JP2620252B2 - Method for producing nitrogen-containing hard carbon film - Google Patents

Method for producing nitrogen-containing hard carbon film

Info

Publication number
JP2620252B2
JP2620252B2 JP62231188A JP23118887A JP2620252B2 JP 2620252 B2 JP2620252 B2 JP 2620252B2 JP 62231188 A JP62231188 A JP 62231188A JP 23118887 A JP23118887 A JP 23118887A JP 2620252 B2 JP2620252 B2 JP 2620252B2
Authority
JP
Japan
Prior art keywords
diamond
film
nitrogen
coating
hard carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62231188A
Other languages
Japanese (ja)
Other versions
JPS6475678A (en
Inventor
正明 飛岡
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62231188A priority Critical patent/JP2620252B2/en
Publication of JPS6475678A publication Critical patent/JPS6475678A/en
Application granted granted Critical
Publication of JP2620252B2 publication Critical patent/JP2620252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は母材の表面に被覆する硬質炭素膜の製造方法
に関し、詳しくは新規な窒素含有ダイヤモンド薄膜の製
造方法に関する。ダイヤモンドは高硬度で化学的に不活
性であり、熱伝導率が高く、熱膨張係数が小さい等の特
性を有するので、本発明はこれ等の特性が有利に作用す
る分野、例えば切削工具材料の被覆等に用いて、非常に
優れた効果を発揮できる。
Description: TECHNICAL FIELD The present invention relates to a method for producing a hard carbon film coated on a surface of a base material, and more particularly, to a novel method for producing a nitrogen-containing diamond thin film. Since diamond has properties such as high hardness and chemical inertness, high thermal conductivity, and low coefficient of thermal expansion, the present invention is applied to fields where these properties are advantageous, such as cutting tool materials. When used for coating, etc., very excellent effects can be exhibited.

〔従来の技術〕[Conventional technology]

ダイヤモンドを超高圧・高温装置を用いずに、減圧下
の気相より母材表面上に析出させ合成・被覆する、いわ
ゆるダイヤモンドコーテイングに関する従来技術とし
て、気相中にて炭化水素分子を高エネルギー状態にまで
励起して分解を行なうことによつて、基板上に準安定状
態のダイヤモンドもしくはダイヤモンド状の非晶質炭素
膜を被覆する方法がある。
As a conventional technique related to so-called diamond coating, in which diamond is deposited on the base material surface from a gas phase under reduced pressure without using an ultra-high pressure and high temperature device, so-called diamond coating, hydrocarbon molecules are placed in a high energy state in the gas phase. There is a method in which a substrate is coated with diamond or a diamond-like amorphous carbon film in a metastable state by exciting to perform decomposition.

例えば炭化水素と水素の混合ガスを予備加熱して、励
起・分解し、700〜1000℃に加熱保持した母材表面にダ
イヤモンドを析出させるのであるが、予備加熱手段とし
ては熱フイラメント(特開昭58−91100号公報)、マイ
クロ波無極放電(特開昭58−1104949号公報)、プラズ
マ(特開昭58−135117号公報)、熱フイラメントとプラ
ズマの併用(特開昭58−156594号公報)等の種々の手段
がとられている。
For example, a mixed gas of hydrocarbon and hydrogen is preheated to excite and decompose, and diamond is deposited on the surface of the base material heated and maintained at 700 to 1000 ° C. 58-91100), microwave non-polar discharge (JP-A-58-1104949), plasma (JP-A-58-135117), combined use of thermal filament and plasma (JP-A-58-156594) And various other measures are taken.

そして、上記の従来技術、例えばマイクロ波無極放電
を利用した方法によれば、確かにSi、Mo、W等の母材表
面に、極めて完成度の高いダイヤモンド膜を被覆するこ
とが可能である。
Then, according to the above-mentioned conventional technique, for example, a method utilizing microwave non-polar discharge, it is possible to coat a diamond film with a very high degree of perfection on the surface of a base material such as Si, Mo and W.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら従来のこの種の技術により、Si母材にダ
イヤモンドを被覆していて、膜厚が約20μ以上の厚さに
なつてくると、ダイヤモンド以外の炭素が膜中に共析出
し始める等の現象によつて、得られたダイヤモンドの完
全性が劣化し始め、30μを越えると膜が母材から剥離す
るという問題が生じた。
However, with this type of conventional technology, when the Si base material is coated with diamond, and when the film thickness reaches about 20μ or more, carbon other than diamond begins to co-precipitate in the film. As a result, the integrity of the obtained diamond starts to deteriorate, and when it exceeds 30 μm, there is a problem that the film peels off from the base material.

そして、この剥離の原因は、一般に気相より合成した
ダイヤモンド膜中の内部圧縮応力によると考えられ、励
起手段等の如何にかかわらずに発生することがわかつて
きた。
The cause of the peeling is generally considered to be due to internal compressive stress in the diamond film synthesized from the gas phase, and it has been found that the peeling occurs regardless of the excitation means and the like.

本発明はこのような従来の気相合成されたダイヤモン
ド膜の問題点を解消した、新規なダイヤモンド膜の製造
方法を目的としてなされたものである。
SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving a problem of a conventional diamond film synthesized by a gas phase and to provide a novel method for producing a diamond film.

〔問題点を解決するための手段及び作用〕[Means and actions for solving the problems]

本発明は、原料ガスを1600〜2800℃の金属フィラメン
トで分解することにより、窒素が原紙比で10ppm以上2
%以下含有されてなる硬質炭素膜を母材の表面に析出さ
せて被覆することを特徴とする窒素含有硬質炭素膜の製
造方法を提供するものである。
In the present invention, nitrogen is decomposed by a metal filament at 1600 to 2800 ° C. so that nitrogen is 10 ppm or more in terms of base paper.
% Of a hard carbon film having a content of not more than 0.1% on a surface of a base material.

従来の気相からダイヤモンドコーテイング技術によつ
て、20μm以上の膜厚のダイヤモンドコーテイングを、
達成できなかつた理由は、前記のように気相合成ダイヤ
モンド固有の内部圧縮応力にある。
By using diamond coating technology from the conventional gas phase, diamond coating with a film thickness of 20 μm or more
The reason why it cannot be achieved is, as described above, the internal compressive stress inherent in vapor-phase synthetic diamond.

この内部圧縮応力の原因については諸説があり、末だ
その詳細は不明なるも、膜厚が厚くなると、内部応力に
膜厚を乗じた全応力が、ダイヤモンド膜の破壊強度を越
えてしまい、膜が破壊することによつて、母材から膜が
剥離すると考えられる。
There are various theories as to the cause of this internal compressive stress, and the details are unknown.However, as the film thickness increases, the total stress obtained by multiplying the internal stress by the film thickness exceeds the fracture strength of the diamond film, It is considered that the film is peeled off from the base material due to the fracture.

そこで、本発明者等は、ダイヤモンド膜中の内部圧縮
応力を緩和する方法につき研究を重ね、この目的のため
には、ダイヤモンドを構成する炭素より原子半径の小さ
い原子で炭素を置換すればよいのではないかと考えつい
たのである。
Therefore, the present inventors have repeated research on a method of alleviating the internal compressive stress in a diamond film, and for this purpose, carbon may be replaced by an atom having an atomic radius smaller than that of carbon constituting diamond. I thought that it might be.

炭素の原子半径は0.77Åと小さく、これより原子半径
の小さな原子は、水素、窒素、酸素および弗素しかな
い。このうち水素は原子半径が0.30Åと極めて小さいた
め、ダイヤモンドに含有させても炭素とは置換せずイン
ターステイシヤルに含有されるため、かえつて圧縮応力
を高めてしまい、好ましくない。酸素および弗素は、い
ずれも炭素との置換は可能であるものの、実際にダイヤ
モンドに含有させたものを作製しようと種々実験を行つ
たが、十分に炭素とは置換しなかつた。
The atomic radius of carbon is as small as 0.77 °, and the atoms with smaller atomic radii are only hydrogen, nitrogen, oxygen and fluorine. Of these, hydrogen has an extremely small atomic radius of 0.30 °, so that even if it is contained in diamond, it is not replaced with carbon but is contained in the interstitial, which rather increases the compressive stress, which is not preferable. Although both oxygen and fluorine can be substituted with carbon, various experiments have been conducted to produce diamond actually contained therein, but they did not sufficiently substitute for carbon.

これらに比べて窒素は、炭素と置換でき、得られたダ
イヤモンド膜の内部圧縮応力を緩和する働きが確認でき
た。なお窒素の含有量は、原子比で10ppm(0.001%)未
満では上記の効果が確認できず、2%を越えるとダイヤ
モンド構造をとり得ないので原子比で0.001〜2%の範
囲が好ましい。
In comparison with these, nitrogen was able to substitute for carbon, and the function of relaxing the internal compressive stress of the obtained diamond film was confirmed. When the nitrogen content is less than 10 ppm (0.001%) in atomic ratio, the above effect cannot be confirmed. When the nitrogen content exceeds 2%, a diamond structure cannot be obtained, so that the atomic ratio is preferably in the range of 0.001 to 2%.

本発明の窒素含有ダイヤモンド膜を得る方法として
は、ダイヤモンド膜の気相合成法の従来技術をそのまま
応用すればよく、このとき原料の炭化水素と水素の混合
ガスといつた反応系にN2,NH3,N2O,NO NO2等のN系加合
物ガスを添加するとよい。あるいはまた、CH3CN,CH3NH2
等の窒素含有炭化水素と水素との混合ガスとを出発原料
として用いても同様の効果が得られる。なお反応系に添
加するN原料ガスは、炭化水素ガス(C原料ガス)に対
して原子比で0.1%未満では反応が遅くなりすぎて好ま
しくなく、また10%を越えると得られるダイヤモンドが
不完全になり好ましくない。なお水素ガスは、反応系の
ガス全体に対し、原子比で50〜99%であることが好結果
を得られるので好ましい。
As a method for obtaining the nitrogen-containing diamond film of the present invention, the conventional technique of the vapor phase synthesis method of the diamond film may be applied as it is, and at this time, N 2 , It is advisable to add an N-based additive gas such as NH 3 , N 2 O, NO NO 2 and the like. Alternatively, CH 3 CN, CH 3 NH 2
The same effect can be obtained by using a mixed gas of nitrogen-containing hydrocarbon such as hydrogen and hydrogen as a starting material. If the atomic ratio of the N source gas to the reaction system is less than 0.1% with respect to the hydrocarbon gas (C source gas), the reaction will be too slow, and if it exceeds 10%, the resulting diamond will be incomplete. Is not preferred. The hydrogen gas is preferably used in an amount of 50 to 99% in terms of atomic ratio with respect to the whole gas of the reaction system, so that good results can be obtained.

また原料ガスを励起・分解する手段としては、熱フィ
ラメントを用い、1600〜2800℃の温度範囲で行なう。
As means for exciting and decomposing the raw material gas, a hot filament is used at a temperature of 1600 to 2800 ° C.

以下の実施例で図面を参照して本発明を詳細に説明す
る。
The present invention will be described in detail in the following embodiments with reference to the drawings.

〔実施例〕〔Example〕

参考例1 第1図に示すように、石英製の反応管1と発振装置
2、導波管3、電極4からなる2.45GHzのマイクロ波プ
ラズマCVD装置を用いて、本発明の参考例として母材5
の表面に窒素含有ダイヤモンド被覆をプラズマCVD法に
より被覆した。反応管内にH2 99 C.C./min,CH4 1 C.C./min,
N2,O2またはCF2をそれぞれ0.01c.c./min導入し、反応管
1内を40Torrに保つたまま、マイクロ波出力300Wでプラ
ズマを発生させ、10mmφのSiウエハーを母材として4時
間被覆を行なつた。その後、試料を取り出して、イオン
マイクロマナライザーを用いて、形成された被覆膜中の
炭素以外の成分の分析を行なつたところ、N2を添加した
際には膜中に1080ppmの窒素が検出されたが、O2およびF
2を添加しても、窒素以外の成分はいずれも10ppm以下し
か検出されなかつた。以上の実験から窒素がうまく炭素
と置換できることが確認できた。
REFERENCE EXAMPLE 1 As shown in FIG. 1, a 2.45 GHz microwave plasma CVD apparatus comprising a quartz reaction tube 1, an oscillation device 2, a waveguide 3, and an electrode 4 was used as a reference example of the present invention. Lumber 5
Was coated with a nitrogen-containing diamond coating by a plasma CVD method. H 2 99 CC / min, CH 4 1 CC / min,
N 2 , O 2, or CF 2 was introduced at 0.01 cc / min, plasma was generated at a microwave output of 300 W while maintaining the inside of the reaction tube 1 at 40 Torr, and coating was performed for 4 hours using a 10 mmφ Si wafer as a base material. Got it. Thereafter, the samples were removed, using an ion micro Mana riser, where the analysis of the components other than carbon in the coated film formed was row summer, when the addition of N 2 is nitrogen of 1080ppm in the film O 2 and F detected
Even when 2 was added, all components other than nitrogen were detected at only 10 ppm or less. From the above experiment, it was confirmed that nitrogen could be successfully replaced with carbon.

参考例2 参考例1と同じ第1図のマイクロ波プラズマCVD装置
内に、10mmφのSiウエハーを設置し、H299c.c./min,CH4
0.99c.c./min,N20.01c.c./minを上記装置内に導入し、
該装置内を80Torrに保ち、マイクロ波出力500Wでプラズ
マを発生させ、Siウエハー表面に被覆を析出させた。こ
の状態で100時間コーテイングを続けた後、試料を取り
出した。
Reference Example 2 A 10 mmφ Si wafer was set in the same microwave plasma CVD apparatus of FIG. 1 as in Reference Example 1, and H 2 99 c.c./min, CH 4
0.99cc / min, the N 2 0.01 cc / min was introduced into the apparatus,
The inside of the apparatus was maintained at 80 Torr, plasma was generated at a microwave output of 500 W, and a coating was deposited on the surface of the Si wafer. After coating was continued for 100 hours in this state, a sample was taken out.

該試料をX線回折およびラマン分光にて調べたとこ
ろ、極めて完全度の高いダイヤモンドであると同定でき
た。走査型電子顕微鏡で調べたところ、自形のよいダイ
ヤモンド膜が膜厚約250μで均一にSiウエハーに被覆し
ていることがわかつた。次にこの試料をイオンマイクロ
アナライザーで分析したところ、ダイヤモンド中に0.05
%の窒素が含有されていることが確認された。
When the sample was examined by X-ray diffraction and Raman spectroscopy, it could be identified as diamond with extremely high perfection. Examination with a scanning electron microscope revealed that the diamond film with good self-shape was uniformly coated on the Si wafer with a thickness of about 250 μm. Next, this sample was analyzed with an ion microanalyzer.
% Nitrogen was confirmed to be contained.

参考例3 参考例1において、H299c.c./min,CH41c.c./minと
し、その他の条件は全く同じにしてダイヤモンド被覆を
行つたところ、26時間目にSiウエハー上の膜に大きな剥
離が認められたため、コーテイングを終了した。
Reference Example 3 In Reference Example 1, diamond coating was performed under the same conditions except that H 2 was 99 c.c./min and CH 4 1 c.c./min. The coating was stopped because large peeling was observed in the film.

得られた試料をX線回折、ラマン分光にて調べたとこ
ろ、ダイヤモンド以外の炭素が膜中に多量に含まれ、結
晶性も極めて悪いことが判明した。また、走査型顕微鏡
で見ると、被覆膜は完全に母材から剥離していることが
わかつた。
Examination of the obtained sample by X-ray diffraction and Raman spectroscopy revealed that a large amount of carbon other than diamond was contained in the film, and that the crystallinity was extremely poor. In addition, it was found that the coating film was completely peeled off from the base material when viewed with a scanning microscope.

実施例1 第2図に示すようなTa,W等の金属フイラメント6を反
応管1内に備えた熱CVD装置を用いて、本発明によりダ
イヤモンド被覆を行なつた。金属フイラメント6として
はTaフイラメントを用いた熱CVD装置内に、母材5とし
ては10mmφのSiウエハーを設置してこの表面温度を950
℃に保つておき、一方原料ガスとしてH2,CH4,NH3ガスを
H2/CH4=94/3、かつ全ガス流量1000c.c./minの条件で10
Torrにて該装置内に導入し、Taフイラメントは2200℃ま
で加熱しておき、これで該原料ガスを励起し、最大250
時間まで、Siウエハー表面に被覆を形成した。
Example 1 Diamond coating was performed according to the present invention by using a thermal CVD apparatus provided with a metal filament 6 such as Ta or W as shown in FIG. A 10 mmφ Si wafer is set as a base material 5 in a thermal CVD apparatus using a Ta filament as a metal filament 6, and the surface temperature is set to 950.
° C, while using H 2 , CH 4 , NH 3 gas as the source gas
H 2 / CH 4 = 94/3 and total gas flow rate 1000c.c./min 10
Introduced into the apparatus at Torr, the Ta filament was heated to 2200 ° C.
Up to time, a coating was formed on the Si wafer surface.

得られた膜中の窒素含有量と剥離に到るまでのコーテ
イング時間を、表1に示す。
Table 1 shows the nitrogen content in the obtained film and the coating time until the film was separated.

表1の結果からダイヤモンド中の窒素含有量は、本発
明の0.001%(10ppm)以上、2%以下の範囲にあること
が好ましいことがわかる。
The results in Table 1 show that the nitrogen content in diamond is preferably in the range of 0.001% (10 ppm) or more and 2% or less in the present invention.

〔発明の効果〕〔The invention's effect〕

本発明による窒素含有硬質炭素膜は、ダイヤモンド膜
に窒素を含有させたもので、これにより膜中の内部圧縮
応力を緩和することができて、基板表面に気相から析出
させる被覆膜として作製するに当り、従来よりも厚い膜
を剥離なく被覆できるという効果を奏するものである。
The nitrogen-containing hard carbon film according to the present invention is a diamond film containing nitrogen, whereby the internal compressive stress in the film can be relieved, and is produced as a coating film deposited from the gas phase on the substrate surface. In doing so, there is an effect that a film thicker than before can be coated without peeling.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の参考例1を説明する概略図でありマイ
クロ波プラズマ法を示す。第2図は本発明の実施態様を
説明する概略図であり、熱CVD法を示す。
FIG. 1 is a schematic diagram illustrating a first embodiment of the present invention, showing a microwave plasma method. FIG. 2 is a schematic view for explaining an embodiment of the present invention, showing a thermal CVD method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料ガスを1600〜2800℃の金属フィラメン
トで分解することにより、窒素が原子比で10ppm以上2
%以下含有されてなる硬質炭素膜を母材の表面に析出さ
せて被覆することを特徴とする窒素含有硬質炭素膜の製
造方法。
(1) Decomposing a raw material gas with a metal filament at 1600 to 2800 ° C. so that nitrogen is at least 10 ppm by atomic ratio.
% By depositing a hard carbon film having a content of not more than 0.1% on the surface of the base material and coating the same.
JP62231188A 1987-09-17 1987-09-17 Method for producing nitrogen-containing hard carbon film Expired - Fee Related JP2620252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62231188A JP2620252B2 (en) 1987-09-17 1987-09-17 Method for producing nitrogen-containing hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62231188A JP2620252B2 (en) 1987-09-17 1987-09-17 Method for producing nitrogen-containing hard carbon film

Publications (2)

Publication Number Publication Date
JPS6475678A JPS6475678A (en) 1989-03-22
JP2620252B2 true JP2620252B2 (en) 1997-06-11

Family

ID=16919708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62231188A Expired - Fee Related JP2620252B2 (en) 1987-09-17 1987-09-17 Method for producing nitrogen-containing hard carbon film

Country Status (1)

Country Link
JP (1) JP2620252B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775278B2 (en) * 1989-02-16 1998-07-16 株式会社半導体エネルギー研究所 Preparation method of carbon-based coating
JPH03274269A (en) * 1990-03-22 1991-12-05 Matsushita Electric Ind Co Ltd Method for synthesizing diamondlike thin film and diamondlike thin film
US5986857A (en) * 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
US7157067B2 (en) * 2003-07-14 2007-01-02 Carnegie Institution Of Washington Tough diamonds and method of making thereof
JP4911743B2 (en) * 2004-09-10 2012-04-04 独立行政法人物質・材料研究機構 Electrochemical element and manufacturing method thereof
EP3327179B1 (en) 2015-07-22 2023-08-23 Sumitomo Electric Industries, Ltd. Single crystal diamond material, single crystal diamond tip, and drilling tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241748A (en) * 1985-08-13 1987-02-23 太平洋セメント株式会社 Manufacture of incombustible inorganic construction material

Also Published As

Publication number Publication date
JPS6475678A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
Muhl et al. A review of the preparation of carbon nitride films
US5814149A (en) Methods for manufacturing monocrystalline diamond films
US5620512A (en) Diamond film growth from fullerene precursors
Gicquel et al. Diamond deposition in a bell-jar reactor: influence of the plasma and substrate parameters on the microstructure and growth rate
JP3176493B2 (en) Method of forming highly oriented diamond thin film
De Barros et al. Plasma-assisted chemical vapor deposition process for depositing smooth diamond coatings on titanium alloys at moderate temperature
Michaelson et al. Hydrogen concentration and bonding configuration in polycrystalline diamond films: From micro-to nanometric grain size
JP2620252B2 (en) Method for producing nitrogen-containing hard carbon film
JPH08225395A (en) Production of diamond doped with boron
JPH0566360B2 (en)
US5755879A (en) Methods for manufacturing substrates to form monocrystalline diamond films by chemical vapor deposition
JPH0566359B2 (en)
EP0470531B1 (en) Diamond synthesizing method
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPH0524114B2 (en)
Chen et al. Effect of methane concentration on the growth of crystalline C3N4 films
JP2584480B2 (en) Diamond film manufacturing method
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS62226889A (en) Vapor phase synthesis method for filmy diamond
JPS60145995A (en) Preparation of diamond-shaped carbon
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JP2585342B2 (en) Diamond vapor phase synthesis
JPS63215597A (en) Production of diamond film or diamond like film
Jeon et al. Effect of oxygen component in magneto-active microwave CH4/He plasma on large-area diamond nucleation over Si

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees