JPH0819523B2 - High hardness boron nitride synthesis method - Google Patents

High hardness boron nitride synthesis method

Info

Publication number
JPH0819523B2
JPH0819523B2 JP61279360A JP27936086A JPH0819523B2 JP H0819523 B2 JPH0819523 B2 JP H0819523B2 JP 61279360 A JP61279360 A JP 61279360A JP 27936086 A JP27936086 A JP 27936086A JP H0819523 B2 JPH0819523 B2 JP H0819523B2
Authority
JP
Japan
Prior art keywords
boron nitride
boron
substrate
high frequency
excimer laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61279360A
Other languages
Japanese (ja)
Other versions
JPS63134662A (en
Inventor
和彦 福島
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61279360A priority Critical patent/JPH0819523B2/en
Publication of JPS63134662A publication Critical patent/JPS63134662A/en
Publication of JPH0819523B2 publication Critical patent/JPH0819523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は高硬度な立方晶窒化硼素の合成法に係り、
詳しくは非常に高硬度を有するだけでなく、熱伝導率に
富み、化学的に安定で加えてダイヤモンドとは異なり、
鉄族金属に対する耐性にもすぐれていることから切削工
具、耐摩工具などの工具材料、さらにはヒートシンクな
どの電子材料として用いられる立方晶窒化硼素を気相よ
り基材表面に析出させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for synthesizing cubic boron nitride having high hardness,
In detail, not only has extremely high hardness, but also has high thermal conductivity, is chemically stable, and in addition to diamond,
Since it has excellent resistance to iron group metals, it relates to a method for depositing cubic boron nitride, which is used as a tool material for cutting tools, wear resistant tools, etc. is there.

〈従来の技術〉 従来、窒化硼素の製造法としては、 (1) 硼素を含有する蒸発源から基体上に硼素分子を
蒸着させるとともに、少なくとも窒素を含むイオン種を
発生せしめるイオン発生源から基体上に該イオン種を照
射して、該基体上に窒化硼素を析出せしめる窒化硼素膜
の製造方法(特公昭60−181262号公報)。
<Prior Art> Conventionally, as a method for producing boron nitride, (1) a boron molecule is vapor-deposited on a substrate from an evaporation source containing boron, and at the same time an ion generation source for generating ion species containing at least nitrogen is formed on the substrate. And a method for producing a boron nitride film in which boron nitride is deposited on the substrate by irradiating the substrate with the ion species (JP-B-60-181262).

(2) H2+N2プラズマによる硼素の化学輸送を行なう
ことによって立方晶窒化硼素を生成させる方法(Journa
l of material science letters 4、(1985)、P51〜5
4)。
(2) Method for producing cubic boron nitride by chemically transporting boron by H 2 + N 2 plasma (Journa
l of material science letters 4, (1985), P51 ~ 5
Four).

(3) HCD gunで硼素を蒸発させながら、Hollow Anod
eからN2をイオン化して基板に放射し、基板には高周波
を印加してself bias効果をもたせて立方晶窒化硼素を
生成する方法(Proceeding、9th、Symposium on Ion so
urce Ion Asisted Technology Anode 85、Tokyo(198
5))。
(3) Hollow Anod while evaporating boron with HCD gun
A method of ionizing N 2 from e and radiating it to the substrate, applying a high frequency to the substrate and producing a cubic boron nitride with a self bias effect (Proceeding, 9th, Symposium on Ion so
urce Ion Asisted Technology Anode 85, Tokyo (198
Five)).

(4) 硼素原子含有固体にEBを当てることにより、硼
素を蒸発させ、それに窒素原子含有ガスを流しこみ、硼
素および窒素を同時にイオン化することにより、基材表
面に立方晶窒化硼素を生成する方法(真空、第28巻、第
7号、1985)。
(4) A method of forming cubic boron nitride on the surface of a substrate by exposing boron to a solid containing boron atoms to evaporate boron and then injecting a gas containing nitrogen atoms to simultaneously ionize boron and nitrogen. (Vacuum, Vol. 28, No. 7, 1985).

などが知られている。Are known.

〈発明が解決しようとする問題点〉 しかしながら、上記(1)の方法はイオンビームを発
生する装置および集束装置が高価であることが欠点とさ
れ、(2)の方法は高出力のRFプラズマを成膜に利用し
ていることにより、反応系からの不純物が混入しやす
い。(3)の方法は(1)の方法と同じくイオンビーム
を発生する装置およびその集束装置が高価であること
と、不活性ガスの原子が析出した窒化硼素に取り込まれ
る欠点がある。また(4)の方法においては、硼素は融
点と沸点が近いため、EBを当てることにより、突沸しや
すく制御が困難であるという欠点を有しているのであ
る。
<Problems to be Solved by the Invention> However, the above method (1) is disadvantageous in that the ion beam generating apparatus and the focusing apparatus are expensive, and the method (2) uses high-power RF plasma. Since it is used for film formation, impurities from the reaction system are easily mixed. Like the method (1), the method (3) has drawbacks that an apparatus for generating an ion beam and its focusing apparatus are expensive, and that atoms of an inert gas are taken into the deposited boron nitride. Further, in the method (4), since boron has a melting point and a boiling point close to each other, boron has a drawback that bumping is likely to occur and control is difficult by applying EB.

〈問題点を解決するための手段〉 この発明は上記した従来法の欠点を解消した窒化硼素
の合成法を得るべく検討の結果見出されたものである。
<Means for Solving Problems> The present invention has been found as a result of investigations to obtain a method for synthesizing boron nitride which solves the above-mentioned drawbacks of the conventional method.

即ち、この発明は硼素原子含有ガス、窒素原子含有ガ
スをエキシマレーザーCVD法にて分解、励起状態とした
のち、高周波プラズマ中を通過せしめることにより800
〜2000℃に加熱した基板表面に導入して立方晶窒化硼素
を析出させることを特徴とする高硬度窒化硼素の合成法
を提供することを目的とするものである。
That is, according to the present invention, a gas containing a boron atom and a gas containing a nitrogen atom are decomposed by an excimer laser CVD method and brought into an excited state, and then passed through a high frequency plasma to obtain 800
It is an object of the present invention to provide a method for synthesizing high-hardness boron nitride, which is characterized in that it is introduced into the surface of a substrate heated to ˜2000 ° C. to precipitate cubic boron nitride.

〈作用〉 この発明においては、硼素原子含有ガスおよび窒素原
子含有ガスの混合ガスをエキシマレーザー中を通過せし
めることにより分解、励起し、励起状の硼素原子および
窒素原子を生成せしめる。かつその励起状の硼素原子お
よび窒素原子をさらに高周波プラズマ中を通過させるこ
とにより、より高次のエネルギーを有し、加熱した基板
上において立方晶窒化硼素を生成する。
<Operation> In the present invention, a mixed gas of a boron atom-containing gas and a nitrogen atom-containing gas is passed through an excimer laser to be decomposed and excited to generate excited boron atoms and nitrogen atoms. Further, the excited boron atoms and nitrogen atoms are further passed through the high-frequency plasma to generate cubic boron nitride having a higher energy and on the heated substrate.

このように、この発明においては成膜プロセスとして
エキシマレーザーおよび高周波プラズマを使用する。
As described above, in the present invention, the excimer laser and the high frequency plasma are used as the film forming process.

上記において、エキシマレーザーのみ、あるいは高周
波プラズマのみを成膜手段として用いた場合、原料源で
ある硼素原子と窒素原子を互いにsp3結合を行なわせる
には反応エネルギーが不足するため、非晶質窒化硼素や
六方晶窒化硼素を作成しやすい。
In the above, when only the excimer laser or only the high frequency plasma is used as the film forming means, the reaction energy is insufficient to cause sp 3 bond between the boron atom and the nitrogen atom, which are the source materials, so that the amorphous nitriding is performed. Easy to make boron and hexagonal boron nitride.

これに対して、エキシマレーザーと高周波プラズマの
2つの成膜手段を組合せて利用した場合、硼素原子と窒
素原子が互いにsp3結合を起こすのに充分な反応エネル
ギーが得られるのである。
On the other hand, when the two film forming means of the excimer laser and the high frequency plasma are used in combination, sufficient reaction energy can be obtained for the boron atoms and the nitrogen atoms to cause sp 3 bond with each other.

上記においてエキシマレーザー出力は1〜100wの範囲
が好適である。これは1wより小さいと、成膜速度が非常
に小さくなり、かつ原料源を励起するのに不足し、また
100wより大きいと、媒質ガスの寿命が短くなるため、出
力減衰が顕著となり、安定した出力を得ることはできな
い。
In the above, the excimer laser output is preferably in the range of 1 to 100 w. If it is less than 1 w, the film formation rate becomes very low, and it is insufficient to excite the source material.
If it is larger than 100w, the life of the medium gas is shortened, so that the output is significantly attenuated and a stable output cannot be obtained.

次に高周波プラズマの出力は100w以上が好ましい。こ
れは100wより小さいと、励起硼素原子と励起窒素原子を
互いにsp3結合を行なわせるにはエネルギーが不足する
ためである。
Next, the output of the high frequency plasma is preferably 100 w or more. This is because if it is smaller than 100 w, the energy is insufficient to cause the excited boron atom and the excited nitrogen atom to sp 3 bond with each other.

基板温度は800℃より低いと、励起状態の硼素原子と
窒素原子が互いにsp3結合する熱エネルギーとして不足
し、また2000℃より高くなると、成膜する窒化硼素膜か
ら窒素が抜け出てしまうため、800〜2000℃が好まし
い。
When the substrate temperature is lower than 800 ° C., the boron atoms and nitrogen atoms in the excited state are insufficient as thermal energy for sp 3 bonding to each other, and when the substrate temperature is higher than 2000 ° C., nitrogen escapes from the formed boron nitride film, 800 to 2000 ° C is preferable.

この発明において、使用するエキシマレーザーの媒質
ガスとしてはArF、KrF、F2ガスなどが用いられる。
In the present invention, ArF, KrF, F 2 gas or the like is used as the medium gas of the excimer laser used.

硼素原子含有ガス中の硼素原子数および窒素原子含有
ガス中の窒素原子数の比はB/N=0.1〜10の範囲が好まし
い。これはB/N<0.1の時は非晶質状の窒化硼素の膜が析
出されやすく、B/N>10の時は硼素が過剰となり、非晶
質状の硼素が形成されやすいためである。
The ratio of the number of boron atoms in the boron atom-containing gas and the number of nitrogen atoms in the nitrogen atom-containing gas is preferably B / N = 0.1 to 10. This is because when B / N <0.1, an amorphous boron nitride film is likely to be deposited, and when B / N> 10, boron is excessive and amorphous boron is easily formed. .

硼素原子含有ガスとしてB2H6、BCl3、BBr3、B3N3H6
どが挙げられ、窒素原子含有ガスとしてはN2、NH3等が
用いられる。
Examples of the boron atom-containing gas include B 2 H 6 , BCl 3 , BBr 3 , B 3 N 3 H 6 and the like, and examples of the nitrogen atom-containing gas include N 2 and NH 3 .

なおこの発明で高硬度窒化硼素合成に際しては、第1
図あるいは第2図に概略図として示す製造装置を使用す
る。そして第1図は基板をヒーターにて加熱するタイプ
であり、第2図は高周波プラズマ中に基板が位置してい
るのでプラズマ強度によって基板温度を調節できるタイ
プである。
In the present invention, when synthesizing high hardness boron nitride,
The manufacturing apparatus shown in the drawing or FIG. 2 as a schematic is used. 1 is a type in which the substrate is heated by a heater, and FIG. 2 is a type in which the substrate temperature can be adjusted by the plasma intensity because the substrate is positioned in the high frequency plasma.

両図において、1は硼素原子含有ガス供給装置、2は
窒素原子含有ガス供給装置、3はエキシマレーザー発生
装置、4は反応室、5はエキシマレーザーガイド、6は
エキシマレーザー、7は基板、8は基板支持台、9はヒ
ーター、10は高周波コイル、11は高周波電源、12はコッ
ク、13は排気装置、14は排気口である。
In both figures, 1 is a boron atom-containing gas supply device, 2 is a nitrogen atom-containing gas supply device, 3 is an excimer laser generator, 4 is a reaction chamber, 5 is an excimer laser guide, 6 is an excimer laser, 7 is a substrate, and 8 is a substrate. Is a substrate support, 9 is a heater, 10 is a high frequency coil, 11 is a high frequency power supply, 12 is a cock, 13 is an exhaust device, and 14 is an exhaust port.

〈実施例〉 以下実施例によりこの発明を詳細に説明する。<Examples> The present invention will be described in detail below with reference to Examples.

実施例1 第1図に示す製造装置を用い、シリコンウエハーを基
板として使用し、原料ガスとしてジポランおよび窒素を
夫々20cc/min、10cc/min流した。反応管内圧力は0.1Tor
rに調整し、基板温度を900℃とした。エキシマレーザー
としてArFレーザーを使用し、レーザー出力は20wとし
た。高周波周波数は13.56MHz、高周波出力は500wとし、
成膜時間は4時間とした。
Example 1 Using the manufacturing apparatus shown in FIG. 1, a silicon wafer was used as a substrate, and diporane and nitrogen were fed as source gases at 20 cc / min and 10 cc / min, respectively. Pressure in the reaction tube is 0.1 Tor
It was adjusted to r and the substrate temperature was set to 900 ° C. An ArF laser was used as the excimer laser, and the laser output was 20w. The high frequency is 13.56MHz, the high frequency output is 500w,
The film formation time was 4 hours.

成膜終了後、6μm程度の窒化硼素膜が析出され、X
線回折で評価したところ、2θ=43.2度付近に鋭いピー
クを検出し、立方晶窒化硼素であると同定した。
After the film formation is completed, a boron nitride film of about 6 μm is deposited, and X
As a result of evaluation by line diffraction, a sharp peak was detected near 2θ = 43.2 °, and it was identified as cubic boron nitride.

実施例2 第2図に示す製造装置を用い、シリコンウエハーを基
板として使用し、原料ガスとして塩化硼素、窒素を夫々
8cc/min、16cc/min流した。
Example 2 Using the manufacturing apparatus shown in FIG. 2, a silicon wafer was used as a substrate, and boron chloride and nitrogen were used as source gases, respectively.
Flowed at 8cc / min and 16cc / min.

反応管内圧力は0.3Torrに調整し、基板温度を1100℃
した。エキシマレーザーとしてKrFレーザーを使用し、
レーザー出力は30wとした。高周波周波数は13.56MHz、
高周波出力は1kwとし、成膜時間は7時間とした。
The pressure in the reaction tube was adjusted to 0.3 Torr, and the substrate temperature was 1100 ° C.
did. Use a KrF laser as an excimer laser,
The laser output was 30w. The high frequency is 13.56MHz,
The high frequency output was 1 kw and the film formation time was 7 hours.

成膜終了後、12μm程度の窒化硼素膜が析出され、ラ
マン分析で評価したところ1310cm-1と1055cm-1付近に鋭
いピークを検出し、立方晶窒化硼素と同定できた。
After the film formation, a boron nitride film having a thickness of about 12 μm was deposited, and when evaluated by Raman analysis, sharp peaks were detected near 1310 cm −1 and 1055 cm −1 , which could be identified as cubic boron nitride.

実施例3 第1図に示す製造装置を使用した。Example 3 The manufacturing apparatus shown in FIG. 1 was used.

モリブデンを基板として用い、原料ガスとしてフッ化
硼素、アンモニアを夫々10cc/min、30cc/min流した。反
応管内圧力は0.2Torrに調整し、基板温度を800℃とし
た。成膜手段としてエキシマレーザーは使用せず、高周
波プラズマのみとし、高周波周波数13.56MHz、高周波出
力を400wとし、成膜時間を5時間とした。
Molybdenum was used as a substrate, and boron fluoride and ammonia were supplied as source gases at 10 cc / min and 30 cc / min, respectively. The pressure in the reaction tube was adjusted to 0.2 Torr, and the substrate temperature was 800 ° C. The excimer laser was not used as the film forming means, only the high frequency plasma was used, the high frequency frequency was 13.56 MHz, the high frequency output was 400 w, and the film forming time was 5 hours.

成膜修了後、5μm程度の窒化硼素膜が析出され、X
線回折で評価したところ、2θ=26.7度および43.2度付
近に夫々広いピークを検出し、六方晶窒化硼素および立
方晶窒化硼素の混在した薄膜であることが認められた。
After the film formation is completed, a boron nitride film of about 5 μm is deposited and X
When evaluated by line diffraction, broad peaks were detected near 2θ = 26.7 ° and 43.2 °, respectively, and it was confirmed that the thin film was a mixture of hexagonal boron nitride and cubic boron nitride.

実施例4 上記実施例1〜3の条件を用いてWC基超硬合金である
TNMG432をチップとして用いて該チップ状にコーティン
グを行ない、切削テストを行なった。
Example 4 A WC-based cemented carbide using the conditions of Examples 1 to 3 above.
Using TNMG432 as a chip, coating was performed on the chip and a cutting test was performed.

比較としてコーティングを行なわないチップおよびCV
D法にてTiNコーティングを行なったチップの切削テスト
をも行なった。
For comparison, uncoated tip and CV
A cutting test was also performed on the chips coated with TiN by method D.

コーティングは何れも被覆層厚3μmとした。切削テ
スト条件は第1表に示した。また切削テストの結果は第
2表に示した。
All coatings had a coating layer thickness of 3 μm. The cutting test conditions are shown in Table 1. The results of the cutting test are shown in Table 2.

上表から立方晶窒化硼素を被覆層としてチップに使用
した場合、この発明の実施例は全て耐摩耗性にすぐれて
いることが認められた。
From the above table, it was found that when cubic boron nitride was used as a coating layer for the chip, all the examples of the present invention had excellent wear resistance.

また、この発明で得たCBNコートチップの鋼旋削にお
ける切削性能を切削速度と寿命時間との関係で調べたと
ころ第3図の結果を得、さらに鋳鉄切削における欠損ま
での切削時間と衝撃回数との関係を調べたところ第4図
の結果を得た。
Further, when the cutting performance of the CBN coated chip obtained by the present invention in steel turning was examined by the relationship between the cutting speed and the life time, the results shown in FIG. 3 were obtained, and further, the cutting time to impact and the number of impacts in cast iron cutting were obtained. The relationship shown in Fig. 4 was obtained and the results shown in Fig. 4 were obtained.

〈発明の効果〉 以上説明したように、この発明は耐熱衝撃性、熱伝導
性、硬度、耐摩耗性および高温における鉄族金属に対す
る耐性にもすぐれる立方晶窒化硼素膜を気相から析出す
る新規な合成法であり、切削部材、耐摩耗部材および耐
熱部品の被覆膜として用いた場合、第2図および第3図
に示すように多大な効果を示すことが認められた。
<Effects of the Invention> As described above, according to the present invention, a cubic boron nitride film excellent in thermal shock resistance, thermal conductivity, hardness, wear resistance and resistance to iron group metals at high temperatures is deposited from the vapor phase. It is a new synthesis method, and when it is used as a coating film for cutting members, wear-resistant members and heat-resistant parts, it has been found to show a great effect as shown in FIGS. 2 and 3.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はこの発明の方法にて用いる製造装
置の概略説明図、第3図および第4図はこの発明の方法
で得られる立方晶窒化硼素を被覆膜としたチップの切削
性能を示す図表である。 1……硼素原子含有ガス供給装置 2……窒素原子含有ガス供給装置 3……エキシマレーザー発生装置 4……反応室、6……エキシマレーザー 7……基板、9……ヒーター 10……高周波コイル、11……高周波電源
1 and 2 are schematic explanatory views of a manufacturing apparatus used in the method of the present invention, and FIGS. 3 and 4 are cutting of chips having a cubic boron nitride coating film obtained by the method of the present invention as a coating film. It is a chart showing performance. 1 ... Boron atom-containing gas supply device 2 ... Nitrogen atom-containing gas supply device 3 ... Excimer laser generator 4 ... Reaction chamber, 6 ... Excimer laser 7 ... Substrate, 9 ... Heater 10 ... High frequency coil , 11 …… High frequency power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/50 H01L 23/373 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C23C 16/50 H01L 23/373

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】硼素原子含有ガスおよび窒素原子含有ガス
をエキシマレーザーCVD法にて分解、励起状態としたの
ち、高周波プラズマ中を通過せしめることにより、800
〜2000℃に加熱した基板表面に導入し、立方晶窒化硼素
を析出させることを特徴とする高硬度窒化硼素の合成
法。
1. A boron atom-containing gas and a nitrogen atom-containing gas are decomposed by an excimer laser CVD method to be in an excited state and then passed through a high frequency plasma to obtain 800
A method for synthesizing high-hardness boron nitride, which comprises introducing cubic boron nitride to the surface of a substrate heated to ~ 2000 ° C to precipitate it.
JP61279360A 1986-11-22 1986-11-22 High hardness boron nitride synthesis method Expired - Lifetime JPH0819523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279360A JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279360A JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Publications (2)

Publication Number Publication Date
JPS63134662A JPS63134662A (en) 1988-06-07
JPH0819523B2 true JPH0819523B2 (en) 1996-02-28

Family

ID=17610080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279360A Expired - Lifetime JPH0819523B2 (en) 1986-11-22 1986-11-22 High hardness boron nitride synthesis method

Country Status (1)

Country Link
JP (1) JPH0819523B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0263549A (en) * 1988-08-27 1990-03-02 Agency Of Ind Science & Technol Process and apparatus for plasma reaction
JPH0590871A (en) * 1991-09-27 1993-04-09 Sumitomo Electric Ind Ltd Acoustic surface wave element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063372A (en) * 1983-09-19 1985-04-11 Agency Of Ind Science & Technol Manufacture of thin boron nitride film of high hardness
JPS6184379A (en) * 1984-09-29 1986-04-28 Kyocera Corp Production of high-hardness boron nitride film
JPS61224318A (en) * 1985-03-29 1986-10-06 Hitachi Ltd Device and method for formation of vapor-phase thin film

Also Published As

Publication number Publication date
JPS63134662A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US5096740A (en) Production of cubic boron nitride films by laser deposition
JP4115545B2 (en) Method for reactively processing a workpiece, vacuum processing apparatus, and use of the same and apparatus
JPH0819523B2 (en) High hardness boron nitride synthesis method
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPH03240959A (en) Method for synthesizing carbon nitride thin film
TW507020B (en) Method to plasma-supported reactive processing of working part
JPH089519B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPH01104775A (en) Method for synthesizing high-hardness boron nitride
JPH07133103A (en) Method for synthesizing c3n4 by plasma arc method
JP2680574B2 (en) Method for producing cubic boron nitride film
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH0814023B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH08158039A (en) Formation of thin carbon nitride film
JPH01119673A (en) Method for synthesizing high-hardness boron nitride