JPH01261298A - Synthesis of diamond - Google Patents
Synthesis of diamondInfo
- Publication number
- JPH01261298A JPH01261298A JP8734388A JP8734388A JPH01261298A JP H01261298 A JPH01261298 A JP H01261298A JP 8734388 A JP8734388 A JP 8734388A JP 8734388 A JP8734388 A JP 8734388A JP H01261298 A JPH01261298 A JP H01261298A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- raw material
- substrate
- base substance
- material gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 38
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 36
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 11
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 238000005229 chemical vapour deposition Methods 0.000 claims description 11
- 238000001308 synthesis method Methods 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 3
- 239000013078 crystal Substances 0.000 abstract description 5
- 239000002245 particle Substances 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 239000010453 quartz Substances 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 4
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 230000005284 excitation Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910002090 carbon oxide Inorganic materials 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 102100022052 Cyclin N-terminal domain-containing protein 1 Human genes 0.000 description 1
- 101000900815 Homo sapiens Cyclin N-terminal domain-containing protein 1 Proteins 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- -1 carbide-based Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、CVD法によるダイヤモンド合成方法に関し
、特に、基体を振動させつつダイヤモンドを合成する方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for synthesizing diamond using a CVD method, and particularly to a method for synthesizing diamond while vibrating a substrate.
[従来の技術]
近年、低圧債域で気相から薄膜状のダイヤモンドが合成
されるようになり、ダイヤモンドの有する各種特性を活
かして切削工具、耐彦耗性潤沿膜、スピーカ材料、光学
部品あるいはエレクトロニクス材料等として種々の分野
で応用が期待されている。[Conventional technology] In recent years, diamond in the form of a thin film has been synthesized from the gas phase in the low-pressure range, and the various properties of diamond have been utilized to produce cutting tools, wear-resistant coatings, speaker materials, and optical components. Furthermore, it is expected to be applied in various fields such as as an electronics material.
ダイヤモンド薄膜の低圧気相合成法には、大別するとP
VD法とCVD法がある。このうち、長時間にわたり安
定したダイヤモンドを析出するCVD法の研究が盛んに
進められている。The low-pressure vapor phase synthesis method for diamond thin films can be broadly classified into P.
There are VD method and CVD method. Among these, CVD methods that deposit diamonds stably over a long period of time are being actively researched.
[解決すべき問題点]
ところて、ダイヤモンド合成において、品質の優れたダ
イヤモンドを得るには、結晶の核発生密度の向上を図る
とともに、膜厚9組織1組成を均一としダイヤモンドと
母材の密着性を高めなければならい。[Problems to be solved] In diamond synthesis, in order to obtain diamond of excellent quality, it is necessary to improve the nucleation density of the crystals, to make the film thickness 9, structure 1, and composition uniform, and to ensure close contact between the diamond and the base material. We need to improve our sexuality.
このため、CVD法においても、ダイヤモンドの品質を
高めるため種々の改良が行なわれてSす1例えば、基体
の表面に傷を付けたり(特開昭50−200897号、
同 61−155295号、同 61−201698号
等)、析出速度を大きくするため何らかのエネルギーを
付与したり(時開゛昭60−185499号)する方法
か採用されている。For this reason, in the CVD method, various improvements have been made to improve the quality of diamond, such as scratching the surface of the substrate (Japanese Patent Laid-Open No. 50-200897,
No. 61-155295, No. 61-201698, etc.), or a method of applying some kind of energy to increase the precipitation rate (Jiko No. 60-185499).
また、上記以外にも、結晶の核密度を高めるとともに、
膜の密着性を向上させることを目的とした新しいCVD
法として、パルスCVD法、超音波CVD法、CNTD
法(核生成制御熱化学的析出法)あるいは流動層CVD
法などが研究されている([機能材料J 19B6年3
月号 第33〜3−′5頁)。
′本発明も、上記事情と同様の観点よりなされたものて
、基体に振動を与えつつ合成を行なうことにより、核発
生密度の向上および、母材とダイヤモンドの布石性の向
上を図り、品質の優れたダイヤモンドを得られるように
したダイヤモンド合成方法の提供を目的とする。In addition to the above, in addition to increasing the nucleus density of the crystal,
A new CVD method aimed at improving film adhesion
Methods include pulse CVD method, ultrasonic CVD method, CNTD method.
method (nucleation controlled thermochemical precipitation method) or fluidized bed CVD
([Functional Materials J 19B6 year 3
Monthly issue, pages 33-3-'5).
'The present invention has been made from the same viewpoint as the above-mentioned situation, and by carrying out synthesis while applying vibration to the base material, it aims to improve the nucleation density and the preparation properties of the base material and diamond, thereby improving the quality. The purpose of the present invention is to provide a diamond synthesis method that makes it possible to obtain excellent diamonds.
なお、上述した文献(「機能材料J1986年3月号
第33〜34頁)においても、基体に超音波を照射する
技術は開示されている。しかしながら、上記文献には具
体的な合成条件かなにも記載されておらず、どの種の原
料ガスにまて適用てきるかは不肖てあった。In addition, the above-mentioned literature ("Functional Materials J March 1986 issue
(pp. 33-34) also discloses a technique for irradiating a substrate with ultrasonic waves. However, the above-mentioned literature does not describe any specific synthesis conditions, and it is unclear which types of raw material gases the method can be applied to.
[問題点の解決手段]
本発明のタイヤセント合成方法は、上記目的を達成する
ため、CVD法によってダイヤモンドを低圧気相合成す
る場合に、反応室に所定の原料ガスを供給し、かつ基体
を振動させつつダイヤモンドの合成を行なう方法として
あり、特に、炭素ガスもしくは、炭素ガスと水素ガスを
原料ガスとして供給しつつ、基体に振動を与えてダイヤ
モンドを合成する方法としである。[Means for Solving Problems] In order to achieve the above object, the tire cent synthesis method of the present invention supplies a predetermined raw material gas to a reaction chamber and a substrate when synthesizing diamond in a low-pressure gas phase by a CVD method. There is a method of synthesizing diamond while vibrating, and in particular, a method of synthesizing diamond by applying vibration to a substrate while supplying carbon gas or carbon gas and hydrogen gas as raw material gases.
[実施例] 以下1本発明の実施例方法について説明する。[Example] An example method of the present invention will be described below.
まず、第1図にもとづいて本ダイヤモンド合成方法を実
施するための装置例について説明する。First, an example of an apparatus for carrying out the present diamond synthesis method will be described based on FIG.
第1図はマイクロ波プラズマ装置の例を示すもので、l
は石英管等からなる反応室であり、その内部には炭素系
あるいは炭化水素系等の原料ガスか供給される。また1
反応室lの内部は1o−5〜10 ’torrの反応圧
力、好ましく、は10−”〜800 torrの反応圧
力に保持しである。2は2.45Glhのマイクロ波を
発生させるマグネトロンてあ□す、導波管3を介して反
応室l内の原料ガスに照射し、原料ガスを励起9分解す
る。Figure 1 shows an example of a microwave plasma device.
is a reaction chamber made of a quartz tube or the like, into which a raw material gas such as carbon-based or hydrocarbon-based gas is supplied. Also 1
The interior of the reaction chamber 1 is maintained at a reaction pressure of 10-5 to 10' torr, preferably 10-' to 800 torr. 2 is a magnetron which generates microwaves of 2.45 Glh. Then, the source gas in the reaction chamber 1 is irradiated through the waveguide 3 to excite and decompose the source gas.
また、4は基体、5は基体4を保持する基体ホルダてあ
り、これらは反応室lの内部に位置している。基体4は
、加熱手段(図示せず)により加熱される。10は超音
波振動発生装置で、振動子llとホーン12とからなり
、基体ホルダ5に10〜80K)1.の振動を与える。Further, 4 is a substrate, and 5 is a substrate holder for holding the substrate 4, which are located inside the reaction chamber l. The base body 4 is heated by heating means (not shown). Reference numeral 10 denotes an ultrasonic vibration generator, which consists of a vibrator 11 and a horn 12, and is attached to a base holder 5 at a temperature of 10 to 80K)1. gives a vibration.
。 .
次に、上記装置を用いて行なうダイヤモンド合成方法に
ついて説明する。Next, a diamond synthesis method performed using the above apparatus will be explained.
反応室lの内部に、原料ガスとして、例えば、−酸化炭
素ガスと水素ガスを0.1〜1・00molt(Co/
Hz mol比)の割合いで供給するとともに(0,1
wolX比未満とすると、ダイヤセントを析出しない場
合かある。)、マグネトロン2より2.45G)12の
マイクロ波を照射する。これにより、反応室1の内部に
おいて原料ガスは励起1分解され、プラズマ粒子とな7
って基体4に向けて飛んで行く。For example, 0.1 to 1.00 mol of -carbon oxide gas and hydrogen gas (Co/
Hz mol ratio) and (0,1
If the wolX ratio is less than that, diamondent may not be precipitated in some cases. ), 2.45G) 12 microwaves are irradiated from magnetron 2. As a result, the raw material gas is excited and decomposed inside the reaction chamber 1, and becomes plasma particles.
It flies towards base 4.
一方、基体4は、反応室1内において1..400〜1
200℃に加熱されるとともに、基体ホルダ5を介し、
超音波振動発生装置lOより超音波振動を与えられる。On the other hand, the substrate 4 is placed in the reaction chamber 1 at 1. .. 400-1
While being heated to 200°C, via the substrate holder 5,
Ultrasonic vibrations are applied from an ultrasonic vibration generator IO.
したがって、プラズマ粒子の飛来してくる中て基板4・
は−動を行なうことになり、基板4の表面近傍に位置す
る化学種が活性化される。このため、基板4に発生する
結晶の核発生量が増加し、微粒多結晶質膜が析出しゃす
くなるとともに、基体4へのダイヤモンド膜の密着性が
向上する。Therefore, the substrate 4 and the
As a result, the chemical species located near the surface of the substrate 4 are activated. Therefore, the amount of crystal nuclei generated on the substrate 4 increases, a fine-grained polycrystalline film is less likely to precipitate, and the adhesion of the diamond film to the substrate 4 is improved.
なお、本発明のダイヤモンド合成方法は、上記実施例に
限られるものではなく1、例えば次のような変形例を含
むものである。Note that the diamond synthesis method of the present invention is not limited to the above-mentioned embodiments, but includes the following modifications, for example.
■ CVD法としては、マイクロ波プラズマ法たけてな
く、熱フイラメント法、高周波プラズマ法および電子サ
イクロトロン共鳴プラズマ法等をも含む。 。(2) The CVD method includes not only the microwave plasma method but also the thermal filament method, the high frequency plasma method, the electron cyclotron resonance plasma method, and the like. .
■ 基体の振動は、超音波によって与えられる振動と同
様(周波数等)の振動であれば、超音波以外によって与
えられ振動であってもよい。(2) The vibration of the base body may be a vibration applied by a source other than ultrasonic waves, as long as the vibration is similar (frequency, etc.) to the vibration applied by ultrasonic waves.
■ また、基体の振動は、一方向性の振動だけでなく、
多方向性の振動であってもよい。■ Also, the vibration of the base body is not only unidirectional vibration.
The vibration may be multidirectional.
■ 原料ガスには、−酸化炭素ガス以外の二酸化炭素ガ
スおよび、炭素系以外の炭化杢素系、含酸素化合物ある
いは含窒素化合物等からなるガスをも含む。(2) The raw material gas also includes carbon dioxide gas other than -carbon oxide gas, and gases other than carbon-based gases, such as carbide-based, oxygen-containing compounds, or nitrogen-containing compounds.
■ ダイヤモンドには、ダイヤモンド状炭素を含む。■ Diamond contains diamond-like carbon.
次に、本発明の方法によって行な゛つた具体例と、従来
の方法によって行な?た比較例を示す。Next, we will look at specific examples of tests carried out using the method of the present invention and tests carried out using conventional methods. A comparative example is shown below.
具体例1
シリコンウェハを基体としてダイヤモンド合成を行なっ
た。Specific Example 1 Diamond synthesis was performed using a silicon wafer as a substrate.
合成条件
0 使用装置 マイクロ波反応装置
、 (周波数2 、45.、GH2)0 基体の振
動 40KH2
O基体温度 900°C
0反応圧力 50 torr
O原料ガス −酸化炭素
(流量: 10secm)
水素(流量: 90 sec+m)
O時 間 1時間
この結果、基体上に15 p−*の堆積物を得た。Synthesis conditions 0 Equipment used Microwave reactor, (Frequency 2, 45., GH2) 0 Vibration of substrate 40 KH2 O Substrate temperature 900°C 0 Reaction pressure 50 torr O raw material gas - Carbon oxide (flow rate: 10 sec) Hydrogen (flow rate: 90 sec+m) O time 1 hour As a result, a deposit of 15 p-* was obtained on the substrate.
得られた堆積物について、ラマン分光分析を行なったと
ころ、不純物のないダイヤモンドであることを確認した
。また、ダイヤモンドのSEMのlll!察て1.0μ
諺程度以下の微粒子の集合体であることを確認した。さ
らに、膜厚2組織および組成も均一であることを確認し
た。When the obtained deposit was subjected to Raman spectroscopic analysis, it was confirmed that it was diamond without any impurities. Also, diamond SEM lll! 1.0μ
It was confirmed that it was an aggregate of microscopic particles. Furthermore, it was confirmed that the film thickness 2 structure and composition were also uniform.
具体例2
一酸化炭素に代えてメタンガスを0.5secm、水素
ガスをl OOsccmの流量で供給し、4時間合成し
た以外、具体例1と同様の条件で合成を行なった。この
結果、基体上に2.5gmの堆積物を得た。また、ダイ
ヤモンドのSEMの観察て1.0.層程度以下の微粒子
の集合体であることを確認した。さらに、膜厚9組織お
よび組成も均一であることを確認した。Specific Example 2 Synthesis was performed under the same conditions as in Specific Example 1, except that instead of carbon monoxide, methane gas was supplied at a flow rate of 0.5 sec, and hydrogen gas was supplied at a flow rate of 1 OOsccm, and synthesis was performed for 4 hours. This resulted in a 2.5 gm deposit on the substrate. Also, the SEM observation of diamond was 1.0. It was confirmed that it was an aggregate of fine particles smaller than a layer. Furthermore, it was confirmed that the film thickness 9 structure and composition were also uniform.
主ノL遣
基体に振動を与えない以外、具体例1と同様の条件て合
成を行なった。Synthesis was carried out under the same conditions as in Example 1, except that no vibration was applied to the main L support.
この結果、基体上に8川層の堆積物を得た。As a result, eight river layers of deposits were obtained on the substrate.
また、ダイヤモンドのSEMの観察により平均1107
z程度の粒子の集合体であることを確認した。In addition, an average of 1107
It was confirmed that it was an aggregate of particles of about z size.
これにより、本発明のダイヤモンド合成方法によれば、
微細多結晶質からなり、基体と剥離しにくい薄膜のダイ
ヤモンドを合成できることが判明した。As a result, according to the diamond synthesis method of the present invention,
It has been found that it is possible to synthesize a thin film of diamond that is composed of fine polycrystalline materials and is difficult to separate from the substrate.
[発明の効果]
以上のように本発明のダイヤモンド合成方法によれば、
結晶の核発生密度の高い微細多結品質からなり、密着性
にも優れたダイヤモンドを合成できる。特に、原料ガス
として炭素系のガスを用いると、より良好な微細多結晶
質および密着性を得られる効果がある。[Effects of the Invention] As described above, according to the diamond synthesis method of the present invention,
It is possible to synthesize diamond that has a fine multicrystalline quality with high crystal nucleation density and excellent adhesion. In particular, when a carbon-based gas is used as the raw material gas, it is effective to obtain better polycrystalline fineness and adhesion.
第1図は本発明の一実施例ダイヤモンド合成方法を実施
するための装置の一構成例を示す。
l:反応室 2:マグネトロン4・基体
5:基体ホルダlO:超音波振動発生装
置 。FIG. 1 shows an example of the configuration of an apparatus for carrying out an embodiment of the diamond synthesis method of the present invention. l: Reaction chamber 2: Magnetron 4/Substrate
5: Substrate holder lO: Ultrasonic vibration generator.
Claims (2)
る法において、基体を振動させつつダイヤモンドの合成
を行なうことを特徴としたダイヤモンド合成方法。(1) A method for synthesizing diamond in a low-pressure vapor phase synthesis method using the CVD method, which is characterized in that diamond is synthesized while vibrating a substrate.
る法において、反応室に炭素系ガスもしくは、炭素系ガ
スと水素ガスを原料ガスとして供給し、かつ基体を振動
させつつダイヤモンドの合成を行なうことを特徴とした
ダイヤモンド合成方法。(2) In the low-pressure vapor phase synthesis of diamond using the CVD method, carbon-based gas or carbon-based gas and hydrogen gas are supplied as raw material gases to the reaction chamber, and diamond is synthesized while vibrating the substrate. Characteristic diamond synthesis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8734388A JPH01261298A (en) | 1988-04-11 | 1988-04-11 | Synthesis of diamond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8734388A JPH01261298A (en) | 1988-04-11 | 1988-04-11 | Synthesis of diamond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01261298A true JPH01261298A (en) | 1989-10-18 |
JPH0524114B2 JPH0524114B2 (en) | 1993-04-06 |
Family
ID=13912223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8734388A Granted JPH01261298A (en) | 1988-04-11 | 1988-04-11 | Synthesis of diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01261298A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01270596A (en) * | 1988-04-18 | 1989-10-27 | Ngk Spark Plug Co Ltd | Deposition of diamond coating film |
US4938837A (en) * | 1985-10-12 | 1990-07-03 | Sumitomo Electric Industries, Ltd. | Crucible recovering method and apparatus therefor |
WO1991007520A1 (en) * | 1989-11-19 | 1991-05-30 | Kabushiki-Kaisha Hitachi Seisakusho | Method and apparatus for thin film formation, device, electro-magnetic apparatus, data recording/reproduction apparatus, signal processor, and method of producing molten crystal |
US5219769A (en) * | 1990-03-27 | 1993-06-15 | Canon Kabushiki Kaisha | Method for forming Schottky diode |
US5837332A (en) * | 1989-11-19 | 1998-11-17 | Nihon Victor Kabushiki-Kaisha | Method and apparatus for preparing crystal thin films by using a surface acoustic wave |
US6835523B1 (en) | 1993-05-09 | 2004-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus for fabricating coating and method of fabricating the coating |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61163195A (en) * | 1985-01-09 | 1986-07-23 | Showa Denko Kk | Synthesizing method for diamond in gas phase and its apparatus |
JPS62216906A (en) * | 1985-12-24 | 1987-09-24 | 住友電気工業株式会社 | Composite powdery particle, composite body and manufacture |
-
1988
- 1988-04-11 JP JP8734388A patent/JPH01261298A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61163195A (en) * | 1985-01-09 | 1986-07-23 | Showa Denko Kk | Synthesizing method for diamond in gas phase and its apparatus |
JPS62216906A (en) * | 1985-12-24 | 1987-09-24 | 住友電気工業株式会社 | Composite powdery particle, composite body and manufacture |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4938837A (en) * | 1985-10-12 | 1990-07-03 | Sumitomo Electric Industries, Ltd. | Crucible recovering method and apparatus therefor |
JPH01270596A (en) * | 1988-04-18 | 1989-10-27 | Ngk Spark Plug Co Ltd | Deposition of diamond coating film |
WO1991007520A1 (en) * | 1989-11-19 | 1991-05-30 | Kabushiki-Kaisha Hitachi Seisakusho | Method and apparatus for thin film formation, device, electro-magnetic apparatus, data recording/reproduction apparatus, signal processor, and method of producing molten crystal |
US5837332A (en) * | 1989-11-19 | 1998-11-17 | Nihon Victor Kabushiki-Kaisha | Method and apparatus for preparing crystal thin films by using a surface acoustic wave |
US5219769A (en) * | 1990-03-27 | 1993-06-15 | Canon Kabushiki Kaisha | Method for forming Schottky diode |
US6835523B1 (en) | 1993-05-09 | 2004-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Apparatus for fabricating coating and method of fabricating the coating |
Also Published As
Publication number | Publication date |
---|---|
JPH0524114B2 (en) | 1993-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0346436B2 (en) | ||
JPS58135117A (en) | Preparation of diamond | |
JPH01261298A (en) | Synthesis of diamond | |
JPS6136200A (en) | Method for vapor-phase synthesis of diamond | |
JPS6086096A (en) | Precipitation of filmy diamond | |
JPH0518796B2 (en) | ||
JPS62158195A (en) | Synthesizing method of diamond | |
JP2620252B2 (en) | Method for producing nitrogen-containing hard carbon film | |
JPS6054996A (en) | Synthesis of diamond | |
JP2962631B2 (en) | Method for producing diamond-like carbon thin film | |
JPS5935092A (en) | Vapor-phase synthesis of diamond | |
JP3176086B2 (en) | Diamond crystal and substrate for diamond formation | |
JPS5918197A (en) | Gaseous phase synthesis of diamond | |
Toyota et al. | Synthesizing Cubic Diamond Crystal Using DC Plasma Jet CVD | |
JPS63256596A (en) | Method for synthesizing diamond in vapor phase | |
JPH0643280B2 (en) | Vapor phase synthesis of film diamond | |
JPH0665744A (en) | Production of diamond-like carbon thin film | |
JPH0656585A (en) | Coating method of diamond film | |
JPS61128700A (en) | Diaphragm for speaker | |
JPH03174397A (en) | Method and device for synthesizing rigid substance | |
JPS60200896A (en) | Process for synthesizing fibrous diamond | |
JPS593098A (en) | Synthesizing method of diamond | |
JPH01317198A (en) | Method for synthesizing diamond or the like | |
JPH03141199A (en) | Production of single crystal cvd diamond | |
JPH0667797B2 (en) | Diamond synthesis method |