the interaction between tungsten and carbon and the absorption of gas molecules. Because of this, it becomes extremely brittle and easily susceptible to drunkenness, so the tungsten war heel must be changed frequently, and it cannot be worn for long periods of time.
It is difficult to decide whether to do so. In addition, changes over time in the tungsten heater cause fluctuations in the thermal decomposition of the reactant gas, and it is the inner fan that uniformly deposits A-shaped diamond over a wide area. Furthermore, diamond has a high degree of precipitation unevenness, which has the disadvantage that its practical use is limited.

マイクロ波放電を利用したダイヤモンドの気相合成方法
には、例えば、特開昭58−110494に記載の方法
がある。即ち、水素ガスをマイクロ波無電極放電中を通
過させた後、炭化水素と混合した混合ガス、または炭化
水素と水素との混合ガスをマイクロ波無電極放電中を通
過せしめた混合ガスを300〜1300℃に加熱した基
板表面に導入して、励起状態の炭化水素の熱分4+こよ
りダイヤモンドを析出させている。
An example of a diamond vapor phase synthesis method using microwave discharge is the method described in Japanese Patent Laid-Open No. 110494/1983. That is, after hydrogen gas is passed through a microwave electrodeless discharge, a mixed gas mixed with a hydrocarbon, or a mixed gas of a hydrocarbon and hydrogen passed through a microwave electrodeless discharge, is The diamond is introduced into the surface of the substrate heated to 1300° C., and diamond is precipitated from the heat of the excited hydrocarbon.

しかしながら、この方法では、励起状態の炭化水素を基
板上で熱分解させる為に熱エネルギーだけを用いており
、十分なエネルギーを得る為薔こ鍋温に加熱しなければ
ならない欠点を■し“Cいる。
However, this method uses only thermal energy to thermally decompose excited hydrocarbons on the substrate, and has the disadvantage of having to be heated to the temperature of a rose pot in order to obtain sufficient energy. There is.

また、マイクロ波放戒によって反応カスに与えられたエ
ネルギー幅は広く、ダイヤモンド合成に必要な単一ない
しは単−lと近いエネルギーだけを選択的に与えること
ができない欠点を有している。
Furthermore, the energy range given to the reaction residue by microwave radiation is wide, and there is a drawback that it is not possible to selectively give only the single or close to single-l energy necessary for diamond synthesis.

高周波放電を利用したダイヤモンドの気相甘酸方法には
、例えば1983年発行の7″ロシーデインクス・オブ
愉ジ・インターナショナルψイオン・エンジニアリング
−コンクレス(Procedings o)The  
International  Ion  Engin
eering  Congress  )第1137ペ
ージ記載の方法が却らイtている。即ら、メタンと水素
の混合ガスを圧力10−1500パスカルで高周波放電
せしめ、700〜900℃に加熱した基板上にダイヤモ
ンド状カーボンを析出させている。
A diamond vapor phase sweetening method using high-frequency discharge is described, for example, in 7"Rossidainx International ψion Engineering-Concres (Procedings o) published in 1983.
International Ion Engine
The method described on page 1137 of ``Eering Congress'' is rather effective. That is, a mixed gas of methane and hydrogen is subjected to high-frequency discharge at a pressure of 10-1500 Pascals, and diamond-like carbon is deposited on a substrate heated to 700-900°C.

し力)しながら、基板温度が低い場合には、主にアモル
ファス状カーホンが析出している。即ち。
However, when the substrate temperature is low, mainly amorphous carbon is precipitated. That is.

低温でダイヤモンドを合成できない欠点を有している。It has the disadvantage that diamond cannot be synthesized at low temperatures.

更に1反応ガスに印加するエネルギー幅は広く、非ダイ
ヤモンド炭素の析出を完全に阻止できない欠点を有して
いる。
Furthermore, the range of energy applied to one reaction gas is wide, which has the disadvantage that precipitation of non-diamond carbon cannot be completely prevented.

(本発明の目的) 不発明の目的は、このような従来の欠点を除去せしめ、
低温で^速度でダイヤモンド単体を合成するダイヤモン
ドの気相合成方法及びその装置を提供することである。
(Object of the present invention) The object of the invention is to eliminate such conventional drawbacks,
An object of the present invention is to provide a diamond vapor phase synthesis method and apparatus for synthesizing diamond alone at low temperatures and high speeds.

(発明の構成) すなわち1本発明は炭化水素と水素の混合ガスを高周波
又はマイクロ波放電中で分解および励起せしめダイヤモ
ンドを基板上に析出させるダイヤモンドの気相合成方法
において5元生したプラズマに紫外線又は可視光線を照
射することを特徴とするダイヤモンドの気相合成方法、
及び、ガス供給部及び真空排気系と接続し、その内部に
基板を設置することができる反応管と、基板加熱手段と
(Structure of the Invention) That is, 1. The present invention is a diamond vapor phase synthesis method in which a mixed gas of hydrocarbon and hydrogen is decomposed and excited in high frequency or microwave discharge to deposit diamond on a substrate. or a diamond vapor phase synthesis method characterized by irradiating with visible light;
and a reaction tube that is connected to a gas supply section and a vacuum exhaust system and in which a substrate can be placed, and a substrate heating means.

紫外線又は可視光線照射光源と、プラズマ発生用のコイ
ル又は電極とを備えたダイヤモンド気相合成装置におい
て、紫外線又は可視光線照射光源とプラズマ発生用のコ
イル又は電極が反応管の外部でしかも真空中又は窒素雰
囲気中に設置されていることを!特徴とするダイヤモン
ド気相合成装置である。
In a diamond vapor phase synthesis apparatus equipped with an ultraviolet or visible light irradiation light source and a plasma generation coil or electrode, the ultraviolet or visible light irradiation light source and the plasma generation coil or electrode are located outside the reaction tube and in a vacuum or Make sure it is installed in a nitrogen atmosphere! This is a diamond vapor phase synthesis device with special features.

(構成の詳細な説明) 本発明は、上述の構成をとることにより従来技術の問題
点を解決した。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration.

一般に、気相からダイヤモンドを合成せしめるには、炭
素源として、炭素化合物の蒸気を使用する。ところが、
気相からのタイヤモンド析出プロセスは、熱力学的に準
安定な相を安定化せしめる人工的操作を要求される。反
応カスの熱分解からだけ遊離炭素原子を得ようとすると
5基板上に非ダイヤモンド炭素が析出するのは自明であ
る。また、プラズマを利用する方法においても、プラズ
マの内部エネルギー範囲は広く、ダイヤモンド炭素が析
出する条件からはずれた範囲の所からは、非ダイヤモン
ド 、  ゛ 炭素が析出するのも自明である。従って、プラズ的にダ
イヤモンド炭素を析出する条件を作り出せば、単一ダイ
ヤモンドが合成できる。従来技術では、熱エネルギーを
印7JOすることにより、基板表面にダイヤモンド炭素
を合成しているが、この熱エネルギーの代わりに、紫外
線ないしは可視光線の持つエネルギーを使用すれば、基
板温度を低ドてきる。更に、紫外線ないしはり視光線を
プラズマに照射することにより、プラズマ種、例えばラ
ジカル種、イオン種等の分布を変えることができダイヤ
モンド炭素を析出しやすいプラズマ種を制御できるよう
になる。
Generally, to synthesize diamond from a gas phase, a vapor of a carbon compound is used as a carbon source. However,
The process of Tiemone precipitation from the gas phase requires artificial manipulations to stabilize the thermodynamically metastable phase. It is obvious that if free carbon atoms are obtained only from thermal decomposition of reaction residue, non-diamond carbon will be deposited on the 5-substrate. Furthermore, even in methods using plasma, the internal energy range of the plasma is wide, and it is obvious that non-diamond carbon will precipitate from a range outside the conditions for diamond carbon to precipitate. Therefore, if conditions are created to precipitate diamond carbon in a plasma manner, a single diamond can be synthesized. In the conventional technology, diamond carbon is synthesized on the substrate surface by applying thermal energy, but if the energy of ultraviolet or visible light is used instead of this thermal energy, the substrate temperature can be lowered. Ru. Furthermore, by irradiating the plasma with ultraviolet rays or visible light, the distribution of plasma species, such as radical species and ion species, can be changed, making it possible to control plasma species that tend to deposit diamond carbon.

紫外線ないしは可視光線の照射角朋(ま、基板上方から
または基板側方からが考えられるが1反応ガス分子ある
いはプラズマ種にだけ光を照射するより、基板表面にフ
ォトンを照射する力が、ダイヤモンド析出温度の低下が
期待できる為基板上方から光を照射する方が望ましい。
The angle of irradiation of ultraviolet or visible light (this can be done from above the substrate or from the side of the substrate, but rather than irradiating only one reactive gas molecule or plasma species), the power of irradiating photons onto the substrate surface is more effective than irradiating light onto the substrate surface. It is preferable to irradiate the light from above the substrate because it can be expected to lower the temperature.

紫外線ないしは可視光線の照射位置として、高周波ない
しはマイクロ波数−のアフタークローtこ光を照射後、
基板に該反応カスを導入する方法も考えられるが、)を
照射後、反応カスの内部エネルギーが変化し、制御類が
困難(こなることから、i&m基板上方から光を照射す
る方が望ましい。
As the irradiation position of ultraviolet or visible light, after irradiation with high frequency or microwave number after-claw light,
Although a method of introducing the reaction scum into the substrate may be considered, after irradiation, the internal energy of the reaction scum changes and control is difficult (because of this, it is preferable to irradiate light from above the I&M substrate.

基板温度は室温から1000℃までoTbmであるが。The substrate temperature is oTbm from room temperature to 1000°C.

天川上から低温できれば800℃以下が望ましい。If the temperature can be lowered from above the Amakawa River, it is desirable to keep it below 800 degrees Celsius.

基板加熱方法は、内部ヒーター加熱、ランプ力り熱、高
周波誘導加熱等が考えられるが、制御し9すさからラン
プ加熱か好ましい。基板は絶縁物、半導体、導体のいず
れてもかまわない。紫外線ないし可視光線照射部および
プラズマ発生部を窒素雰囲気ないし真空中とし、反応室
外に分離することにより、プラズマ−から発生したノイ
ズによる畠度制御、光照射部41J +卸の+44難さ
を除き、更に光透過率を高め反応ガスと光子との反応性
を高めることができる。
As a substrate heating method, internal heater heating, lamp heating, high frequency induction heating, etc. can be considered, but lamp heating is preferable because of ease of control. The substrate may be an insulator, a semiconductor, or a conductor. By placing the ultraviolet or visible light irradiation section and the plasma generation section in a nitrogen atmosphere or vacuum and separating them outside the reaction chamber, it is possible to control the yield due to noise generated from the plasma, and to eliminate the difficulty of the light irradiation section 41J + wholesale. Furthermore, it is possible to increase the light transmittance and the reactivity between the reactive gas and photons.

以下1図面を用いて本発明に使用した装置の例および製
造工程を説明する。
An example of an apparatus used in the present invention and a manufacturing process will be described below using one drawing.

第1〜4図に本実験で用いた実験装置の概略を示す、第
1図はコイル21による高周波放電を116導結合方式
とし、アフタークロープラズマを基板へ尋人する装置を
示している。第2図はウェーブカイト19からのマイク
ロ波放電のアクタ−クロープラズマを基板へ導入する装
置を示している。第3図は、高周波放電を容量結合とし
1反応管4の外部(こ設置された<4向した2枚の電極
22の間(こ、w、内渡を印加し、基板をIM接プラズ
マにさらしている。
Figures 1 to 4 schematically show the experimental apparatus used in this experiment. Figure 1 shows an apparatus in which the high frequency discharge from the coil 21 is of the 116 conductive coupling type, and the afterclaw plasma is applied to the substrate. FIG. 2 shows an apparatus for introducing Acta-Claw plasma of microwave discharge from a wave kite 19 to a substrate. Figure 3 shows how the high-frequency discharge is capacitively coupled and the substrate is brought into contact with the IM plasma by applying a voltage between the two electrodes 22 installed on the outside of the reaction tube 4 (hereinafter referred to as ``4''). It's exposed.

第4図は、高周波放電を容量結合とし、2つのリンクn
の間に高周波を印υ口し、基板を直接プラズマ領域に設
置する装置を示している。
Figure 4 shows a high-frequency discharge with capacitive coupling and two links n.
This shows a device in which a high frequency wave is applied between the plasma and the substrate is directly placed in the plasma region.

主に第1図に示す装置を用いて実、*を行なったが、製
造工程は、第1〜4図1こ示す装置を用いても同僚であ
る。
Actually, * was carried out mainly using the apparatus shown in FIG. 1, but the manufacturing process is the same even if the apparatus shown in FIGS. 1 to 4 is used.

第1〜4図において、化学エツチングして表面を清浄に
した基板1をSiCコーディング グラフ丁イト サセ
プター2の上に設置後、真空排気系3により石英反応管
4内を10””’ トールまで予備真空引きする。排気
ガスは排気口5より排気される。同時に(ステンレス製
)真空チャンバ6内をN、ボンベ7からコック8および
9を開いてN2で置換するかコック8および9を閉じて
真空排気系10で真空チャンハロ内を10−6トールま
で真空排気する。排気カスは排気口11より排気する。
In Figs. 1 to 4, after a substrate 1 whose surface has been cleaned by chemical etching is placed on a SiC-coated graphite susceptor 2, the inside of a quartz reaction tube 4 is preliminarily pumped to 10"'' torr by a vacuum evacuation system 3. Vacuum. Exhaust gas is exhausted from the exhaust port 5. At the same time, the inside of the (stainless steel) vacuum chamber 6 is replaced with N2 by opening the cocks 8 and 9 from the cylinder 7, or the cocks 8 and 9 are closed and the inside of the vacuum chamber halo is evacuated to 10-6 Torr using the vacuum exhaust system 10. do. The exhaust residue is exhausted from the exhaust port 11.

真空チャンバ6内のNt it換ないし真空引きは紫外
線を石英反応管4内へ効率的に投入するために行なった
。石英反応y4内を予備真空後ハロケンランプ12によ
りサセプター2上の基板1を所定の温朋へ加熱した。反
応ガスである炭化水素及び水素を炭化水素ボンベ13お
よび水素ホンへ14よりコ、り15 、16を開いて石
英反応管4内へ導入し、真空排気系3によって所定の圧
力へ調整した。第1.3゜4図に示す装置では、扁周波
発振器17より高周波を印加し、第2図に示す装置では
、マイクロ波発振器18によりマイクロ波を発振させ、
ウェーブガイド19により石英反応管4内へマイクロ波
を導入した。プラズマ発生後、紫外光ないし可視光発生
器20により光を照射し、所定の時間反応させた。
The inside of the vacuum chamber 6 was changed to Nt it or evacuated in order to efficiently introduce ultraviolet rays into the quartz reaction tube 4. After the interior of the quartz reaction y4 was preliminarily vacuumed, the substrate 1 on the susceptor 2 was heated to a predetermined temperature using the Haloken lamp 12. Hydrocarbons and hydrogen, which are reaction gases, were introduced into the quartz reaction tube 4 by opening the pipes 15 and 16 from the hydrocarbon cylinder 13 and the hydrogen pipe 14, and the pressure was adjusted to a predetermined pressure by the evacuation system 3. In the device shown in FIG. 1.3.4, a high frequency is applied from a flat frequency oscillator 17, and in the device shown in FIG. 2, a microwave is oscillated by a microwave oscillator 18.
Microwaves were introduced into the quartz reaction tube 4 through the waveguide 19 . After the plasma was generated, light was irradiated by an ultraviolet light or visible light generator 20 to cause a reaction for a predetermined time.

(実施例1) 第1図に示す実験1(置を使用した例を示す、実験条件
として、基板にンリコン、炭化水素にメタン、メタン流
量を毎分lω、水素流献を毎分100印、基板温度を2
00℃、圧力をlトール、置局波周波数を13.56 
MHz 、出力4−600 ’vV、光は低圧水銀灯を
用いて紫外線を3時間照射して反応させた。
(Example 1) Experiment 1 shown in Fig. 1 shows an example using the system.The experimental conditions were: phosphorus on the substrate, methane on the hydrocarbon, a methane flow rate of lω per minute, a hydrogen flow rate of 100 marks per minute, Set the board temperature to 2
00℃, pressure 1 torr, station frequency 13.56
The reaction was carried out by irradiating ultraviolet rays for 3 hours using a low pressure mercury lamp with an output of 4-600'vV at MHz.

析出した膜は干e巳を呈しており、走査型成子顕微dで
表面を観察しても凹凸は観察されず1表面平坦性C1良
好であった。透過型電子顕微鏡で観察すると1回折図形
からダイヤセントの格子面間隔に一致したデバイ環か得
られた。明視野1象から。
The deposited film had a rough texture, and when the surface was observed using a scanning Seiko microscope, no irregularities were observed and the surface flatness C1 was good. When observed with a transmission electron microscope, a Debye ring was obtained from the first diffraction pattern that matched the lattice spacing of the diamond. From one bright field image.

この膜は、数十への粒子からなっているこきが判明した
。アルミニウムを蒸着してM■S構造にして1M気低抵
抗率測定すると基板全域にわたりほぼ一定で、約101
40・口と非常に關抵抗率であることが判明した。4厚
を浜]定すると約20μmで、成長速度は毎時約7μ7
nであった。硬度は約800% Hvであった。
This film turned out to be made up of several tens of particles. When aluminum is deposited to form a M■S structure and the 1M low resistivity is measured, it is almost constant over the entire substrate, about 101
It was found that the resistivity was very high, 40. 4 thickness is approximately 20 μm, and the growth rate is approximately 7 μ7 per hour.
It was n. The hardness was approximately 800% Hv.

(実施例2) 第2図に示す実験装置を使用した例を示す。実−条件と
して、基板に石英ガラス、炭化水素にプロパン、プロパ
ン流量を毎分1に、水素流量を、毎分200ω、基板温
度を1o00G、圧力を5トール、マイクロ波周波数2
.5 GH2、出力を600W光は、マイクロ波UV光
源を用いて紫外線を3時間照射して反応させた。
(Example 2) An example using the experimental apparatus shown in FIG. 2 will be described. The actual conditions are: quartz glass for the substrate, propane for the hydrocarbon, propane flow rate at 1/min, hydrogen flow rate at 200Ω/min, substrate temperature at 1000G, pressure at 5 Torr, and microwave frequency at 2.
.. 5 GH2, 600 W light was reacted by irradiating ultraviolet light for 3 hours using a microwave UV light source.

析出した膜は、茶色がかっているが、表面平坦性は良好
であった。透過型成子顕微鏡によって祝祭した結果、こ
の膜は数十への粒子からなる元金なダイヤモンド膜であ
ることが判明した。成長速度は、3時間で約41μmで
、毎時約14μmであった0、硬度を測定すると約70
00Hvてありた。
The deposited film was brownish, but had good surface flatness. Using a transmission germination microscope, the film was found to be a diamond film made up of dozens of particles. The growth rate was about 41 μm in 3 hours, which was about 14 μm per hour.The hardness was measured at about 70 μm.
It was 00Hv.

(実施例3) 第3図に示す実験装置を使用した例を示す6実験条件と
して、基板にモリブデン板、炭化水素にアセチレン、ア
セチレン流量を毎分g−cc、水素流量を毎分200に
、基板温度を300℃、圧力を5トール、高周波周波数
400 KHz、出力をsoo w、光はキセノンラン
プを用いて、紫外光および可視光を照射した。3時間反
応させた後基板上に20μmの析出物を得た。成長速度
は毎時約7μmで、析出物を透過型電子顕微鏡で同定す
るとダイヤモンドであることが判明した。明視野像から
この膜は、数十人の粒子からなっていることが判明した
。硬度を測定すると約50(lOHvであった。
(Example 3) As six experimental conditions showing an example using the experimental apparatus shown in Fig. 3, the substrate is a molybdenum plate, the hydrocarbon is acetylene, the acetylene flow rate is g-cc per minute, the hydrogen flow rate is 200 g-cc per minute, The substrate temperature was 300° C., the pressure was 5 Torr, the radio frequency was 400 KHz, the output was soow, and a xenon lamp was used for light, and ultraviolet light and visible light were irradiated. After reacting for 3 hours, a 20 μm precipitate was obtained on the substrate. The growth rate was about 7 μm per hour, and the precipitate was identified by a transmission electron microscope to be diamond. Bright-field images revealed that this film was composed of several dozen particles. The hardness was measured to be approximately 50 (lOHv).

(実施例4) 光として低圧水鏝灯(I。= 9Q mW、2537 
A )を用い、真空チャンバ内を空気、N、 l気圧、
N。
(Example 4) A low pressure water lamp (I.=9Q mW, 2537
A), the inside of the vacuum chamber is filled with air, N, 1 atm,
N.

10トール、真空(10−’トール)とし、基板位置で
の照度を測定すると、真空(ssmw)−N2’lOト
ール(8QmW)、N、1気圧(50mW)、空気(3
0mW)となり、真空チャンバ内を窒素ないし真空雰囲
気にすることにより照度を上げ、反応ガスと光子の衝突
確率を高めることができた。
10 Torr, vacuum (10-' Torr), and measuring the illuminance at the substrate position, we find that vacuum (ssmw) - N2'lO Torr (8 QmW), N, 1 atm (50 mW), and air (3
By creating a nitrogen or vacuum atmosphere inside the vacuum chamber, we were able to increase the illuminance and increase the probability of collision between the reactant gas and photons.

(本発明の効果) 本発明により完全なダイヤモンド膜を基板上に析出させ
ることができる。成長速度は、従来技術が毎時1〜2μ
m、最大で6μ7n程度であったが。
(Effects of the Present Invention) According to the present invention, a complete diamond film can be deposited on a substrate. The growth rate of conventional technology is 1 to 2 μ/hour.
m, but the maximum was about 6μ7n.

本発明によれば数倍速く、しかも低温でダイヤモンドを
合成できる。合成した膜の結晶構造はダイヤモンド構造
に一致し、高硬塵、高絶縁性を示した。
According to the present invention, diamond can be synthesized several times faster and at lower temperatures. The crystal structure of the synthesized film matched that of diamond, and it exhibited high hardness and high insulation properties.

本発明により、ダイヤモンド膜の低温合成、高成長速度
が達成され、産業上の利用分野は、耐摩耗性用コーチイ
ンク材、IC基板用放熱基板等広く実用上極めて有益で
ある。
The present invention achieves low-temperature synthesis and high growth rate of a diamond film, and is extremely useful in a wide range of industrial applications such as wear-resistant coach ink materials and heat dissipating substrates for IC substrates.

本発明の装置は紫外線ないしOT視光線照射部およびプ
ラズマ発生部を窒素ないし真空雰囲気とし。
In the apparatus of the present invention, the ultraviolet or OT visual ray irradiation section and the plasma generation section are set in a nitrogen or vacuum atmosphere.

反応室外に分離した構造とすることにより、プラズマか
らのノイズを最少限に抑え、装置の運転を容易にすると
ともに、光の透過率を高め、光子と反応ガスの衝突確率
を鳥めることができた。照度で雰囲気が空気の場合と真
空の場合を比較すると真空の場合は空気の場合に比較し
て約3倍であった。
By having a separate structure outside the reaction chamber, noise from the plasma is minimized, making the device easier to operate, increasing light transmittance, and reducing the probability of collision between photons and reactant gas. did it. Comparing the illumination intensity when the atmosphere was air and when the atmosphere was vacuum, the illumination intensity was about three times higher in the case of vacuum than in the case of air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図(1、本発明の方法に直接使用する装置の軟
略図。 1・基板、2・・SiCコーチイック會クラファイト・
サセプター、3 真空排気系、4 石ぐ\反応層、5 
排気1’j 、  6− A全チャンバ、7・ N。 ホンへ、8・コック、9 コック、IO・・A’2 排
気系、 11・JilFm口、 +2・ハロケンランプ
、13・炭化水素ホンへ、[4水素ボンベ、15  コ
、り、IOコンク、17・缶周彼宅脹器、18 フィク
ロ波死徹5.19  ウェーブカイト、20  紫外光
f、vいしロエ視尤照射尤偉、21  コイル、22−
+4L極、酪・リッツ。 代理人7.・″」・上1)」原  毎 (レ
Figures 1 to 4 (1. Soft diagram of the apparatus directly used in the method of the present invention. 1. Substrate, 2. SiC coachic graphite.
Susceptor, 3 Vacuum exhaust system, 4 Ishigu\reaction layer, 5
Exhaust 1'j, 6-A whole chamber, 7.N. To the phone, 8 cock, 9 cock, IO...A'2 Exhaust system, 11 JilFm port, +2 Haloken lamp, 13 Hydrocarbon to the phone, [4 hydrogen cylinder, 15 cock, IO conc, 17. Can Zhou He Home Expansion Device, 18 Fikro Wave Death Tetsu 5.19 Wave Kite, 20 Ultraviolet Light F, V Ishiroe Vision Irradiation Weight, 21 Coil, 22-
+4L pole, dairy Ritz. Agent 7.・””・Part 1)” Hara Mamoru (Less)

Claims (2)

【特許請求の範囲】[Claims] (1)炭化水素と水素の混合ガスを高周波又はマイクロ
波放電中で分解および励起せしめダイヤモンドを基板上
に析出させるダイヤモンドの気相合成方法において、発
生したプラズマに紫外線又は可視光線を照射することを
特徴とするダイヤモンドの気相合成方法。
(1) In the diamond vapor phase synthesis method in which a mixed gas of hydrocarbon and hydrogen is decomposed and excited in high frequency or microwave discharge to deposit diamond on a substrate, the generated plasma is irradiated with ultraviolet rays or visible light. A distinctive method of diamond vapor phase synthesis.
(2)ガス供給部及び真空排気系と接続し、その内部に
基板を設置することができる反応管と、基板加熱手段と
、紫外線又は可視光線照射光源と、プラズマ発生用のコ
イル又は電極とを備えたダイヤモンド気相合成装置にお
いて、紫外線又は可視光線照射光源とプラズマ発生用の
コイル又は電極が反応管の外部でしかも真空中又は窒素
雰囲気中に設置されていることを特徴とするダイヤモン
ド気相合成装置。
(2) A reaction tube that is connected to a gas supply section and a vacuum exhaust system and in which a substrate can be installed, a substrate heating means, an ultraviolet or visible light irradiation light source, and a coil or electrode for plasma generation. A diamond vapor phase synthesis apparatus characterized in that an ultraviolet or visible light irradiation light source and a coil or electrode for plasma generation are installed outside the reaction tube in a vacuum or in a nitrogen atmosphere. Device.
JP59127776A 1984-06-21 1984-06-21 Process and apparatus for synthesizing diamond in gaseous phase Granted JPS616199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127776A JPS616199A (en) 1984-06-21 1984-06-21 Process and apparatus for synthesizing diamond in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127776A JPS616199A (en) 1984-06-21 1984-06-21 Process and apparatus for synthesizing diamond in gaseous phase

Publications (2)

Publication Number Publication Date
JPS616199A true JPS616199A (en) 1986-01-11
JPH0518798B2 JPH0518798B2 (en) 1993-03-12

Family

ID=14968404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127776A Granted JPS616199A (en) 1984-06-21 1984-06-21 Process and apparatus for synthesizing diamond in gaseous phase

Country Status (1)

Country Link
JP (1) JPS616199A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120738A (en) * 1985-11-20 1987-06-02 Nec Corp Pilot signal transmission and reception equipment
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
JPH04182388A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Synthesis of diamond
WO1994026952A1 (en) * 1993-05-14 1994-11-24 Modular Process Technology Corporation Apparatus and method for depositing diamond and refractory materials
US5925413A (en) * 1996-03-25 1999-07-20 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method of depositing a polycrystalline diamond layer on a nitride substrate
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120738A (en) * 1985-11-20 1987-06-02 Nec Corp Pilot signal transmission and reception equipment
US4940015A (en) * 1988-07-30 1990-07-10 Kabushiki Kaisha Kobe Seiko Sho Plasma reactor for diamond synthesis
US6660342B1 (en) 1990-09-25 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Pulsed electromagnetic energy method for forming a film
US7125588B2 (en) 1990-09-25 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Pulsed plasma CVD method for forming a film
JPH04182388A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Synthesis of diamond
WO1994026952A1 (en) * 1993-05-14 1994-11-24 Modular Process Technology Corporation Apparatus and method for depositing diamond and refractory materials
US5387288A (en) * 1993-05-14 1995-02-07 Modular Process Technology Corp. Apparatus for depositing diamond and refractory materials comprising rotating antenna
US5925413A (en) * 1996-03-25 1999-07-20 Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. Method of depositing a polycrystalline diamond layer on a nitride substrate

Also Published As

Publication number Publication date
JPH0518798B2 (en) 1993-03-12

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
JP3728465B2 (en) Method for forming single crystal diamond film
US4653428A (en) Selective chemical vapor deposition apparatus
JPS616199A (en) Process and apparatus for synthesizing diamond in gaseous phase
JP3062589B2 (en) Thin film formation method by radical control
JPS60180999A (en) Method for synthesizing diamond
JPS6033300A (en) Process and apparatus for synthesizing diamond in gaseous phase
JPS62265198A (en) Method for synthesizing diamond
JPS62235295A (en) Method for synthesizing diamond
JPS61236691A (en) Vapor phase synthesis of diamond
JPS6054996A (en) Synthesis of diamond
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
JP2726149B2 (en) Thin film forming equipment
JPS61201694A (en) Vapor phase synthesis method for diamond
JPS63117993A (en) Device for synthesizing diamond in vapor phase
JPS593098A (en) Synthesizing method of diamond
JP3938424B2 (en) Diamond thin film production equipment
JPH0419197B2 (en)
JPH0427136A (en) Thin film formation device utilizing organic metal gas
JPH0518794B2 (en)
WO2003023842A1 (en) Method and apparatus for forming low permittivity film and electronic device using the film
JPS63297299A (en) Method for vapor synthesis of diamond
JPH0518800B2 (en)
JP2003163211A (en) Film forming method for low dielectric constant, film forming device and electronic device using the film
JPS61288431A (en) Manufacture of insulating layer