JPS63288997A - Formation of thin diamond film - Google Patents

Formation of thin diamond film

Info

Publication number
JPS63288997A
JPS63288997A JP12452287A JP12452287A JPS63288997A JP S63288997 A JPS63288997 A JP S63288997A JP 12452287 A JP12452287 A JP 12452287A JP 12452287 A JP12452287 A JP 12452287A JP S63288997 A JPS63288997 A JP S63288997A
Authority
JP
Japan
Prior art keywords
substrate
angle
carbon
thin film
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12452287A
Other languages
Japanese (ja)
Inventor
Makoto Kitahata
真 北畠
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12452287A priority Critical patent/JPS63288997A/en
Publication of JPS63288997A publication Critical patent/JPS63288997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To efficiently form a thin diamond film at room temp. by changing the angle formed with both the surface of a substrate and high-velocity corpuscular beams while carbon is condensed on the surface of the substrate. CONSTITUTION:While projecting high-velocity corpuscular beams 10 on the surface of a substrate 6, carbon 7 is fed on the surface of the substrate 6 to condense carbon 7 on the surface of the substrate 6 and also while changing the angle theta formed by both the surface of the substrate 6 and the high-velocity corpuscular beams 10 during this condensation, a thin film is formed. In this method, the following operation is preferably adopted. In other words, the high- velocity corpuscular beams are projected on the substrate by regulating the angle theta formed by both the substrate and the high-velocity corpuscular beams to 0-5 deg. and while the high-velocity corpuscular beams give shock at a shallow angle on the surface of the substrate, carbon is condensed on the substrate to form the thin film and the angle theta is intermittently regulated to theta is 0-5 deg. and the film is continuously formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、あらゆる分野において応用可能な耐環境性に
優れた硬質被覆膜を提供し、特に半導体産業においては
高絶縁性・高熱伝導性を生かし信頼性の高い被rIII
IIあるいは、ヒートシンク膜として応用され、さらに
それ自体が半導体化されることにより、高温下で使用可
能な半導体素子として利用されるダイヤモンド薄膜の形
成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a hard coating film with excellent environmental resistance that can be applied in all fields, and is particularly useful in the semiconductor industry by taking advantage of its high insulation and high thermal conductivity. Reliable target rIII
Alternatively, the present invention relates to a method for forming a diamond thin film that is applied as a heat sink film and further converted into a semiconductor to be used as a semiconductor element that can be used at high temperatures.

従来の技術 近年、ダイヤモンド薄膜の形成技術について多くの研究
がなされ、熱フイラメントCVD法(化学気相析出法)
やプラズマCVD法などによりダイヤモンド結晶膜が得
られている。
Conventional technology In recent years, much research has been conducted on the formation technology of diamond thin films, including the hot filament CVD method (chemical vapor deposition method).
A diamond crystal film is obtained by a method such as a plasma CVD method or a plasma CVD method.

従来の熱フイラメントCVD法によるダイヤモンド薄膜
の形成方法を第3図により説明する。第3図は熱フイラ
メントCVD法に使用する装置の概略構成図である。第
3図において、1は真空槽で、真空ポンプ(図示せず)
に接続されており、メタンなどの炭化水素と水素の混合
ガスを導入するガス導入部2が接続され、内部にはダイ
ヤモンド薄膜を表面上層に形成する基板3が前記ガス導
入部2に対向するように基板3の温度を調節可能な基板
ホルダー4に取付けられている。そして前記混合ガスを
活性化する手段として、熱フィラメント5が真空槽1の
ガス導入部2と基板3との間に設けられている。
A method for forming a diamond thin film using the conventional hot filament CVD method will be explained with reference to FIG. FIG. 3 is a schematic diagram of an apparatus used in the hot filament CVD method. In Fig. 3, 1 is a vacuum chamber, and a vacuum pump (not shown)
A gas introduction section 2 for introducing a mixed gas of hydrocarbon such as methane and hydrogen is connected to the substrate 3, and a substrate 3 on which a diamond thin film is formed on the upper surface thereof faces the gas introduction section 2. The substrate 3 is attached to a substrate holder 4 which can adjust the temperature of the substrate 3. A hot filament 5 is provided between the gas introduction section 2 of the vacuum chamber 1 and the substrate 3 as means for activating the mixed gas.

次に上記装置によるダイヤモンド薄膜の形成方法につい
て説明する。まず、真空槽1の内部にガス導入部2から
炭化水素と水素の混合ガスを導入し、排気を行うことで
真空槽1の内部を所要の圧力(1〜数百Torr)に維
持し、基板3の温度を基板ホルダー4にて所要の温度(
700〜1000℃)に調節する。導入した前記混合ガ
スを熱フィラメント5による熱分解により活性化させて
、イオン、ラジカルなどの励起炭素をつくり、基板3の
上にダイヤモンド薄膜を形成する。
Next, a method for forming a diamond thin film using the above apparatus will be explained. First, a mixed gas of hydrocarbon and hydrogen is introduced into the vacuum chamber 1 from the gas introduction part 2, and the inside of the vacuum chamber 1 is maintained at the required pressure (1 to several hundred Torr) by exhausting, and the substrate is 3 to the required temperature (
700-1000°C). The introduced mixed gas is activated by thermal decomposition by the hot filament 5 to produce excited carbon such as ions and radicals, thereby forming a diamond thin film on the substrate 3.

発明が解決しようとする問題点 しかし、従来の製造方法においてはダイヤモンド薄膜を
形成する基板3の温度を700〜1000℃程度の高温
に保つ必要があり、半導体素子を組み込んだ基板上にダ
イヤモンド膜を形成することができなかった。
Problems to be Solved by the Invention However, in the conventional manufacturing method, it is necessary to maintain the temperature of the substrate 3 on which the diamond thin film is formed at a high temperature of about 700 to 1000°C, and it is difficult to form the diamond film on the substrate incorporating the semiconductor element. could not be formed.

本発明は上記問題点を解決するものであり、室温にて効
率的にダイヤモンド薄膜が形成できるダイヤモンド薄膜
の形成方法を提供することを目的とするものである。
The present invention solves the above-mentioned problems, and aims to provide a method for forming a diamond thin film that can efficiently form a diamond thin film at room temperature.

問題点を解決するための手段 上記問題点を解決するため本発明は、基板の表面に高速
粒子線を照射しつつ、前記基板の表面に炭素を供給して
前記基板の表面に炭素を凝縮させるとともに、この凝縮
中に前記基板の表面と高速粒子線とのなす角度を変化さ
せながら薄膜を形成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a method of condensing carbon on the surface of the substrate by supplying carbon to the surface of the substrate while irradiating the surface of the substrate with a high-speed particle beam. At the same time, a thin film is formed while changing the angle between the surface of the substrate and the high-speed particle beam during this condensation.

作用 上記方法により、基板の表面に炭素が凝縮中に基板の表
面と高速粒子線とのなす角度を変化させるので、基板の
表面には室温下でも効率的にダイヤモンド薄膜が形成さ
れる。前記凝縮時に基板の表面に高速粒子線を照射しつ
つ基板の表面に炭素を供給して膜形成するので膜は硬質
のものとなり、アモルファス構造のダイヤモンド状炭素
膜となる。
Effect: According to the method described above, the angle between the surface of the substrate and the high-speed particle beam is changed while carbon is condensing on the surface of the substrate, so that a diamond thin film can be efficiently formed on the surface of the substrate even at room temperature. At the time of condensation, carbon is supplied to the surface of the substrate while irradiating the surface of the substrate with a high-speed particle beam to form a film, so the film becomes hard and becomes a diamond-like carbon film with an amorphous structure.

前記基板の表面と高速粒子線のなす角度0が0〜5度と
なるように高速粒子線を基板の表面に照射すると、室温
に保たれた基板の表面に得られる膜中にダイヤモンドの
結晶粒を含むようになる。しかし、これらのダイヤモン
ド結晶粒は周りをアモルファス構造に囲まれており、大
きく成長することができない。そこで次に基板の表面と
高速粒子線のなす角度θを10度以上として、角度0が
O〜5のときに比べて大きな衝撃を基板の表面に与える
ことにより、このダイヤモンド結晶粒を囲んでいるアモ
ルファス構造をスパッタする。アモルファス構造はダイ
ヤモンド結晶に比べて不安定なので選択的にエツチング
される。この状態を長く続けると、ダイヤモンド結晶粒
までもスパッタされるため取り除く時間を選ぶ必要があ
る。ダイヤモンド結晶粒のみを残し、また基板の表面と
高速粒子線のなす角度0を0〜5度の状態に戻すとダイ
ヤモンド結晶の成長が起こる。
When the surface of the substrate is irradiated with a high-speed particle beam so that the angle 0 between the surface of the substrate and the high-speed particle beam is 0 to 5 degrees, diamond crystal grains are formed in the film obtained on the surface of the substrate kept at room temperature. will now include. However, these diamond crystal grains are surrounded by an amorphous structure and cannot grow large. Therefore, next, by setting the angle θ between the surface of the substrate and the high-speed particle beam to 10 degrees or more, and applying a larger impact to the surface of the substrate than when the angle 0 is 0 to 5, the diamond crystal grains are surrounded. Sputtering the amorphous structure. Amorphous structures are more unstable than diamond crystals, so they are selectively etched. If this state continues for a long time, diamond crystal grains will also be sputtered, so it is necessary to choose a time to remove them. When only diamond crystal grains are left and the angle 0 between the surface of the substrate and the high-speed particle beam is returned to 0 to 5 degrees, diamond crystal growth occurs.

角度0を0〜5度と10度以上に変化させることを交互
に繰り返すと、室温下で効率的にダイヤモンド結晶が成
長する。
By alternately repeating changing the angle 0 to 0 to 5 degrees and 10 degrees or more, diamond crystals grow efficiently at room temperature.

実施例 以下、本発明のダイヤモンド薄膜の形成方法を図面に基
づいて説明する。
EXAMPLE The method for forming a diamond thin film of the present invention will be explained below with reference to the drawings.

本発明者らは、第1図に示すように、基板6の表面に炭
素を含む粒子7を供給して膜を形成する場合に、基板6
の表面に水素8と不活性ガス(または炭素)9を含む高
速粒子線10を基板6の表面とのなす角度θが0〜5度
となるように照射し、高速粒子線IOが基板6の表面に
浅い角度で衝撃を与えつつ炭素を含む粒子7の炭素を凝
縮させて薄膜を形成し、間欠的に基板6の表面と高速粒
子線10のなす角度θを10度以上にして高速粒子線1
0が基板6の表面により大きな衝撃を加えるようにし。
As shown in FIG.
A high-speed particle beam 10 containing hydrogen 8 and an inert gas (or carbon) 9 is irradiated onto the surface of the substrate 6 so that the angle θ with the surface of the substrate 6 is 0 to 5 degrees. The carbon of the carbon-containing particles 7 is condensed to form a thin film while impacting the surface at a shallow angle, and the angle θ between the surface of the substrate 6 and the high-speed particle beam 10 is intermittently set to 10 degrees or more to form a high-speed particle beam. 1
0 applies a larger impact to the surface of the substrate 6.

前記角度0を0〜5度と10度以上に交互に変化させつ
つ連続して膜を形成すると、室温下において、効率的に
ダイヤモンド薄膜を形成することができることを確認し
た。ここで高速粒子線10のエネルギーを100eV〜
10000eVの範囲とすると特に有効であることも本
発明者らは確認した。
It has been confirmed that a diamond thin film can be efficiently formed at room temperature by continuously forming a film while changing the angle 0 alternately from 0 to 5 degrees and 10 degrees or more. Here, the energy of the fast particle beam 10 is 100 eV ~
The present inventors also confirmed that it is particularly effective in the range of 10,000 eV.

上記のことを第2図に基づいて具体的に説明する。第2
図は本発明のダイヤモンド薄膜の形成方法の実施に使用
する装置の概略構成図である。第2図において、11は
イオンビームスパッタ装置であり、イオンソース12に
ガス導入口13から水素とアルゴンを導入し、ホットフ
ィラメント14を用いて放電を起こしてグリッド15か
ら高速粒子線である混合イオンビームaをチャンバー1
6の内部に加速して取り出す。前記混合イオンビームa
はチャンバー16の内部を直進して、チャンバー16の
内部に設けられたグラファイト板のターゲット17およ
びダイヤモンド粒(1μII)でポリッシング処理した
シリコンの基板18へ照射される。
The above will be specifically explained based on FIG. 2. Second
The figure is a schematic diagram of an apparatus used to carry out the method of forming a diamond thin film of the present invention. In FIG. 2, reference numeral 11 denotes an ion beam sputtering device, in which hydrogen and argon are introduced into an ion source 12 through a gas inlet 13, a discharge is caused using a hot filament 14, and mixed ions, which are high-speed particle beams, are emitted from a grid 15. beam a to chamber 1
Accelerate into the interior of 6 and take it out. The mixed ion beam a
The light passes straight through the chamber 16 and is irradiated onto a graphite plate target 17 provided inside the chamber 16 and a silicon substrate 18 polished with diamond grains (1 μII).

次に、上記装置におけるダイヤモンド薄膜の形成方法に
ついて説明する。チャンバー16の内部をチャンバー1
6に接続された真空ポンプ(図示せず)によりI X 
10−’ Torr程度の圧力とし、アルゴンと水素の
圧力比を1=3とした混合イオンビームaをターゲット
17と基板18に1200e V程度(ターゲット17
の位置で密度は0.5m A / d程度)で。
Next, a method for forming a diamond thin film using the above apparatus will be explained. The inside of chamber 16 is connected to chamber 1.
IX by a vacuum pump (not shown) connected to 6
A mixed ion beam a with a pressure of about 10-' Torr and a pressure ratio of argon and hydrogen of 1=3 was applied to the target 17 and the substrate 18 at a voltage of about 1200eV (target 17
The density is about 0.5 mA/d).

まず混合イオンビームaと基板18の表面とのなす角度
θを0度として照射する。すると、混合イオンビームa
の高速粒子がターゲット17に衝突し、その衝撃で炭素
および炭化水素などの炭素を含む粒子すが飛び出し、基
板18の表面で凝縮してアモルファス構造のダイヤモン
ド状炭素膜を形成する。
First, irradiation is performed with the angle θ between the mixed ion beam a and the surface of the substrate 18 set to 0 degrees. Then, mixed ion beam a
The high-velocity particles collide with the target 17, and due to the impact carbon and carbon-containing particles such as hydrocarbons fly out and condense on the surface of the substrate 18 to form a diamond-like carbon film with an amorphous structure.

そして基板18に0度の角度θで混合イオンビームaが
照射されることにより前記ダイヤモンド状炭素膜にダイ
ヤモンド結晶粒を含むようになる。しかし、このダイヤ
モンド結晶粒はアモルファス構造に周りを囲まれており
、大きく成長することはできない。上記状態で5分間ダ
イヤモンド結晶粒を含む膜を基板18に形成したあと、
次に基板18を回転させ第2図に2点鎖線で示すように
基板18の表面と混合イオンビームaのなす角度θを1
0度として2分間混合イオンビームaを照射した。する
と、この間にダイヤモンド結晶粒の周りを囲んでいるア
モルファス構造はダイヤモンド結晶粒に比べて不安定な
ので選択的にスパッタされエツチングされて膜厚は減少
した。次に前記角度0を0度に戻すと基板18の上にダ
イヤモンド結晶粒が成長した。この角度0を交互に0度
とし、10度とするサイクルを30回繰り返した結果、
角度θを変えない従来の場合と比べて5倍以上の密度で
効率よく基板18の上にダイヤモンド結晶を形成するこ
とができた。ここで、混合イオンビームaはイオンソー
スI2の出口で直径が2.51あり、また混合イオンビ
ームaは拡がりを持つために、混合イオンビームaの方
向はその構成しているそれぞれのイオンの方向の平均を
意味しており、それぞれのイオンの運動は混合イオンビ
ームaの方向と垂直の成分を持つものが必ず存在する。
By irradiating the substrate 18 with the mixed ion beam a at an angle θ of 0 degrees, the diamond-like carbon film contains diamond crystal grains. However, these diamond crystal grains are surrounded by an amorphous structure and cannot grow large. After forming a film containing diamond crystal grains on the substrate 18 for 5 minutes under the above conditions,
Next, the substrate 18 is rotated so that the angle θ between the surface of the substrate 18 and the mixed ion beam a is 1 as shown by the two-dot chain line in FIG.
Mixed ion beam a was irradiated for 2 minutes at 0 degrees. During this time, the amorphous structure surrounding the diamond crystal grains was more unstable than the diamond crystal grains, so it was selectively sputtered and etched, reducing the film thickness. Next, when the angle 0 was returned to 0 degrees, diamond crystal grains grew on the substrate 18. As a result of repeating this cycle of 0 degrees and 10 degrees alternately 30 times,
Diamond crystals could be efficiently formed on the substrate 18 with a density five times higher than in the conventional case where the angle θ is not changed. Here, the mixed ion beam a has a diameter of 2.51 mm at the exit of the ion source I2, and since the mixed ion beam a has a spread, the direction of the mixed ion beam a is the direction of each of its constituent ions. The motion of each ion always has a component perpendicular to the direction of the mixed ion beam a.

このため、混合イオンビームaと基板18の表面のなす
角度Oが0度であっても、混合イオンビームaによって
基板18の表面は衝撃される。
Therefore, even if the angle O between the mixed ion beam a and the surface of the substrate 18 is 0 degrees, the surface of the substrate 18 is bombarded by the mixed ion beam a.

また、混合イオンビームaのエネルギーが1000V以
下の場合は、基板18の表面に与える衝撃が不十分とな
り、特に前記角度θを10度以上とした場合のエツチン
グが不十分となり、混合イオンビームaのエネルギーは
100a V以上必要である。また、混合イオンビーム
aのエネルギーが100OOe V以上となると基板1
8の表面への衝撃が大きくなり、基板18の表面に打ち
込まれるような粒子もあり、またアモルファス構造とダ
イヤモンド結晶に対するエツチングの選択性も小さくな
り、ダイヤモンド結晶もエツチングされることとなる。
Furthermore, if the energy of the mixed ion beam a is 1000V or less, the impact given to the surface of the substrate 18 will be insufficient, and especially when the angle θ is set to 10 degrees or more, the etching will be insufficient, and the mixed ion beam a Energy of 100aV or more is required. Moreover, when the energy of the mixed ion beam a becomes 100OOe V or more, the substrate 1
The impact on the surface of the substrate 18 increases, and some particles are driven into the surface of the substrate 18, and the etching selectivity for the amorphous structure and the diamond crystal decreases, so that the diamond crystal is also etched.

このため、混合イオンビームaのエネルギーは100e
V〜10000eVの間にとると良い。
Therefore, the energy of mixed ion beam a is 100e
It is preferable to take the value between V and 10,000 eV.

また、前記角度Oを10度の状態で長く混合イオンビー
ムaの照射の状態を続けるとダイヤモンド結晶粒までス
パッタされてしまうため、角度0が10度以上の状態は
角度0が0〜5度の状態の時間より短くするほうが良い
Furthermore, if the mixed ion beam a continues to be irradiated with the mixed ion beam a for a long time with the angle O being 10 degrees, even diamond crystal grains will be sputtered. It is better to make it shorter than the state time.

なお、実施例においては、水素とアルゴンの混合イオン
ビーム(高速粒子線)aを用いたが、水素と他の不活性
ガスのイオンビームを用いても同様の効果がある。また
、イオンソース12にガス導入口13から導入されるガ
スをメタンなどの炭化水素ガスとすると、水素と炭素を
含むイオンビーム(高速粒子線)が得られ、これを用い
ても同様の効果が得られた。またイオンビームはニュー
トラライズされて中性分子線となっても有効であった。
In the example, a mixed ion beam (high-speed particle beam) a of hydrogen and argon was used, but the same effect can be obtained by using an ion beam of hydrogen and another inert gas. Furthermore, if the gas introduced into the ion source 12 from the gas inlet 13 is a hydrocarbon gas such as methane, an ion beam (high-speed particle beam) containing hydrogen and carbon can be obtained, and the same effect can be obtained using this. Obtained. It was also effective even when the ion beam was neutralized to become a neutral molecular beam.

また、基板18と混合イオンビームaとのなす角度0を
最初に10度以上とし、基板18の表面をエツチングし
て荒らすことにより、荒らされた部分がダイヤモンド形
成の核となり、ダイヤモンド結晶の生成密度が増加する
。前記角度θが最初に0〜5度であっても10度以上で
あってもどちらでも有効であった。
In addition, by first setting the angle 0 between the substrate 18 and the mixed ion beam a to 10 degrees or more and roughening the surface of the substrate 18 by etching, the roughened portion becomes a nucleus for diamond formation, and the diamond crystal formation density is increases. It was effective whether the angle θ was initially 0 to 5 degrees or 10 degrees or more.

また、膜を形成する炭素を含む粒子すとしてターゲット
17からのスパッタ粒子を用いたが、たとえば熱蒸発し
た炭素、炭化水素が分解された炭素、またイオン化され
加速された炭素を含む粒子(たとえばCH,などの炭化
水素)などでも有効であった。
In addition, sputtered particles from the target 17 were used as carbon-containing particles forming the film, but examples include thermally evaporated carbon, hydrocarbon-decomposed carbon, and ionized and accelerated carbon-containing particles (for example, CH It was also effective for hydrocarbons such as , etc.

発明の効果 以上のように本発明によれば、基板の表面に炭素を供給
し、この基板の表面に高速粒子線を、この高速粒子線と
前記基板の表面のなす角度を変化させながら照射するこ
とにより、室温にて基板の表面にダイヤモンド薄膜を高
効率で形成することができ、その工業的価値は大きい。
Effects of the Invention As described above, according to the present invention, carbon is supplied to the surface of a substrate, and the surface of the substrate is irradiated with a high-speed particle beam while changing the angle formed between the high-speed particle beam and the surface of the substrate. As a result, a diamond thin film can be formed with high efficiency on the surface of a substrate at room temperature, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のダイヤモンド薄膜の形成方法の基本構
成を示す説明図、第2図は本発明のダイヤモンド薄膜の
形成方法の実施に使用する装置の概略構成図、第3図は
従来のダイヤモンド薄膜の形成方法の実施に使用する装
置の概略構成図である。 6・・・基板、7・・・炭素を含む粒子、 10・・・
高速粒子線。 代理人   森  本  義  弘 第1図 6− 基板 オ 第2図
FIG. 1 is an explanatory diagram showing the basic configuration of the method for forming a diamond thin film of the present invention, FIG. 2 is a schematic diagram of an apparatus used to carry out the method for forming a diamond thin film of the present invention, and FIG. 1 is a schematic configuration diagram of an apparatus used to carry out a method for forming a thin film. 6... Substrate, 7... Particles containing carbon, 10...
High-speed particle beam. Agent Yoshihiro Morimoto Figure 1 6 - Board Figure 2

Claims (1)

【特許請求の範囲】 1、基板の表面に高速粒子線を照射しつつ、前記基板の
表面に炭素を供給して前記基板の表面に炭素を凝縮させ
るとともに、この凝縮中に前記基板の表面と高速粒子線
とのなす角度を変化させながら薄膜を形成するダイヤモ
ンド薄膜の形成方法。 2、基板と高速粒子線とのなす角度を0〜5度となるよ
うにして基板の上に高速粒子線を照射し、高速粒子が前
記基板の表面に浅い角度で衝撃を与えつつ炭素を前記基
板の上に凝縮させて薄膜を形成し、間欠的に前記基板の
表面と前記高速粒子線のなす角度を10度以上にして前
記基板の表面に角度が0〜5度の場合に比べて大きな衝
撃を加えて連続して膜形成する特許請求の範囲第1項記
載のダイヤモンド薄膜の形成方法。 3、基板の上に照射される高速粒子線が、水素と不活性
ガスまたは水素と炭素を含む構成とした特許請求の範囲
第1項記載のダイヤモンド薄膜の形成方法。 4、炭素を凝縮させる基板の表面に照射する水素と不活
性ガスまたは水素と炭素を含む高速粒子線のエネルギー
を、100eV以上10000eV以下とした特許請求
の範囲第3項記載のダイヤモンド薄膜の形成方法。 5、基板の表面と高速粒子線のなす角度が0〜5度の状
態に保たれている時間の方が前記角度が10度以上の状
態に保たれている時間よりも長くした特許請求の範囲第
2項記載のダイヤモンド薄膜の形成方法。
[Claims] 1. While irradiating the surface of the substrate with a high-speed particle beam, carbon is supplied to the surface of the substrate to condense carbon on the surface of the substrate, and during this condensation, the surface of the substrate is A method of forming a diamond thin film that forms a thin film by changing the angle between the diamond and the high-speed particle beam. 2. The substrate is irradiated with a high-speed particle beam such that the angle between the substrate and the high-speed particle beam is 0 to 5 degrees, and the high-speed particles impact the surface of the substrate at a shallow angle while discharging carbon. forming a thin film by condensing on the substrate, and intermittently setting an angle between the surface of the substrate and the high-speed particle beam of 10 degrees or more, which is larger than when the angle is 0 to 5 degrees on the surface of the substrate. The method for forming a diamond thin film according to claim 1, wherein the film is formed continuously by applying an impact. 3. The method for forming a diamond thin film according to claim 1, wherein the high-speed particle beam irradiated onto the substrate contains hydrogen and an inert gas or hydrogen and carbon. 4. The method for forming a diamond thin film according to claim 3, in which the energy of the high-speed particle beam containing hydrogen and inert gas or hydrogen and carbon is irradiated onto the surface of the substrate on which carbon is to be condensed, from 100 eV to 10,000 eV. . 5. A claim in which the time during which the angle between the surface of the substrate and the high-speed particle beam is maintained at 0 to 5 degrees is longer than the time during which the angle is maintained at 10 degrees or more. The method for forming a diamond thin film according to item 2.
JP12452287A 1987-05-20 1987-05-20 Formation of thin diamond film Pending JPS63288997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12452287A JPS63288997A (en) 1987-05-20 1987-05-20 Formation of thin diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12452287A JPS63288997A (en) 1987-05-20 1987-05-20 Formation of thin diamond film

Publications (1)

Publication Number Publication Date
JPS63288997A true JPS63288997A (en) 1988-11-25

Family

ID=14887568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12452287A Pending JPS63288997A (en) 1987-05-20 1987-05-20 Formation of thin diamond film

Country Status (1)

Country Link
JP (1) JPS63288997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376276B1 (en) * 1999-08-24 2002-04-23 Sharp Kabushiki Kaisha Method of preparing diamond semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376276B1 (en) * 1999-08-24 2002-04-23 Sharp Kabushiki Kaisha Method of preparing diamond semiconductor

Similar Documents

Publication Publication Date Title
KR910001359B1 (en) Method for synthesizing diamond
US5587039A (en) Plasma etch equipment
EP0496564A1 (en) Method and apparatus for etching diamond with plasma
JPH03111578A (en) Method for forming thin film and device for forming thin film
JPH05331640A (en) Vapor deposition device by ionization
JPH04959B2 (en)
JPH0259862B2 (en)
US20150140232A1 (en) Ultrahigh Vacuum Process For The Deposition Of Nanotubes And Nanowires
JPH059513B2 (en)
JPS63288997A (en) Formation of thin diamond film
JPH0420984B2 (en)
JPH0420985B2 (en)
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS6247472A (en) Formation of cubic boron nitride film
JPH08168961A (en) Method and device for smoothing diamond
JPS60181262A (en) Production of boron nitride film having high hardness
JPH04124258A (en) Formation of boron nitride thin film
JPS6330397A (en) Method for synthesizing diamond
JP2739286B2 (en) Plasma processing method
JPH0135799B2 (en)
JPS58100672A (en) Method and device for formation of thin film
JPH0254758A (en) Thin film-forming equipment
JPS63206390A (en) Production of diamond thin film
JPS63107899A (en) Formation of thin film
JPH08241864A (en) Thin film depositing method