JPS6327319B2 - - Google Patents

Info

Publication number
JPS6327319B2
JPS6327319B2 JP59044649A JP4464984A JPS6327319B2 JP S6327319 B2 JPS6327319 B2 JP S6327319B2 JP 59044649 A JP59044649 A JP 59044649A JP 4464984 A JP4464984 A JP 4464984A JP S6327319 B2 JPS6327319 B2 JP S6327319B2
Authority
JP
Japan
Prior art keywords
substrate
diamond
reaction mixture
reaction
artificial diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59044649A
Other languages
Japanese (ja)
Other versions
JPS60191097A (en
Inventor
Noribumi Kikuchi
Takayuki Shingyochi
Hiroaki Yamashita
Akio Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59044649A priority Critical patent/JPS60191097A/en
Publication of JPS60191097A publication Critical patent/JPS60191097A/en
Publication of JPS6327319B2 publication Critical patent/JPS6327319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 この発明は、人工ダイヤモンドの析出生成方法
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing artificial diamond by precipitation.

従来、人工ダイヤモンド析出生成方法としては
多数の方法が提案され、この中で反応混合ガスを
加熱し、活性化する手段として、 (a) 熱電子放射材、 (b) 高周波によるプラズマ放電、 (c) マイクロ波によるプラズマ放電、 以上(a)〜(c)のいずれかを採用する代表的方法が注
目されている。
Conventionally, many methods have been proposed for producing artificial diamond precipitates, and among these, methods for heating and activating the reaction mixture gas include (a) thermionic emitters, (b) plasma discharge using radio frequency, and (c ) Plasma discharge using microwaves A representative method that employs any of the above (a) to (c) is attracting attention.

上記従来(a)方法は、第1図に概略断面図で示さ
れるように、石英製反応容器1内の上部に開口す
る反応混合ガス導入管2によつて流入された、炭
化水素と水素で構成された反応混合ガスを、熱電
子放射材としての例えば金属タングステン製フイ
ラメント3および台板4上に支持された基体5を
通して下方に流し、この間反応容器1内の雰囲気
圧力を0.1〜300torrに保持すると共に、フイラメ
ント3を1500〜2500℃に加熱して、反応混合ガス
の加熱活性化と、所定間隔下方に配置された基体
表面の300〜1300℃の範囲内の温度への加熱をは
かり、この状態で所定時間の反応を行なわしめる
ことにより基体5の表面にダイヤモンドを析出生
成せしめる方法であり、例えば特開昭58−91100
号公報に記載される方法がこの方法に相当する方
法である。
The above conventional method (a), as shown in a schematic cross-sectional view in FIG. The formed reaction mixture gas is caused to flow downward through a filament 3 made of, for example, metal tungsten as a thermionic emission material and a base 5 supported on a base plate 4, during which time the atmospheric pressure in the reaction vessel 1 is maintained at 0.1 to 300 torr. At the same time, the filament 3 is heated to 1500 to 2500°C to activate the reaction mixture gas and heat the surface of the substrate placed below a predetermined interval to a temperature within the range of 300 to 1300°C. This is a method in which diamond is precipitated and formed on the surface of the substrate 5 by conducting a reaction for a predetermined period of time.
The method described in the above publication corresponds to this method.

また、上記従来(b)方法は、同じく第2図に概略
断面図で示されるように、石英製反応容器1内の
中央部に基体5を置き、この反応容器1の一方側
に設けた反応混合ガス導入管2から炭化水素と水
素で構成された反応混合ガスを流入し、一方反応
容器1の他方側から排気し、この間、反応容器1
内の雰囲気圧力を数torr〜数10torrに保持すると
共に、反応容器1の中央外周部に設けた高周波コ
イル6に、例えば周波数:13.56MHz、出力:
500Wの条件を付加して反応容器1内の基体5の
周囲にプラズマ放電を誘起させ、このプラズマ放
電によつて反応混合ガスの加熱活性化と基体表面
温度の上昇をはかり、この状態で所定時間の反応
を行なわしめることにより基体表面にダイヤモン
ドを析出生成せしめる方法であり、例えば特開昭
58−135117号公報に記載されている方法がこれに
相当するものである。
In addition, in the conventional method (b), as shown in the schematic cross-sectional view in FIG. A reaction mixture gas composed of hydrocarbons and hydrogen is introduced from the mixed gas introduction pipe 2 and exhausted from the other side of the reaction vessel 1.
While maintaining the internal atmospheric pressure at several torr to several tens of torr, a high-frequency coil 6 provided at the center outer circumference of the reaction vessel 1 is connected to a high-frequency coil 6 with a frequency of 13.56 MHz and an output of, for example,
Plasma discharge is induced around the substrate 5 in the reaction vessel 1 by adding a 500W condition, and this plasma discharge activates the reaction mixture gas by heating and increases the substrate surface temperature, and is maintained in this state for a predetermined period of time. This is a method of precipitating diamond on the surface of a substrate by carrying out a reaction.
The method described in Japanese Patent No. 58-135117 corresponds to this method.

さらに、上記従来(c)方法は、同様に第3図に概
略断面図で示されるように、石英製反応容器1内
の中央部に基体5を置き、この反応容器1の上方
に設けた反応混合ガス導入管2から、炭化水素と
水素で構成された反応混合ガスを流入し、一方反
応容器1の下方から排気し、この間、反応容器内
の雰囲気圧力を0.1〜300torrに保持し、一方反応
容器1の中央外周部に設けた導波管7を通して供
給された、例えば2450MHzのマイクロ波をプラズ
マ調整用プランジヤ8によつて調整して、反応容
器1内の基体5の周囲にプラズマ放電を発生さ
せ、このプラズマ放電によつて反応混合ガスの加
熱活性化と基体表面温度の上昇をはかり、この状
態で所定時間の反応を行なわしめることにより基
体表面にダイヤモンドを析出生成せしめる方法で
あり、例えば特開昭58−110494号公報に記載され
ている方法がこれに相当する方法である。
Furthermore, in the conventional method (c), as similarly shown in the schematic cross-sectional view in FIG. A reaction mixture gas composed of hydrocarbons and hydrogen is introduced from the mixed gas introduction pipe 2, and is exhausted from the bottom of the reaction vessel 1. During this time, the atmospheric pressure inside the reaction vessel is maintained at 0.1 to 300 torr, and on the one hand, the reaction mixture is For example, a 2450 MHz microwave supplied through a waveguide 7 provided at the central outer circumference of the container 1 is adjusted by a plasma adjustment plunger 8 to generate plasma discharge around the substrate 5 in the reaction container 1. This plasma discharge heats and activates the reaction mixture gas and raises the surface temperature of the substrate, and by conducting the reaction for a predetermined period of time in this state, diamond is precipitated and generated on the surface of the substrate. The method described in JP-A-58-110494 is a method corresponding to this.

しかし、これらの従来方法は、いずれも共通し
て基体表面へのダイヤモンド析出生成速度が遅い
という問題点がある。
However, all of these conventional methods have a common problem in that the rate of diamond precipitation on the substrate surface is slow.

そこで、本発明者等は、上述のような観点か
ら、上記の従来人工ダイヤモンド析出生成方法に
おけるダイヤモンドの析出生成速度の向上をはか
るべく研究を行なつた結果、上記の人工ダイヤモ
ンド析出生成方法を実施するに際して、炭化水素
と水素とで構成された反応混合ガスに、一酸化炭
素(CO)を配合含有させると、基体表面へのダ
イヤモンドの析出生成が一段と促進されるように
なるという知見を得たのである。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to improve the diamond precipitate formation rate in the conventional artificial diamond precipitation formation method described above, and as a result, implemented the above-mentioned artificial diamond precipitation formation method. In this process, we found that adding carbon monoxide (CO) to the reaction mixture composed of hydrocarbons and hydrogen further promotes the formation of diamond deposits on the substrate surface. It is.

この発明は、上記知見にもとづいてなされたも
のであつて、炭化水素と水素からなり、かつ熱電
子放射材、高周波によるプラズマ放電、あるいは
マイクロ波によるプラズマ放電などにより活性化
された加熱反応混合ガスの流れの中に置かれた加
熱基体の表面に人工ダイヤモンドを析出生成せし
めるに際して、前記反応混合ガスに0.05〜10容量
%のCOを配合含有せしめて、前記基体表面への
ダイヤモンドの析出生成の促進をはかつた点に特
徴を有するものである。
The present invention was made based on the above knowledge, and is a heated reaction mixed gas made of hydrocarbon and hydrogen and activated by a thermionic radiation material, plasma discharge by high frequency, plasma discharge by microwave, etc. When artificial diamond is precipitated and formed on the surface of a heated substrate placed in the flow of water, 0.05 to 10% by volume of CO is added to the reaction mixture gas to promote the precipitation and formation of diamond on the surface of the substrate. It is characterized by the fact that it takes

なお、COの配合含有量を0.05〜10容量%とし
たのは、0.05%未満の含有では所望のダイヤモン
ド析出生成速度の向上効果が得られず、一方10%
を越えて配合すると、基体表面に析出する人工ダ
イヤモンド中の酸素含有量が多くなりすぎて、ダ
イヤモンド結晶構造が損なわれるようになるとい
う理由によるものであり、中でも0.05〜5容量%
の配合含有が望ましい。
The reason for setting the CO content in the range of 0.05 to 10% by volume is that if the content is less than 0.05%, the desired effect of improving the diamond precipitation formation rate cannot be obtained.
This is because if the amount exceeds 0.05 to 5% by volume, the oxygen content in the artificial diamond that precipitates on the surface of the substrate will become too high, damaging the diamond crystal structure.
It is desirable to include the following.

つぎに、この発明の方法を実施例により具体的
に説明する。
Next, the method of the present invention will be specifically explained using examples.

実施例 1 実施に際して、第1図に示される装置を用い、 石英製反応容器1の外径:50mmφ、 基体5:平面10mm□×厚さ1mmの寸法をもつた
金属タングステン板材、 反応混合ガス組成:容量割合で、H2/CH4
CO=100/1/0.2、 金属タングステン製フイラメント3と基体5の
表面との間隔:30mm、 雰囲気圧力:20torr、 フイラメント3の加熱温度:2000℃、 フイラメントによる基体表面温度:700℃、 反応時間:1時間、 の条件で実施して、基体5の表面に人工ダイヤモ
ンドを析出生成せしめた。
Example 1 In carrying out the implementation, the apparatus shown in Fig. 1 was used, the outer diameter of the quartz reaction vessel 1 was 50 mmφ, the substrate 5 was a metal tungsten plate with dimensions of 10 mm square x 1 mm thick, and the composition of the reaction mixture gas. : Capacity ratio, H 2 /CH 4 /
CO=100/1/0.2, Distance between metal tungsten filament 3 and surface of substrate 5: 30 mm, Atmospheric pressure: 20 torr, Heating temperature of filament 3: 2000℃, Substrate surface temperature due to filament: 700℃, Reaction time: The experiment was carried out for 1 hour under the following conditions to precipitate and generate artificial diamond on the surface of the substrate 5.

この結果、上記基体表面には平均層厚で4μm
の人工ダイヤモンド膜が形成され、この人工ダイ
ヤモンドは、天然ダイヤモンドと同等のヌープ硬
さで7000Kg/mm2以上の高硬度を示し、かつX線回
折でも天然ダイヤモンドと同じ回折結果を示し
た。
As a result, the average layer thickness on the surface of the substrate was 4 μm.
An artificial diamond film was formed, and this artificial diamond showed a high hardness of 7000 Kg/mm 2 or more, which is equivalent to that of natural diamond, and also showed the same diffraction results as natural diamond in X-ray diffraction.

一方、比較の目的で、反応混合ガスの組成を、
容量割合で、H2/CH4=100/1とする以外は、
同一の条件で反応を行なわしめたところ、基体表
面には平均層厚で0.5μmの人工ダイヤモンド膜し
か形成されず、この結果より反応混合ガス中に
COを配合含有せしめれば人工ダイヤモンドの析
出生成速度が一段と向上するようになることが明
らかである。
On the other hand, for the purpose of comparison, the composition of the reaction mixture gas is
Except for the capacity ratio, H 2 /CH 4 = 100/1.
When the reaction was carried out under the same conditions, only an artificial diamond film with an average layer thickness of 0.5 μm was formed on the surface of the substrate.
It is clear that the inclusion of CO in the mixture further improves the precipitation formation rate of artificial diamond.

実施例 2 実施に際して、第2図に示される装置を用い、 石英製反応容器1の外径:50mmφ、 基体5:平面12.7mm□×厚さ4.8mmの寸法をも
つた炭化タングステン基超硬合金(Co:6重量
%、WC:残り)製板材、 反応混合ガス組成:容量割合で、H2/C2H6
CO=100:5:1、 雰囲気圧力:10torr、 高周波コイル6への印加条件(周波数:
13.56MHz、出力:500W)、 反応時間:1時間、 の条件で実施したところ、前記基体5の表面には
平均層厚で5μmの人工ダイヤモンド膜が形成さ
れた。
Example 2 The apparatus shown in FIG. 2 was used in carrying out the experiment, and the outer diameter of the quartz reaction vessel 1 was 50 mmφ, and the base body 5 was a tungsten carbide-based cemented carbide with dimensions of 12.7 mm square x 4.8 mm thick. (Co: 6% by weight, WC: remainder) Plate material, reaction mixture gas composition: H 2 /C 2 H 6 / by volume ratio
CO=100:5:1, atmospheric pressure: 10 torr, application conditions to high frequency coil 6 (frequency:
As a result, an artificial diamond film with an average layer thickness of 5 μm was formed on the surface of the substrate 5.

この結果得られた人工ダイヤモンドは、同じく
ヌープ硬さで7500Kg/mm2以上の高硬度を示し、か
つX線回折でも天然ダイヤモンドと同様の回折結
果を示した。
The resulting artificial diamond also exhibited high hardness, with a Knoop hardness of 7500 Kg/mm 2 or more, and X-ray diffraction results similar to those of natural diamond.

一方、同様に比較の目的で、反応混合ガス中に
COを配合せず、その組成をH2/C2H2=100/5
とする以外は同一の条件で反応を行なわしめたと
ころ、基体表面には平均層厚で0.8μmのわずかな
人工ダイヤモンドしか析出生成することができな
かつた。
On the other hand, for the purpose of comparison,
Without adding CO, the composition is H 2 /C 2 H 2 = 100/5
When the reaction was carried out under the same conditions except for the following conditions, only a small amount of artificial diamond with an average layer thickness of 0.8 μm could be precipitated on the surface of the substrate.

実施例 3 同様に実施に際して、第3図に示される装置を
用い、 石英製反応容器1の外径:30mmφ、 基体5:平面12.7mm□×厚さ4.8mmの寸法をも
つた炭化タングステン基超硬合金(TiC:10重量
%、Co:7重量%、WC:残り)製板材、 反応混合ガス組成:容量割合で、H2/CH4
CO=100/5/3、 雰囲気圧力:5torr、 マイクロ波:2450MHz、 反応時間:1時間、 の条件でマイクロ波によるプラズマ放電を利用し
て実施した。この場合前記基体5の表面に平均層
厚で4.5μmの人工ダイヤモンドが形成された。
Example 3 In the same manner, the apparatus shown in FIG. 3 was used, and the outer diameter of the quartz reaction vessel 1 was 30 mmφ. Hard alloy (TiC: 10% by weight, Co: 7% by weight, WC: remainder) plate material, reaction mixture gas composition: H 2 /CH 4 / by volume ratio
The experiment was carried out using microwave plasma discharge under the following conditions: CO = 100/5/3, atmospheric pressure: 5 torr, microwave: 2450 MHz, reaction time: 1 hour. In this case, artificial diamond was formed on the surface of the substrate 5 with an average layer thickness of 4.5 μm.

この結果得られた人工ダイヤモンドは、天然ダ
イヤモンドと同等のヌープ硬さで8000Kg/mm2の高
硬度を示し、かつX線回折でも天然ダイヤモンド
と同じ回折結果を示した。
The resulting artificial diamond had a Knoop hardness of 8000 kg/mm 2 , equivalent to that of natural diamond, and also showed the same X-ray diffraction results as natural diamond.

また、比較の目的で、反応混合ガスの組成を、
従来人工ダイヤモンドの析出生成方法の場合と同
じ、容量割合でH2/CH4=100/5とする以外
は、同一の条件で反応を行なわしめたところ、基
体5の表面には平均層厚で0.8μmのダイヤモンド
しか形成しなかつた。
Also, for comparison purposes, the composition of the reaction mixture gas is
When the reaction was carried out under the same conditions as in the conventional artificial diamond precipitation formation method, except that the volume ratio was H 2 /CH 4 = 100/5, an average layer thickness was formed on the surface of the substrate 5. Only 0.8 μm diamonds were formed.

上述のように、この発明の方法によれば、反応
混合ガス中に一酸化炭素(CO)を配合含有させ
ることによつて、人工ダイヤモンドを従来の炭化
水素と水素で構成された反応混合ガスを使用する
方法に比して一段と速い析出生成速度で形成する
ことができるのである。
As mentioned above, according to the method of the present invention, by incorporating carbon monoxide (CO) into the reaction mixture gas, artificial diamonds can be treated with the conventional reaction mixture gas composed of hydrocarbons and hydrogen. It is possible to form a precipitate at a much faster rate than the methods used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図はいずれも人工ダイヤモンドの析出
生成装置を示す概略断面図である。 1……反応容器、2……反応混合ガス導入管、
3……熱電子放射材としてのフイラメント、4…
…台板、5……基体、6……高周波コイル、7…
…導波管。
1 to 3 are schematic cross-sectional views showing an apparatus for producing artificial diamond. 1... Reaction container, 2... Reaction mixed gas introduction pipe,
3... Filament as thermionic emitting material, 4...
...base plate, 5...substrate, 6...high frequency coil, 7...
...waveguide.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素と水素からなり、かつ熱電子放射
材、高周波によるプラズマ放電、あるいはマイク
ロ波によるプラズマ放電などにより活性化された
加熱反応混合ガスの流れの中に置かれた加熱基体
の表面に人工ダイヤモンドを析出生成せしめる方
法において、前記反応混合ガスに0.05〜10容量%
の一酸化炭素を含有せしめて、前記基体表面への
ダイヤモンドの析出生成速度の向上をはかること
を特徴とする人工ダイヤモンドの析出生成方法。
1. An artificial diamond is placed on the surface of a heated substrate placed in a flow of a heated reaction mixture consisting of hydrocarbons and hydrogen and activated by a thermionic radiation material, plasma discharge by high frequency, plasma discharge by microwave, etc. 0.05 to 10% by volume in the reaction mixture gas.
1. A method for depositing and producing artificial diamond, which comprises incorporating carbon monoxide to improve the rate of diamond precipitation on the surface of the substrate.
JP59044649A 1984-03-08 1984-03-08 Crystallizing method of artificial diamond Granted JPS60191097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044649A JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044649A JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Publications (2)

Publication Number Publication Date
JPS60191097A JPS60191097A (en) 1985-09-28
JPS6327319B2 true JPS6327319B2 (en) 1988-06-02

Family

ID=12697286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044649A Granted JPS60191097A (en) 1984-03-08 1984-03-08 Crystallizing method of artificial diamond

Country Status (1)

Country Link
JP (1) JPS60191097A (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
WO1987003307A1 (en) * 1985-11-25 1987-06-04 Showa Denko Kabushiki Kaisha Process for synthesizing diamond
JPH0768078B2 (en) * 1986-07-11 1995-07-26 京セラ株式会社 Diamond film manufacturing method
US5225275A (en) * 1986-07-11 1993-07-06 Kyocera Corporation Method of producing diamond films
JPH0768079B2 (en) * 1986-07-11 1995-07-26 京セラ株式会社 Diamond film manufacturing method
US5275798A (en) * 1986-07-11 1994-01-04 Kyocera Corporation Method for producing diamond films
JPS63107898A (en) * 1986-10-23 1988-05-12 Natl Inst For Res In Inorg Mater Method for synthesizing diamond with plasma
JPH0811719B2 (en) * 1986-12-27 1996-02-07 京セラ株式会社 Diamond film manufacturing method
JPH0776147B2 (en) * 1986-12-27 1995-08-16 京セラ株式会社 Diamond film manufacturing method
US5270029A (en) * 1987-02-24 1993-12-14 Semiconductor Energy Laboratory Co., Ltd. Carbon substance and its manufacturing method
US5271971A (en) * 1987-03-30 1993-12-21 Crystallume Microwave plasma CVD method for coating a substrate with high thermal-conductivity diamond material
US5270114A (en) * 1987-03-30 1993-12-14 Crystallume High thermal conductivity diamond/non-diamond composite materials
US5273825A (en) * 1987-03-30 1993-12-28 Crystallume Article comprising regions of high thermal conductivity diamond on substrates
US5284709A (en) * 1987-03-30 1994-02-08 Crystallume Diamond materials with enhanced heat conductivity
US5413772A (en) * 1987-03-30 1995-05-09 Crystallume Diamond film and solid particle composite structure and methods for fabricating same
US4859493A (en) * 1987-03-31 1989-08-22 Lemelson Jerome H Methods of forming synthetic diamond coatings on particles using microwaves
US4985227A (en) * 1987-04-22 1991-01-15 Indemitsu Petrochemical Co., Ltd. Method for synthesis or diamond
JPS6461396A (en) * 1987-09-01 1989-03-08 Idemitsu Petrochemical Co Synthesis of diamond and installation therefor
JPH01130520A (en) * 1987-11-17 1989-05-23 Idemitsu Petrochem Co Ltd Synthesizing of diamond semiconductor
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US5190824A (en) 1988-03-07 1993-03-02 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating
JP2730144B2 (en) * 1989-03-07 1998-03-25 住友電気工業株式会社 Single crystal diamond layer formation method
US5104634A (en) * 1989-04-20 1992-04-14 Hercules Incorporated Process for forming diamond coating using a silent discharge plasma jet process
JPH0780718B2 (en) * 1989-08-04 1995-08-30 トヨタ自動車株式会社 Diamond synthesizing method and synthesizing apparatus
US5126206A (en) * 1990-03-20 1992-06-30 Diamonex, Incorporated Diamond-on-a-substrate for electronic applications

Also Published As

Publication number Publication date
JPS60191097A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
JPS6327319B2 (en)
JPH05500390A (en) Method for producing diamond-doped diamond and diamond three-dimensional boron nitride composite films at low temperatures
JP2002506786A (en) Apparatus and method for diamond nucleation and deposition using hot filament DC plasma
JPH0288497A (en) Production of single crystal diamond grain
JPS6320911B2 (en)
JPH01239092A (en) Production of diamond
JPH04958B2 (en)
JPH03199379A (en) Method of evaporating crystallite solid particle by using chemical deposition method
US5268201A (en) Composite diamond grain and method for production thereof
JPS6358798B2 (en)
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPS6286161A (en) Formation of artificial diamond film at high deposition forming rate
JPS6358799B2 (en)
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPS60204695A (en) Method of precipitation and formation of artificial diamond film
JPH07116606B2 (en) Diamond coated carbon material
JPH0234917B2 (en)
JPS60145995A (en) Preparation of diamond-shaped carbon
JPS644586B2 (en)
JP2562921B2 (en) Method of synthesizing vapor phase diamond
JP2686970B2 (en) Membrane diamond manufacturing method
JPS60200897A (en) Process for depositing and forming artificial diamond film
US4212838A (en) Process for manufacture of cantilever for pickup cartridge
JPH0116624B2 (en)