JPH01119673A - Method for synthesizing high-hardness boron nitride - Google Patents

Method for synthesizing high-hardness boron nitride

Info

Publication number
JPH01119673A
JPH01119673A JP27342787A JP27342787A JPH01119673A JP H01119673 A JPH01119673 A JP H01119673A JP 27342787 A JP27342787 A JP 27342787A JP 27342787 A JP27342787 A JP 27342787A JP H01119673 A JPH01119673 A JP H01119673A
Authority
JP
Japan
Prior art keywords
base material
boron nitride
containing gas
atom
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27342787A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Akihiko Ikegaya
池ケ谷 明彦
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27342787A priority Critical patent/JPH01119673A/en
Publication of JPH01119673A publication Critical patent/JPH01119673A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit cubic BN having excellent thermal impact resistance, etc., on a base material by introducing a B-contg. gas and N-contg. gas separately into a reaction system, then impressing high-frequency plasma thereto and radiating thermions, thereby heating and activating the base material. CONSTITUTION:The B atom-contg. gas such as B2H6 or BCl3 and the N atom- contg. gas such as N2 or NH3 are separately introduced into a reaction furnace 4 equipped with a discharge device 11. The ratio B/N of the B atoms and N atoms is preferably confined within a 0.0001-10.000 range at this time. The high-frequency plasma is then impressed to the base material 5 via an RF coil 10 by a high-frequency power supply 8. On the other hand, the base material 5 is heated to 300-2,000 deg.C by a thermion radiating material 3 having a heating power supply 9. DC discharge is simultaneously generated between the thermion radiating material 3 and the base material 5 by a DC power supply 7 to accelerate the thermions and to activate the surface of the base material 5. The high- hardness BN consisting of the cubic BN having the excellent thermal impact resistance, thermal conductivity, hardness, wear resistance and resistance to iron group metals at a high temp. is thereby synthesized and deposited from the vapor phase on the surface of the base material 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非常に高硬度を有するのみならず、熱伝導率に
とみ、化学的に安定で、加えてダイヤモンドとは異なり
鉄族金属に対する耐性にも優れることから、切削工具、
耐摩工具などの工具材料、さらにはヒートシンクなどの
電子材料として用いられている立方晶電化ホウ素を、気
相より基材表面に析出させる方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention not only has extremely high hardness, but also has excellent thermal conductivity, is chemically stable, and, unlike diamond, has resistance to iron group metals. It is also excellent in cutting tools,
The present invention relates to a method for depositing cubic electrified boron, which is used as tool materials such as wear-resistant tools and electronic materials such as heat sinks, on the surface of a substrate from a gas phase.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が仰られていた。
As methods for producing cubic boron nitride, for example, the following methods (1) to (2) have been conventionally used.

■ 特公昭60−181262号公報に示されるように
、ホウXを含有する蒸発源から基体上にホク索分を蒸N
させると共に、少なくとも窒素を含めイオンatを発生
せしめるイオン発生源から基体上に該イオンa’を照射
して、該基体上に窒化ホウ素を生成させる窒化ホウ素膜
の製造方法0 ■ [ジャーナル オブ マテリアル サイエンス  
レターズ(Journal of mat、erial
science 1etters )、4(1985)
51〜54頁」に示されるように、H,+N、プラズマ
によるボロンの化学輸送を行うことによ仄立方晶窒化ホ
ウ素全生成する方法0 ■ (第9@イオン工学(Ion 5ource Io
nAaaistea Technology )シンポ
ジウム(1985年2束累)議事録、「イオン源とイオ
ンを基礎とした応用技術」〕に示されるように、)IC
Dカンでボロンを蒸発させながら、ホローアノードから
Nz t−イオン化して基板に放射し、基板には高周波
を印加して、セルフ/<イアス効果金持たせて立方晶窒
化ホウ素を生成する方法。
■ As shown in Japanese Patent Publication No. Sho 60-181262, phosphorus is evaporated onto a substrate from an evaporation source containing boro
[Journal of Materials Science] [Journal of Materials Science]
Letters (Journal of mat,erial
Science 1etters), 4 (1985)
As shown in ``Pages 51-54'', a method for completely producing cubic boron nitride by chemically transporting boron using H, +N, and plasma 0.
As shown in the proceedings of the nAaaistea Technology Symposium (1985 2nd Edition), "Ion Sources and Ion-Based Application Technologies", the ) IC
A method of generating cubic boron nitride by evaporating boron with a D-can, ionizing Nz t- from a hollow anode and emitting it to a substrate, and applying high frequency to the substrate to create a self/<Iass effect.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記■の方法はイオンビームを発生する
装置及びその集束装置が高価であることが欠点でるる。
However, method (2) has a drawback in that the ion beam generating device and its focusing device are expensive.

前記■の方法は、烏出力のRFプラズマ金成膜に利用し
ているために、反応系からの不純物が混入しやすい。
Since the above-mentioned method (2) is utilized for RF plasma gold film formation at high power, impurities from the reaction system are likely to be mixed in.

前記■の方法は、■の方法と同じくイオンビームを発生
する装置及びその集束装置が高価であることと、不活性
ガスの原子が析出した立方晶窒化ホウ素に取り込まれる
、という欠点を有する。
Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive, and that the atoms of the inert gas are incorporated into the precipitated cubic boron nitride.

本発明はこのような現状に鑑みてなされたもので、耐熱
衝撃性、熱伝導性、硬度、耐摩耗性及び高温での鉄族金
属に対する耐性に優れた立方晶窒化ホウ素を気相から析
出させることのできる新規な合成法を提案することを目
的とするものでめる。
The present invention was made in view of the current situation, and is a method of precipitating cubic boron nitride from the gas phase, which has excellent thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. The purpose of this paper is to propose a new synthetic method that can

〔問題点を解決するための手段及び作用〕本発明者らは
、高強度な立方晶窒化ホウ素を合成するにめたp1ホウ
素及び窒素が互にBp!結合を生じうるに充分な励起状
態となるエネルギーを与える方法につ諭て鋭意研究の結
果、熱電子放射材による加熱と直流プラズマ放電さらに
高周波プラズマを印加という励起手段の併用が好適であ
ることを見出した0 本発明は化学気相析出法による窒化ホウ素の合成法にお
いて、ホウ素原子含有ガス及び窒素原子含有ガスを別個
に反応系内に導入し、該反応系内の支持台に設置した基
材を熱電子放射材によジ加熱する一方、熱電子放射材と
該支持台の間に直流放電を起すと共に高周波プラズマを
該基材に印加することにx9基材上に窒化ホウ素を析出
させることを特徴とする高硬度窒化ホウ素の合成法であ
る。
[Means and effects for solving the problem] The present inventors have discovered that p1 boron and nitrogen are mutually Bp! in order to synthesize high-strength cubic boron nitride. As a result of intensive research on methods of applying energy to create an excited state sufficient to cause bonding, we found that a combination of excitation methods such as heating with a thermionic emitter, direct current plasma discharge, and application of high-frequency plasma is suitable. Found 0 The present invention relates to a method for synthesizing boron nitride by chemical vapor deposition, in which a boron atom-containing gas and a nitrogen atom-containing gas are separately introduced into a reaction system, and a substrate is placed on a support in the reaction system. is heated by a thermionic radiation material, while causing a direct current discharge between the thermionic radiation material and the support base, and applying high frequency plasma to the substrate to precipitate boron nitride on the x9 substrate. This is a method for synthesizing high hardness boron nitride.

本発明の特に好ましい実施態様としては、加熱された基
材の温度が300〜2000℃である上記方法およびホ
ウ素原子含有ガス中のホウ素原子数と窒素原子含有ガス
中の窒素原子数との比B/Nがα0001〜10000
の範囲内である上記方法が挙げられる。
Particularly preferred embodiments of the present invention include the above method in which the temperature of the heated base material is 300 to 2000°C, and the ratio B of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas. /N is α0001~10000
Examples include the above-mentioned methods that fall within the scope of.

以下、図面を参照して本発明全具体的に説明する。Hereinafter, the present invention will be fully explained in detail with reference to the drawings.

第11は本発明の実施態様を示す概略の断面図であって
、ホウ素原子含有ガス供給装置1及び窒素原子含有ガス
供給装[2からそれぞれ供給てれる、ホウ素原子含有ガ
スと窒素原子含有ガスは%混合されることなく別々に反
応炉4に供給される。このとき反応炉4内の基材支持台
6上に載置した基材5を、図示の位置にある熱電子放射
材3によってカロ熱しておくと共に、該熱電子放射材3
と基板支持台6の間で、直流電源7により直流放tt発
生させる0さらに高周波電源8.RFコイル10によす
゛基材5に高周波プラズマ金印加する。これによシ原料
ガスは励起され、立方晶窒化ホウ素が基材表面に析出す
る。なお、第1図中の9は熱′電子放射材加熱電源、1
1は排気装置、12は排気口である。
11 is a schematic cross-sectional view showing an embodiment of the present invention, in which the boron atom-containing gas and the nitrogen atom-containing gas are respectively supplied from the boron atom-containing gas supply device 1 and the nitrogen atom-containing gas supply device [2]. % are separately supplied to the reactor 4 without being mixed. At this time, the base material 5 placed on the base material support stand 6 in the reactor 4 is heated by the thermionic emitter 3 located at the position shown in the figure, and the thermionic emitter 3
and the substrate support table 6, a DC power supply 7 generates a DC discharge tt, and a high frequency power supply 8. High frequency plasma gold is applied to the base material 5 using the RF coil 10 . As a result, the raw material gas is excited, and cubic boron nitride is deposited on the surface of the substrate. In addition, 9 in FIG. 1 is a thermal electron emitting material heating power source, 1
1 is an exhaust device, and 12 is an exhaust port.

本発明はこのようにまずホウ素原子含有ガスと窒素原子
含有ガスを別々に反応系に導入する。
In this way, the present invention first separately introduces a boron atom-containing gas and a nitrogen atom-containing gas into a reaction system.

このようにホウ素原子含有ガスと窒素原子含有ガスを別
々にプラズマ発生領域に導入することにニジ、立方晶雪
化ホウ素の生成全防止できる。
By introducing the boron atom-containing gas and the nitrogen atom-containing gas separately into the plasma generation region in this way, the formation of cubic boron snow can be completely prevented.

なおホウ素原子含有ガス導入口、窒素原子含有ガス導入
口の一方、又は両方をプラズマ発生領域内に位置してお
く。熱電子放射材で基材を加熱すると共に、該熱電子放
射材と基材支持台の間に直流放電全印加することにより
、熱電子放射材から分離した熱電子が基板表面方向に加
速され、基板表面をより活性化できる。窒素原子含有ガ
ス供給口のごく近傍に熱電子放射材を位置することによ
れば窒素原子含有ガスを活性化してお(ことができる。
Note that one or both of the boron atom-containing gas inlet and the nitrogen atom-containing gas inlet are located within the plasma generation region. By heating the base material with the thermionic emission material and applying a full direct current discharge between the thermionic emission material and the base material support, thermionic electrons separated from the thermionic emission material are accelerated in the direction of the substrate surface, The substrate surface can be further activated. By placing the thermionic radiation material in close proximity to the nitrogen atom-containing gas supply port, the nitrogen atom-containing gas can be activated.

そして基材周辺全体にRF’プラズマ金印加することに
よシ、励起状のホウ素原子及び励起状の窒素原子を生ぜ
しめ、これ等の励起状のホウ素原子と窒素原子との間に
SP=結合を生ぜしめ、これによって加熱された基材表
面に立方晶窒化ホウ素を生成できる。
By applying RF' plasma gold to the entire periphery of the base material, excited boron atoms and excited nitrogen atoms are generated, and SP=bonds are formed between these excited boron atoms and nitrogen atoms. This allows cubic boron nitride to be produced on the surface of the heated substrate.

本発明において原料ガスとするホウ素原子含有ガスとし
ては、例えば、B2H4、BO2、BBr3等が挙げら
れ、窒素原子含有ガスとしては−例えばN、 、 NH
3等が挙げられる。またこれ等のガスにN2やAr等の
不活性ガス全添加してもよい〇ホウ素原子含有ガス中の
ホウ素原子数及び窒素原子含有ガス中の窒素原子数比B
 / Nはα0001〜10000の範囲内が好ましい
In the present invention, the boron atom-containing gas used as the raw material gas includes, for example, B2H4, BO2, BBr3, etc., and the nitrogen atom-containing gas includes - for example, N, , NH
3rd prize is mentioned. Also, an inert gas such as N2 or Ar may be completely added to these gases. Ratio of the number of boron atoms in the boron atom-containing gas and the number of nitrogen atoms in the nitrogen atom-containing gas B
/N is preferably within the range of α0001 to 10000.

B / Nが[10001未満では非晶質状の窒化ホウ
素膜が析出されやすく、−万B / Nが10000を
越えるとホウ素が過剰となり、非晶質状のホウ素が形成
されやすいので好ましくない。また、反応室内の圧力は
、プラズマを安定に生ぜしめるために、α01〜100
TorrO範囲とすることが好ましい。
If B/N is less than 10,001, an amorphous boron nitride film is likely to be deposited, and if -10,000 B/N exceeds 10,000, boron becomes excessive and amorphous boron is likely to be formed, which is not preferable. In addition, the pressure in the reaction chamber is set at α01 to 100 in order to stably generate plasma.
It is preferable to set it in the TorrO range.

基材を加熱する熱電子放射材としては高温に耐えられる
タングステンフィラメント、トリウム含有タングステン
フィラメントが挙げられる。
Examples of thermionic radiation materials that heat the base material include tungsten filaments and thorium-containing tungsten filaments that can withstand high temperatures.

また、基材を加熱する手段としてヒーターを付は加えて
も良い。基材温度は300−2000℃の範囲にするの
が好ましく、300℃未満では立方晶窒化ホウ素を基材
上に析出せしめるエネルギーに不足し、2000℃を越
えると、析出する窒化ホウ素膜から窒素が抜は出て、非
立方晶窒化ホウ素となり好ましくない。
Further, a heater may be added as a means for heating the base material. The substrate temperature is preferably in the range of 300-2000°C. If it is less than 300°C, there is insufficient energy to deposit cubic boron nitride on the substrate, and if it exceeds 2000°C, nitrogen will be removed from the precipitated boron nitride film. This is undesirable because it becomes non-cubic boron nitride.

原料のホウ素原子含有ガス、窒素原子含有ガス全励起・
活性化するための直流放電及ヒRFプラズマの出力は、
それぞれ100W以上でるることが好ましい。100W
未満では原料ガスの励起するためには出力不足となる。
Total excitation of boron atom-containing gas and nitrogen atom-containing gas as raw materials
The output of DC discharge and RF plasma for activation is:
It is preferable that each output power is 100 W or more. 100W
If it is less than that, the output will be insufficient to excite the source gas.

第2図に本発明の別の実施態様を示す0この例では、基
材5は熱電子放射材3と基材支持台6を加熱するヒータ
の両方で加熱される。第2図において第1図と共通符号
の部分は第1図のものと同じ全意味している。
Another embodiment of the invention is shown in FIG. 2. In this example, the substrate 5 is heated by both the thermionic emitter 3 and a heater that heats the substrate support 6. In FIG. 2, parts having the same reference numerals as those in FIG. 1 have the same meanings as in FIG.

〔実施例〕〔Example〕

実施例1 第1図の装置構成で、本発明によシC−81’i基材と
して高硬度窒化ホウ素膜を合成して被覆した。ホウ素原
子含有ガスとしてBC/4’ii 25ω/ win 
、窒素原子含有ガスとしてN2 を50CI−/min
ヲ、夫々別個に反応室に流して、反応室内圧力は5 T
Orr IIC調整した。熱電子放射材としてタングス
テンフィラメントを使用してその温度’(z2000℃
とし、基板温度は800℃とした。直流放電パワー全1
00W、RFパワー300Wに設定した。この条件で5
時開成膜全行った。その結果、C−3i基材表面に膜厚
4μmの窒化ホウ素膜が析出した。この膜をx森回折法
により評価したところ、2θ= 43.3 C付近に鋭
いピークを検出したので、鉄膜は立方晶窒化ホウ素であ
ると同足できた。
Example 1 Using the apparatus configuration shown in FIG. 1, a high hardness boron nitride film was synthesized and coated as a C-81'i base material according to the present invention. BC/4'ii 25ω/win as boron atom-containing gas
, 50CI-/min of N2 as nitrogen atom-containing gas
ヲ, each is flowed into the reaction chamber separately, and the pressure in the reaction chamber is 5 T.
Orr IIC adjusted. Using a tungsten filament as a thermionic emitter, its temperature' (z2000℃
The substrate temperature was 800°C. DC discharge power total 1
00W, and the RF power was set to 300W. 5 under this condition
All depositions were performed intermittently. As a result, a boron nitride film with a thickness of 4 μm was deposited on the surface of the C-3i substrate. When this film was evaluated by the x-Mori diffraction method, a sharp peak was detected near 2θ = 43.3 C, so it was concluded that the iron film was cubic boron nitride.

実施例2 第2図の装置構成で本発明によジ、モリブデン板を基材
として高硬度窒化ホウ素膜全合成した。ホウ素原子含有
ガスとしてB*Hs W / min、窒素原子含有ガ
スとしてN2を15 W / min流した。反応室内
圧力I Q Torr、熱電子放射材はトリウム含有タ
ングステンフィラメント2200℃、ヒータ温度950
℃とし、直流放電出力150W%RF出力250W’z
印加し、1時間50分の間気相合成を続けた。その結果
、モリブデン基材表面に膜厚五5μmの窒化ホウ素膜が
析出し、これをレーザラマン公党法により分析評価した
ところ、1055 cm−’及び1310 cm−”付
近に鋭いピークを検出したので、立方晶窒化ホウ累であ
ると同定できた。
Example 2 A high hardness boron nitride film was totally synthesized using a molybdenum plate as a base material according to the present invention using the apparatus configuration shown in FIG. B*Hs W/min was flowed as the boron atom-containing gas, and N2 was flowed at 15 W/min as the nitrogen atom-containing gas. The pressure in the reaction chamber is IQ Torr, the thermionic emitting material is a thorium-containing tungsten filament at 2200°C, and the heater temperature is 950°C.
℃, DC discharge output 150W% RF output 250W'z
The gas phase synthesis was continued for 1 hour and 50 minutes. As a result, a boron nitride film with a thickness of 55 μm was deposited on the surface of the molybdenum base material, and when this was analyzed and evaluated using the laser Raman method, sharp peaks were detected near 1055 cm and 1310 cm. It was identified as cubic boron nitride.

比較例1 第1図の装置構成で、C−81を基材として窒化ホウ素
膜を台底したが、比較例として熱電子放射材と基板支持
台の間の直流放電印加を行わなかった。ホウ素原子含有
ガスとしてBCt3t−1cc / min 、窒素原
子含有ガスとしてNH3を30cc / m1n流し、
反応室内圧力は8 TOrrに調整した。熱電子放射材
としてはメンタルフィラメントを用い、フィラメント温
度を2100℃とした。RF出力は250W印加し、2
時間の成膜を行なった。その結果、C−81基材表面に
膜厚2μmの窒化ホウ素膜が析出し、これt−X線回折
により評価し、たところ、2θ=267°及び4&゛3
° 付近にピークを検出し、立方晶窒化ホウ素及び六方
晶窒化ホウ素の混合物でるると同定できた。
Comparative Example 1 In the apparatus configuration shown in FIG. 1, C-81 was used as the base material and a boron nitride film was used as the base, but as a comparative example, no direct current discharge was applied between the thermionic emitter and the substrate support. BCt3t-1cc/min as a boron atom-containing gas and NH3 as a nitrogen atom-containing gas at 30cc/m1n,
The pressure inside the reaction chamber was adjusted to 8 TOrr. A mental filament was used as the thermionic emission material, and the filament temperature was set at 2100°C. RF output is 250W applied, 2
Film formation was performed for hours. As a result, a boron nitride film with a thickness of 2 μm was deposited on the surface of the C-81 substrate, and this was evaluated by t-X-ray diffraction, and it was found that 2θ = 267° and 4&゛3
A peak was detected near °, and it was identified as a mixture of cubic boron nitride and hexagonal boron nitride.

以上の実施例1.2及び比較例1の条件で窒化ホウ素膜
が得られたので、この条件を利用して切削工具に被覆形
成を行なって被覆部品と1夫々について切削テスト1表
1の条件で行った。
Since a boron nitride film was obtained under the conditions of Example 1.2 and Comparative Example 1 above, coating was formed on a cutting tool using these conditions, and a cutting test was performed on each coated part under the conditions shown in Table 1. I went there.

また比較のために、CVD法によりAt20.コーティ
ングを行ったチップ及び無被徨のチップについても同様
にテストをした。なお被覆はすべて3μm厚嘔に純−し
た。表2に切削テスト結果をまとめて示す。表2の中の
OBNは立方晶窒化ホウ素、hBNは六方晶窒化ホウ素
を意味する。
For comparison, At20. The coated chip and the uncoated chip were also tested in the same way. All coatings were pure to a thickness of 3 μm. Table 2 summarizes the cutting test results. In Table 2, OBN means cubic boron nitride, and hBN means hexagonal boron nitride.

表 1 茨  2 表2の結果は窒化ホウ素特に本発明による立方晶窒化ホ
ウ素を被徨層として切削工具に使用した場合、耐摩耗性
に優れていることが明らかに示しておシ、本発明の有効
性を証明している。
Table 1 Thorn 2 The results in Table 2 clearly show that boron nitride, especially the cubic boron nitride according to the present invention, has excellent wear resistance when used as a stuck layer in a cutting tool. It has proven its effectiveness.

実施例3.比較例4及び5 第1図の装置を用いて、本発明によりP種類硬合金チッ
プ(’I’EGN 220408 )に立方晶窒化ホウ
素(cBN)’Ii被榎した。被覆条件は、原料力X 
: BIHs  300 cr−/ min b  N
H360C1−/ m1nxRFプラズマ出カニ2sO
W、直流放電出カニ150W、熱電子放射材温度:20
00℃、圧カニ I Q Torr、基材温度:830
℃、であり、膜厚3μmとした(実施ガ5)。
Example 3. Comparative Examples 4 and 5 Using the apparatus shown in FIG. 1, a P-type hard alloy chip ('I'EGN 220408) was subjected to cubic boron nitride (cBN) 'Ii according to the present invention. The coating conditions are raw material power
: BIHs 300 cr-/ min b N
H360C1-/m1nxRF plasma output crab 2sO
W, DC discharge crab 150W, thermionic radiation material temperature: 20
00℃, pressure crab IQ Torr, substrate temperature: 830
℃, and the film thickness was 3 μm (Example 5).

実施例3と同じチップにCVD法によp TiCt−3
μm厚さに被覆した(比較IAU4)。
TiCt-3 was deposited on the same chip as in Example 3 by the CVD method.
Coated to a μm thickness (comparison IAU4).

以上で得た実施例3、比較例4のチップと、全く被覆し
ないままのTEGN  220408チップ全比較例5
として用いて、鋼旋削における耐摩耗特注をテストした
0被削材は80M415、切削速度は250 m/ m
in %切込み[11w+、送りα1■/rθVである
。結果を第3図の図表に示すが、イが本発明品、口が比
較例4のTiCコートチップ、ハがコーティング無しチ
ップである。
Chips of Example 3 and Comparative Example 4 obtained above and TEGN 220408 chip with no coating at all Comparative Example 5
The work material was 80M415, and the cutting speed was 250 m/m.
in% depth of cut [11w+, feed α1■/rθV. The results are shown in the diagram of FIG. 3, where A is the product of the present invention, A is the TiC-coated chip of Comparative Example 4, and C is the uncoated chip.

WJs図から明らかなように、本発明にょるcBNコー
トチップが耐摩耗性において最も優れている。
As is clear from the WJs diagram, the cBN coated chip according to the present invention has the best wear resistance.

実施?lJ 4 、比較例6〜8 第1図の装置を用いて、本発明によりに棟超硬合金チッ
プ(TPMN 220408 )に(! B N f、
H被覆した0被覆条件は、原料ガス:BC2325cc
/min、 Nl: 10 cc/min、 RFプラ
ズマ出カニ350W%直流放電出カニ100W、圧カニ
 10Torr 、熱電子放射材の温度2100℃、基
材@度:900℃であり、膜厚4μmが得られた(実施
例4)。
implementation? lJ 4 , Comparative Examples 6 to 8 Using the apparatus shown in FIG.
The 0 coating conditions for H coating are: Raw material gas: BC2325cc
/min, Nl: 10 cc/min, RF plasma output crab 350W%, DC discharge crab 100W, pressure crab 10 Torr, temperature of thermionic emission material 2100℃, base material @ degree: 900℃, and a film thickness of 4 μm was obtained. (Example 4).

実施例4と同じチップにイオンブレーティング法によ5
 TiNを4μm厚さに被覆した〆(比較例6)。l丑
1、CVD法によりAt203 f 4Am厚さに被覆
した(比較例7)。
5 was applied to the same chip as in Example 4 by the ion blating method.
TiN was coated to a thickness of 4 μm (Comparative Example 6). It was coated with At203 f 4 Am thick by CVD method (Comparative Example 7).

以上で得た実施例4、比較例6,7の被覆チップと、全
く被覆しないままのTPMN 22040Bチツプを比
較例8として用いて、鋳鉄旋削における欠損特性をテス
トした。被剛材はFe12、切削速度300m/min
、切込みα2籠、送夕α2 m / revである。な
お衝撃は1周に4このU#l′?を有する被剛材とした
。結果を第4図の図表に示すが、本発明のcBNコーテ
ィングチップが比較例6〜Bのものより格段に優れてい
ることがわかる。
Using the coated chips of Example 4 and Comparative Examples 6 and 7 obtained above, and the completely uncoated TPMN 22040B chip as Comparative Example 8, the chipping characteristics in cast iron turning were tested. The rigid material is Fe12, the cutting speed is 300m/min
, depth of cut α2, and sending height α2 m/rev. In addition, the impact is 4 U#l' in one lap? The material to be stiffened was The results are shown in the diagram of FIG. 4, and it can be seen that the cBN-coated chips of the present invention are significantly superior to those of Comparative Examples 6-B.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は耐熱衝撃性。 As explained above, the present invention has thermal shock resistance.

熱伝尋性、硬度、耐摩耗注及び高温での鉄族金属に対す
る耐性に優れる立方晶窒化ホウ素全気相から析出できる
新規な合成法でるる。本発明によシ合成した高硬度窒化
ホウ素膜を切削部材。
A novel synthesis method that allows cubic boron nitride to be precipitated from the entire gas phase, which has excellent thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures. A cutting member made of a high hardness boron nitride film synthesized according to the present invention.

耐摩耗部材等の被覆として利用すると、非常に切削特性
に優れた部材を得ることができる。
When used as a coating for wear-resistant members, etc., members with extremely excellent cutting properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はいずれも本発明の高硬度窒化ホウ素
の合成法の実施態様を示す概略図であり、第3図及び第
4図は本発明品と比較品、従来品の旋削における特性試
験結果金示した図表であって、第3図は鋼旋削における
耐摩耗特注、第4図は鋳鉄旋削における欠損特性金示す
Fig. 1 and Fig. 2 are both schematic diagrams showing an embodiment of the high-hardness boron nitride synthesis method of the present invention, and Fig. 3 and Fig. 4 are diagrams showing the lathes of the inventive product, comparative product, and conventional product. Figure 3 shows the wear resistance custom made for turning steel, and Figure 4 shows the defect characteristics for turning cast iron.

Claims (3)

【特許請求の範囲】[Claims] (1)化学気相析出法による窒化ホウ素の合成法におい
て、ホウ素原子含有ガス及び窒素原子含有ガスを別個に
反応系内に導入し、該反応系内の支持台に設置した基材
を熱電子放射材により加熱する一方、熱電子放射材と該
支持台の間に直流放電を起すと共に高周波プラズマを該
基材に印加することにより基材上に窒化ホウ素を析出さ
せることを特徴とする高硬度窒化ホウ素の合成法。
(1) In a method for synthesizing boron nitride by chemical vapor deposition, a boron atom-containing gas and a nitrogen atom-containing gas are separately introduced into a reaction system, and a substrate placed on a support in the reaction system is heated by thermionic electrons. High hardness characterized by depositing boron nitride on the base material by heating with a radiant material, generating a direct current discharge between the thermionic radiation material and the support, and applying high frequency plasma to the base material. Synthesis method of boron nitride.
(2)加熱された基材の温度が300〜2000℃であ
る特許請求の範囲第1項記載の高硬度窒化ホウ素の合成
法。
(2) The method for synthesizing high hardness boron nitride according to claim 1, wherein the temperature of the heated base material is 300 to 2000°C.
(3)ホウ素原子含有ガス中のホウ素原子数と窒素原子
含有ガス中の窒素原子数との比B/Nが0.0001〜
10000の範囲内である特許請求の範囲第1又は2項
記載の高硬度窒化ホウ素の合成法。
(3) The ratio B/N of the number of boron atoms in the boron atom-containing gas to the number of nitrogen atoms in the nitrogen atom-containing gas is 0.0001 to
The method for synthesizing high hardness boron nitride according to claim 1 or 2, wherein the hardness is within the range of 10,000.
JP27342787A 1987-10-30 1987-10-30 Method for synthesizing high-hardness boron nitride Pending JPH01119673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27342787A JPH01119673A (en) 1987-10-30 1987-10-30 Method for synthesizing high-hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27342787A JPH01119673A (en) 1987-10-30 1987-10-30 Method for synthesizing high-hardness boron nitride

Publications (1)

Publication Number Publication Date
JPH01119673A true JPH01119673A (en) 1989-05-11

Family

ID=17527748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27342787A Pending JPH01119673A (en) 1987-10-30 1987-10-30 Method for synthesizing high-hardness boron nitride

Country Status (1)

Country Link
JP (1) JPH01119673A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463901A (en) * 1991-09-27 1995-11-07 Sumitomo Electric Industries, Ltd. Stacked piezoelectric surface acoustic wave device with a boron nitride layer in the stack

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US4655893A (en) Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
JPH01282999A (en) Acoustic diaphragm and its manufacture
US4412899A (en) Cubic boron nitride preparation utilizing nitrogen gas
JPH01119673A (en) Method for synthesizing high-hardness boron nitride
JPH0259862B2 (en)
JPS6184379A (en) Production of high-hardness boron nitride film
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPH01104775A (en) Method for synthesizing high-hardness boron nitride
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPH01119672A (en) High-hardness boron-nitride coated parts
JPH0649637B2 (en) High hardness boron nitride synthesis method
JPH02173264A (en) High-hardness multilayered film
JPH089519B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JPH0733580B2 (en) Method for producing cubic boron nitride film
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH0819523B2 (en) High hardness boron nitride synthesis method
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPS62280364A (en) Method for synthesizing hard boron nitride
JPH03199378A (en) Method for synthesizing boron nitride thin film
JPS61174378A (en) Production of rigid material coated with boron nitride