JPS63166798A - Production of diamond film - Google Patents

Production of diamond film

Info

Publication number
JPS63166798A
JPS63166798A JP31119286A JP31119286A JPS63166798A JP S63166798 A JPS63166798 A JP S63166798A JP 31119286 A JP31119286 A JP 31119286A JP 31119286 A JP31119286 A JP 31119286A JP S63166798 A JPS63166798 A JP S63166798A
Authority
JP
Japan
Prior art keywords
diamond
substrate
film
gas
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31119286A
Other languages
Japanese (ja)
Other versions
JPH0776147B2 (en
Inventor
Hiroshi Aida
比呂史 会田
Shinichi Koriyama
慎一 郡山
Koichi Yamaguchi
浩一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61311192A priority Critical patent/JPH0776147B2/en
Publication of JPS63166798A publication Critical patent/JPS63166798A/en
Publication of JPH0776147B2 publication Critical patent/JPH0776147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a dense diamond film having an uniform thickness, by introducing a given gas onto a substrate having homogeneously dispersed fine particles having SP<3> bonds and depositing diamond. CONSTITUTION:Fine particles having SP<3> bonds are homogeneously dispersed on the surface of a substrate. A gas for forming diamond containing at least hydrogen atoms, carbon atoms and oxygen atoms is introduced onto the sub strate. The above-mentioned substrate is then heated at 500-1,300 deg.C to disperse the afore-mentioned gas for forming the diamond. Thereby the aimed dense diamond film having a uniform thickness is formed on the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はダイヤモンド膜の製造方法に関し、より詳細に
は核発生密度を高め高速にダイヤモンド膜を成長させる
ダイヤモンド膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a diamond film, and more particularly to a method of manufacturing a diamond film that increases the nucleation density and grows the diamond film at high speed.

〔従来技術〕[Prior art]

近年、ダイヤモンドは高価な装置を利用して超高圧、超
高温下で合成されるようになったが、他=1一 方、高硬度並びに耐摩耗性に優れた切削部材や耐摩耗部
材など更に、広範な用途に答えると共に効率的にダイヤ
モンドを合成するために化学気相合成法が研究されてい
る。
In recent years, diamonds have been synthesized using expensive equipment under extremely high pressure and high temperatures. Chemical vapor phase synthesis is being researched to efficiently synthesize diamonds for a wide range of applications.

この化学気相合成法は、一般には炭化水素と水素との混
合ガスを反応槽内に導入して電子線照射、高周波、マイ
クロ波等により炭化水素を熱分解してプラズマを発生さ
せて加熱された基板上にダイヤモンドを析出させる方法
であるが、析出速度が極めて遅いことがら成膜工程の初
期において基板上に微細な核を析出させる試みがなされ
ている。
In this chemical vapor phase synthesis method, a mixed gas of hydrocarbons and hydrogen is generally introduced into a reaction tank and heated by thermally decomposing the hydrocarbons using electron beam irradiation, high frequency waves, microwaves, etc. to generate plasma. This method involves depositing diamond on a substrate, but since the deposition rate is extremely slow, attempts have been made to deposit fine nuclei on the substrate at the beginning of the film forming process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の方法によれば、この核発生過程で
の条件設定が難しく、発生する核の密度が低く不均一な
ために膜状に成長する段階で膜の厚みが不均一となり易
く、緻密な膜が得難いという欠点があり、それにより膜
強度が低下するといった欠点を有しており、切削工具等
に用いた場合、寿命が短くなる等の問題があった。
However, according to the conventional method, it is difficult to set the conditions for this nucleation process, and the density of the generated nuclei is low and non-uniform, so the thickness of the film tends to become non-uniform at the stage of growing into a film. It has the disadvantage that it is difficult to obtain a film, which reduces the film strength, and when used in cutting tools, etc., there are problems such as a shortened service life.

しかも核発生過程から膜形成過程までに時間を要するこ
とからダイヤモンド被覆部材の量産化が難しい等の問題
もあった。
Moreover, since it takes time from the nucleation process to the film formation process, it is difficult to mass-produce diamond-coated members.

〔発明の目的〕[Purpose of the invention]

本発明は前述の問題点を解消することを目的とするもの
で、詳細には初期の核発生過程においてダイヤモンドの
核発生を短時間で且つ高密度で発生させることによって
ダイヤモンドの成長速度を速め、均一で緻密なダイヤモ
ンド膜を得るための製造方法を提供することを目的とす
るものである。
The present invention aims to solve the above-mentioned problems. Specifically, the present invention accelerates the growth rate of diamond by generating diamond nuclei in a short time and at high density during the initial nucleation process. The purpose of this invention is to provide a manufacturing method for obtaining a uniform and dense diamond film.

本発明の他の目的は核発生の過程から膜形成過程でのダ
イヤモンド析出速度を向上させ得る量産性に優れたダイ
ヤモンド膜の製造方法を提供することにある。
Another object of the present invention is to provide a method for manufacturing a diamond film with excellent mass productivity, which can improve the diamond precipitation rate from the nucleation process to the film formation process.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記問題点に対し、鋭意研究の結果、ダイ
ヤモンド生成用ガスとして少な(とも水素原子、炭素原
子及び酸素原子を含有させること、ダイヤモンド膜を形
成し得る基板上にs p 3結合を有する微粒子を均一
に分散しておくことによって核発生過程における核の生
成を高速、緻密化することができることを知見し本発明
に至ったものである。
The present inventors solved the above problems by conducting intensive research and found that the diamond-forming gas contains a small amount of hydrogen atoms, carbon atoms, and oxygen atoms, and that sp 3 bonds are formed on the substrate on which a diamond film can be formed. The present invention was developed based on the finding that by uniformly dispersing fine particles having a nucleation process, the generation of nuclei in the nucleation process can be made faster and more dense.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

ダイヤモンドの化学気相成長法は、炭素源および水素を
含むダイヤモンド生成用ガスを用い、これを分解して基
板表面にSP3結合を有する炭素を選択的に析出させる
ことをそのメカニズムとするものである。
The chemical vapor deposition method for diamond uses a carbon source and a diamond-forming gas containing hydrogen, and its mechanism is to decompose it and selectively deposit carbon with SP3 bonds on the substrate surface. .

そこで、基板表面におけるダイヤモンド膜の生成過程を
第1図(a)乃至(c)に示す。初期において第1図(
a)に示すように分解され、励起状態となった炭素原子
のうちSP3結合したもののみが基板1表面に核2とし
て析出する。
Therefore, the process of forming a diamond film on the substrate surface is shown in FIGS. 1(a) to 1(c). In the early stage, Figure 1 (
As shown in a), among the carbon atoms decomposed and brought into an excited state, only those SP3-bonded are precipitated as nuclei 2 on the surface of the substrate 1.

次に、一定の量の核2が生じると、第1図(b)に示す
ように生成された核2を中心にダイヤモンド3が析出し
、言わば島状として成長する。さらに成長が進むと第1
図(c)に示すように隣接する島同志が重なり最終的に
は膜を形成する。
Next, when a certain amount of nuclei 2 are generated, diamond 3 is precipitated around the generated nuclei 2 as shown in FIG. 1(b), and grows in a so-called island shape. If further growth progresses, the first
As shown in Figure (c), adjacent islands overlap to eventually form a film.

本発明は、上記のダイヤモンド膜の生成過程のうちその
初期において、基板表面に金属もしくはその金属化合物
を均一に点在させることによって、その周辺にダイヤモ
ンドが効率的に生成されるという新規知見に基づく。
The present invention is based on the novel finding that by uniformly dotting the surface of a substrate with metal or its metal compound at the initial stage of the diamond film formation process, diamond can be efficiently formed around the substrate surface. .

即ち、基板表面に予めsp″結合を有する微粉末を均一
に分散させておくことにより、初期における核発生を容
易ならしめ、結果として基板表面に均一なダイアモンド
核を生成させることができるものである。
That is, by uniformly dispersing fine powder having sp'' bonds on the substrate surface in advance, initial nucleation can be facilitated, and as a result, uniform diamond nuclei can be generated on the substrate surface. .

本発明者等はこのような現象の理由を次のように考える
。基板と微粉末の電気伝導度に差がある場合、プラズマ
中に存在するイオンまたは電子の基板との相互作用が微
粉末の存在する部分のみ周囲と比較して特異的レベルと
なっていると考えられ、この相関作用の差がダイヤモン
ドの生成に大きく寄与しているものと考えられる。しか
も、sP3結合を有しているため、ダイヤモンド生成機
構がSP″結合以外の析出物をエツチングする条件であ
っても消滅せずに存在することができる。
The present inventors consider the reason for this phenomenon as follows. If there is a difference in electrical conductivity between the substrate and the fine powder, it is thought that the interaction of ions or electrons present in the plasma with the substrate is at a specific level only in the area where the fine powder exists compared to the surrounding area. It is thought that this difference in correlation effects greatly contributes to the formation of diamonds. Furthermore, since it has sP3 bonds, it can exist without disappearing even under conditions where the diamond formation mechanism etch precipitates other than SP'' bonds.

本発明において用いられるsp3結合を有する微粉末と
しては、ダイヤモンド、立方晶窒化硼素(c−BN)、
立方晶炭化珪素(β−3iC) 、窒化アルミニウム(
c−AIN) 、硼化リン(BP)が挙げられる。
The fine powder having sp3 bonds used in the present invention includes diamond, cubic boron nitride (c-BN),
Cubic silicon carbide (β-3iC), aluminum nitride (
c-AIN) and phosphorus boride (BP).

これらの中でもダイヤモンド、c−BN、β−3iCが
望ましい。
Among these, diamond, c-BN, and β-3iC are preferable.

これらの微粉末の粒径は、基板上に形成される膜厚との
関係から0.05乃至5μmの範囲が望ましい。
The particle size of these fine powders is preferably in the range of 0.05 to 5 μm in view of the thickness of the film formed on the substrate.

この微粉末を基板表面に均一に分散させる手段としては
油、水またはアルコール等の揮発性有機液体を媒体とし
て分散させ、基板に塗布する他、分散メッキ、スプレー
塗布あるいは界面活性剤を添加して分散状態を良好にし
て塗布する等が採用しうる。
Means for uniformly dispersing this fine powder on the substrate surface include dispersing it in a volatile organic liquid such as oil, water, or alcohol as a medium and applying it to the substrate, as well as dispersion plating, spray coating, or adding a surfactant. It may be possible to apply the coating in a well-dispersed state.

この時の塗布量は、用いる微粉末によって多少異なるが
微粉末がおよそ10’乃至10目個/cm”となる範囲
で塗布を行う。塗布量が少ないと膜が不均一化しやすく
、核の生成が困難となり、一方多すぎるとダイヤモンド
と基板との間に中間層として形成され、ダイヤモンドと
基板との密着性に悪影響を及ぼす可能性がある。
The amount of coating at this time varies somewhat depending on the fine powder used, but it should be applied within a range of approximately 10' to 10 pieces/cm' of fine powder. If the amount of coating is small, the film tends to become uneven, and the formation of nuclei. On the other hand, if the amount is too large, an intermediate layer may be formed between the diamond and the substrate, which may adversely affect the adhesion between the diamond and the substrate.

本発明によれば、前述したような核剤を分散処理した基
板を反応槽内に配置させ、ダイヤモンド生成用ガスとし
て少なくとも水素原子、炭素原子および酸素原子を含有
させたものを導入する。そして、基板を500乃至13
00℃の温度に加熱するとともに、電子線照射、高周波
、マイクロ波等によってプラズマ発生させる。
According to the present invention, a substrate on which a nucleating agent as described above has been dispersed is placed in a reaction tank, and a diamond-forming gas containing at least hydrogen atoms, carbon atoms, and oxygen atoms is introduced. Then, the board is 500 to 13
While heating to a temperature of 00°C, plasma is generated by electron beam irradiation, high frequency, microwave, etc.

用いられるダイヤモンド生成用ガスとしては水素、炭化
水素、酸素含有ガス、酸素含有有機ガスを組み合わせて
用いる。炭化水素としてはメタン、エタン、プロパン、
ブタン等の飽和鎖状炭化水素、エチレン、プロピレン、
アセチレン、アレン等の不飽和鎖状炭化水素、シクロプ
ロパン、シクロブタン、シクロペンクン等の脂環式炭化
水素、ベンゼン、トルエン、キシレン等の芳香族炭化水
素等が挙げられる。これらの中でも特に常温で気体であ
る炭化水素が取り扱いの点で望ましい。
The diamond-forming gas used is a combination of hydrogen, hydrocarbon, oxygen-containing gas, and oxygen-containing organic gas. Hydrocarbons include methane, ethane, propane,
Saturated chain hydrocarbons such as butane, ethylene, propylene,
Examples include unsaturated chain hydrocarbons such as acetylene and allene, alicyclic hydrocarbons such as cyclopropane, cyclobutane and cyclopenkune, and aromatic hydrocarbons such as benzene, toluene and xylene. Among these, hydrocarbons that are gaseous at room temperature are particularly desirable from the viewpoint of handling.

用いられる酸素含有ガスはしては0□の他、co、co
□等の炭化物、No、No□、Neo等の窒化物またH
2O,Hooz等の水素化物などの三原子分子、三原子
分子ある一7= いは西原子分子などの酸素化合物を用いることができる
The oxygen-containing gas used is 0□, co, co
Carbide such as □, nitride such as No, No□, Neo, or H
Triatomic molecules such as hydrides such as 2O, Hooz, etc., and oxygen compounds such as triatomic molecules or West atomic molecules can be used.

また、酸素含有有機化合物としてはメタノール、エタノ
ール、プロパツール、ブタノール等のアルコール類、メ
チルエーテル、エチルエーテル、エチルメチルエーテル
、メチルプロピルエーテル、エチルプロピルエーテル、
フェノールエーテル、アセタール、環式エーテル(エチ
レンオキシド、ジオキサン等)のエーテル類、アセトン
、ビナコリン、メシチルオキシド、芳香族ケトン(アセ
トフェノン、ベンゾフェノンなど)、ジケトン、環式ケ
トン等のケトン類、ホルムアルデヒド、アセトアルデヒ
ド、ブチルアルデヒド、芳香族アルデヒド(ベンズアル
デヒドなど)等のアルデヒド類、蟻酸、酢酸、プロピオ
ン酸、コハク酸、酪酸、しゅう酸、酒石酸、ステアリン
酸等の有機酸類、酢酸メチル、酢酸エチル、酢酸プロピ
ル、酢酸ブチル等の酸エステル類、エチレングリコール
トリエチレングリコール、ジエチレングリコール等の二
価アルコール類等が挙げられ、これらの中で=8− も炭化水素と同様常温で気体であるメチルエーテル、エ
チレンオキシドもしくは蒸気圧の高いメタノール、エタ
ノール、プロパツール、ブタノール、メチルアルコール
、エチルエーテル、エチルメチルエーテル、メチルプロ
ピルエーテル、エチルプルピルエーテル、アセトン、ホ
ルムアルデヒド、アセトアルデヒド、ブチルアルデヒド
、蟻酸、酢酸、酢酸メチル、酢酸エチル、酢酸プロピル
、酢酸ブチル等が望ましい。
In addition, oxygen-containing organic compounds include alcohols such as methanol, ethanol, propatool, butanol, methyl ether, ethyl ether, ethyl methyl ether, methyl propyl ether, ethyl propyl ether,
Phenol ethers, acetals, ethers of cyclic ethers (ethylene oxide, dioxane, etc.), acetone, binacolin, mesityl oxide, aromatic ketones (acetophenone, benzophenone, etc.), diketones, ketones such as cyclic ketones, formaldehyde, acetaldehyde, Aldehydes such as butyraldehyde and aromatic aldehydes (benzaldehyde, etc.), organic acids such as formic acid, acetic acid, propionic acid, succinic acid, butyric acid, oxalic acid, tartaric acid, stearic acid, methyl acetate, ethyl acetate, propyl acetate, butyl acetate and dihydric alcohols such as ethylene glycol, triethylene glycol, and diethylene glycol. Methanol, ethanol, propatool, butanol, methyl alcohol, ethyl ether, ethyl methyl ether, methyl propyl ether, ethyl propyl ether, acetone, formaldehyde, acetaldehyde, butyraldehyde, formic acid, acetic acid, methyl acetate, ethyl acetate, propyl acetate, Butyl acetate etc. are preferable.

また、水素はその一部をアルゴンやヘリウム等の不活性
ガスで置換することも可能である。
It is also possible to partially replace hydrogen with an inert gas such as argon or helium.

これらのダイヤモンド生成用ガスは、ガス成分の比率及
び流量を所定の範囲に設定することが望ましい。即ち、
単位時間当たりにダイヤモンド生成用ガスとして系内に
導入される全水素原子数を(H)、全炭素原子数を(C
)、全酸素原子数を(0)としたとき、次式 %式%() を満足するようにガス成分及びその流量を設定すること
により核発生を効率的に行い、膜形成過程までの反応の
進行を促進することができるとともに膜自体の強度を向
上させることができる。
It is desirable that the ratio and flow rate of gas components of these diamond-generating gases be set within a predetermined range. That is,
The total number of hydrogen atoms introduced into the system as a diamond-generating gas per unit time is (H), and the total number of carbon atoms is (C
), and when the total number of oxygen atoms is (0), by setting the gas components and their flow rates to satisfy the following formula % formula % (), nucleation is performed efficiently and the reaction up to the film formation process. It is possible to promote the progress of the process and also improve the strength of the film itself.

更に、ダイヤモンド膜が生成される基板の温度及び成膜
中のガス圧を所定の範囲に設定するのがよい。
Further, the temperature of the substrate on which the diamond film is formed and the gas pressure during film formation are preferably set within predetermined ranges.

本発明者等の実験によれは、母材の温度を400〜14
00℃の範囲に、またガス圧を10−”100 Tor
rの範囲に設定することが望ましい。
According to experiments conducted by the present inventors, the temperature of the base material was set at 400 to 14
00°C and gas pressure 10-”100 Torr.
It is desirable to set it within the range of r.

本発明におけるダイヤモンド膜形成手段としては、ダイ
ヤモンド生成用ガスの分解手段により区別され、高周波
加熱プラズマCVD法、マイクロ波プラズマCVD法、
ECRプラズマCVD法等のプラズマCVD法の他、電
子線照射によりCVD法、熱フイラメントCVD法等が
採用される。
The means for forming a diamond film in the present invention is classified by the means for decomposing the diamond-forming gas, and includes a high-frequency heating plasma CVD method, a microwave plasma CVD method,
In addition to plasma CVD methods such as ECR plasma CVD method, CVD method using electron beam irradiation, hot filament CVD method, etc. are employed.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例 基板としてSi、SiC質焼結体、Si3Ng質焼結体
を用いて第1表に示す表面処理を行った。
The surface treatments shown in Table 1 were carried out using Si, SiC sintered bodies, and Si3Ng sintered bodies as example substrates.

第1表 次に第1表にて得られた基板試料を反応槽内に配置し、
マイクロ波プラズマCVD法に基づき、第2表に示すダ
イヤモンド生成用ガスを各流量で導入し、マイクロ波出
力400W、圧力25Torrの条件下でダイヤモンド
膜を形成した。
Table 1 Next, place the substrate sample obtained in Table 1 in a reaction tank,
Based on the microwave plasma CVD method, diamond forming gases shown in Table 2 were introduced at various flow rates, and a diamond film was formed under the conditions of a microwave output of 400 W and a pressure of 25 Torr.

この成膜工程時、1時間経過後に基板表面における核発
生状況を顕微鏡にて観察した。また基板表面におけるダ
イヤモンドの占有率を求めた。
During this film-forming process, the state of nucleation on the substrate surface was observed using a microscope after 1 hour had elapsed. The occupancy rate of diamond on the substrate surface was also determined.

最終的にダイヤモンドの成膜を4時間行い、その時点で
の膜厚を測定した。
Finally, the diamond film was formed for 4 hours, and the film thickness at that point was measured.

結果は第2表に示す。The results are shown in Table 2.

第1表から明らかなように11111.N112の核剤
を塗布しないSt基板または単に傷を付けたSt基板に
対しては1時間経過後ではほとんど核は発生しなかった
。その他のl1h3乃至隘15の本発明の試料はいずれ
も良好な核発生を生じ、膜生成速度も3゜5μm/hr
以上と大きいものであった。
As is clear from Table 1, 11111. Almost no nuclei were generated after one hour on the St substrate to which the N112 nucleating agent was not applied or to which the St substrate was simply scratched. The other samples of the present invention from 11h3 to 15 all produced good nucleation, and the film formation rate was 3°5 μm/hr.
It was bigger than that.

〔発明の効果〕〔Effect of the invention〕

上述した通り本発明のダイヤモンド膜の製造方法は初期
における基板表面にSP3結合を有する微粉末を均一分
散させ、この基板に対し、少なくとも水素原子、炭素原
子、酸素原子を含むダイヤモンド生成用ガスを導入し、
該ガスを分解してダイヤモンドを析出させることにより
、ダイヤモンド生成における初期の核発生を効率的に短
時間で均−且つ高密度化することができる。それによっ
て膜成長を速め、均一な膜厚の緻密なダイヤモンド膜を
得ることができる。このようなダイヤモンド膜は膜強度
が向上し、切削工具の表面被覆として長寿命化を計るこ
とができ、またヒートシンク用としても優れた熱伝導度
を付与することが可能となる。
As described above, the method for manufacturing a diamond film of the present invention involves uniformly dispersing fine powder having SP3 bonds on the initial substrate surface, and introducing a diamond-forming gas containing at least hydrogen atoms, carbon atoms, and oxygen atoms into the substrate. death,
By decomposing the gas to precipitate diamond, initial nucleation during diamond formation can be efficiently uniformized and densified in a short time. Thereby, film growth can be accelerated and a dense diamond film with a uniform thickness can be obtained. Such a diamond film has improved film strength, can be used as a surface coating for cutting tools to extend its life, and can also be used as a heat sink to provide excellent thermal conductivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(c)はダイヤモンド膜の生成過程を
説明するための図である。 1・・・基板  2・・・微粉末 3・・・ダイヤモンド核
FIGS. 1(a) to 1(c) are diagrams for explaining the process of forming a diamond film. 1...Substrate 2...Fine powder 3...Diamond core

Claims (1)

【特許請求の範囲】[Claims] 表面にSP^3結合を有する微粒子を均一に分散した基
板を反応槽内に設置し、該反応槽内に少なくとも水素原
子、炭素原子および酸素原子を含有するダイヤモンド生
成用ガスを導入するとともに該基板を500乃至130
0℃に加熱して前記反応ガスを分解させ該基板上にダイ
ヤモンドを析出させることを特徴とするダイヤモンド膜
の製造方法。
A substrate on which fine particles having SP^3 bonds are uniformly dispersed is placed in a reaction tank, and a diamond-forming gas containing at least hydrogen atoms, carbon atoms, and oxygen atoms is introduced into the reaction tank, and the substrate is 500 to 130
A method for producing a diamond film, comprising heating to 0° C. to decompose the reaction gas and deposit diamond on the substrate.
JP61311192A 1986-12-27 1986-12-27 Diamond film manufacturing method Expired - Fee Related JPH0776147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61311192A JPH0776147B2 (en) 1986-12-27 1986-12-27 Diamond film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61311192A JPH0776147B2 (en) 1986-12-27 1986-12-27 Diamond film manufacturing method

Publications (2)

Publication Number Publication Date
JPS63166798A true JPS63166798A (en) 1988-07-09
JPH0776147B2 JPH0776147B2 (en) 1995-08-16

Family

ID=18014201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61311192A Expired - Fee Related JPH0776147B2 (en) 1986-12-27 1986-12-27 Diamond film manufacturing method

Country Status (1)

Country Link
JP (1) JPH0776147B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
JPH01239092A (en) * 1987-12-17 1989-09-25 General Electric Co <Ge> Production of diamond
JPH04182390A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Manufacture of diamond plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191097A (en) * 1984-03-08 1985-09-28 Mitsubishi Metal Corp Crystallizing method of artificial diamond
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61286299A (en) * 1985-06-07 1986-12-16 Asahi Chem Ind Co Ltd Preparation of diamond
JPS62113796A (en) * 1985-11-14 1987-05-25 Asahi Chem Ind Co Ltd Production of diamond film
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191097A (en) * 1984-03-08 1985-09-28 Mitsubishi Metal Corp Crystallizing method of artificial diamond
JPS61183198A (en) * 1984-12-29 1986-08-15 Kyocera Corp Production of diamond film
JPS61286299A (en) * 1985-06-07 1986-12-16 Asahi Chem Ind Co Ltd Preparation of diamond
JPS61158899A (en) * 1985-07-31 1986-07-18 Kyocera Corp Production of diamond film
JPS62113796A (en) * 1985-11-14 1987-05-25 Asahi Chem Ind Co Ltd Production of diamond film
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166733A (en) * 1986-12-27 1988-07-09 Kyocera Corp Production of diamond film
JPH01239092A (en) * 1987-12-17 1989-09-25 General Electric Co <Ge> Production of diamond
JPH04182390A (en) * 1990-11-13 1992-06-29 Japan Steel Works Ltd:The Manufacture of diamond plate

Also Published As

Publication number Publication date
JPH0776147B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
WO1987003307A1 (en) Process for synthesizing diamond
JPH04144992A (en) Microwave plasma-generating device and method for producing diamond film with the same
JPS62138395A (en) Preparation of diamond film
JPS61183198A (en) Production of diamond film
JPS63166798A (en) Production of diamond film
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
JPS63166733A (en) Production of diamond film
JP2926192B2 (en) Diamond film manufacturing method
JPH0723279B2 (en) Diamond film manufacturing method
JP2962631B2 (en) Method for producing diamond-like carbon thin film
JPH0448757B2 (en)
JPS6321291A (en) Production of diamond film
JPH0656585A (en) Coating method of diamond film
JP3025808B2 (en) Thin film preparation method
JP2519037B2 (en) Method for manufacturing diamond-coated cutting tool
JPS60145995A (en) Preparation of diamond-shaped carbon
JPH0665744A (en) Production of diamond-like carbon thin film
JPS62113796A (en) Production of diamond film
JP2619557B2 (en) Synthesis method of vapor phase diamond
JP2760837B2 (en) Diamond coated member and method of manufacturing the same
JPH0615715B2 (en) Method for producing diamond thin film
JPS62223096A (en) Method for low-pressure gaseous-phase synthesis for diamond
JPH0623437B2 (en) Method for producing carbon and boron nitride
JP2975971B2 (en) Carbon film formation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees