JPS62280364A - Method for synthesizing hard boron nitride - Google Patents

Method for synthesizing hard boron nitride

Info

Publication number
JPS62280364A
JPS62280364A JP12233886A JP12233886A JPS62280364A JP S62280364 A JPS62280364 A JP S62280364A JP 12233886 A JP12233886 A JP 12233886A JP 12233886 A JP12233886 A JP 12233886A JP S62280364 A JPS62280364 A JP S62280364A
Authority
JP
Japan
Prior art keywords
boron nitride
plasma
nitrogen
gas
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12233886A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Akihiko Ikegaya
池ケ谷 明彦
Kazuhiko Fukushima
和彦 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12233886A priority Critical patent/JPS62280364A/en
Publication of JPS62280364A publication Critical patent/JPS62280364A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To synthesize cubic boron nitride having a nearly single phase when boron nitride is synthesized in a vapor phase by plasma CVD, by separately feeding boron and nitrogen and/or ammonia to a plasma space. CONSTITUTION:A reaction tube 1 is evacuated from the exhaust port 4 an a gaseous boron compound and gaseous nitrogen and/or ammonia are introduced into the tube 1 from introduction pipes 6, 7, respectively. Microwaves generated by a microwave generator 3 are then introduced into the tube 1 through a waveguide 2 to excite the gases fed from the pipes 6, 7 without forming borazine. The gases mix with each other only when they are excited. At the same time, a substrate 5' is heated to 300-1,500 deg.C by the microwaves and cubic boron nitride is deposited on the surface of the substrate 5'.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔所業上の利用分野] 本発明は立方晶窒化硼素、ウルツ型室化硼素等の極めて
硬く熱伝導性に富む硬質窒化硼素の新規な合成方法に関
する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is a novel synthesis of extremely hard and highly thermally conductive hard boron nitrides such as cubic boron nitride and Wurtz type boron nitride. Regarding the method.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素はヴイカース硬度で4500以上とき
わめて硬く、かつ熱伝導性に富むこと、またダイヤモン
ドに比較して耐酸化性に優れ、高温で鉄族金属と反応し
ない等の優れた特性を有するところから切削、耐摩耗工
具材料として用いて非常に優れている。また電気絶縁性
にも富むことから半導体の放熱基板等への応用がなされ
ている。
Cubic boron nitride is extremely hard with a Vikers hardness of 4,500 or higher, has high thermal conductivity, and has excellent properties such as superior oxidation resistance compared to diamond and does not react with iron group metals at high temperatures. Excellent for cutting and use as a wear-resistant tool material. Furthermore, since it has good electrical insulation properties, it has been applied to semiconductor heat dissipation substrates, etc.

ところで立方晶窒化硼素は、炭素におけるダイヤモンド
と同じく低温高圧相であるため、その合成にけ数キロバ
ールの超高圧と1500’C前後の高温を要し、従来工
業的にはダイヤモンドと同様に超高圧高温発生装置を用
いて合成されている。したがってその製造費用は啄めて
高価なものであり、また超高圧高温発生装置の寸法上、
製造し得るものの大きさにも制限があった。そのため、
上記の如く優れた特性を有する立方晶窒化硼素の使用も
自ずと限らバたものであった。
By the way, cubic boron nitride is a low-temperature, high-pressure phase like diamond in carbon, so its synthesis requires ultra-high pressure of several kilobars and high temperature of around 1500'C. It is synthesized using a high temperature generator. Therefore, the manufacturing cost is extremely high, and due to the dimensions of the ultra-high pressure and high temperature generator,
There were also limits to the size of what could be manufactured. Therefore,
The use of cubic boron nitride, which has excellent properties as described above, has naturally been of limited use.

最近、ダイヤモンドの°場合と同様に、立方晶窒化硼素
についても超高圧高温を用いずに、減圧下の気相から加
熱した基板上に析出させるbわゆる気相合成法が開発さ
れつつある。この気相合成法によれば、高価な超高圧高
温発生装置を必要としない、基板を所要の形状に加工し
ておけばその表面を立方晶窒化硼素被覆することで自由
に形状を作成できる、という利点があるので、立方晶窒
化硼素の使用領域を飛躍的に拡大しうる可能性がある。
Recently, a so-called vapor phase synthesis method has been developed for cubic boron nitride, in which cubic boron nitride is deposited on a heated substrate from the vapor phase under reduced pressure, without using ultra-high pressure and high temperature, as in the case of diamond. This vapor phase synthesis method does not require expensive ultra-high pressure and high temperature generators, and once the substrate is processed into the desired shape, the surface can be coated with cubic boron nitride to create any shape. Because of this advantage, there is a possibility that the range of use of cubic boron nitride can be dramatically expanded.

従来の気相合成法においては、硼素源としてはすべて金
属硼素を用い、これを電子ビームで溶解蒸発させる、あ
るいは水素又は窒素ガスを用いてスパッタリング(化学
反応が加わることもあるが)することにより気相にする
方法がとられていた。しかしながらこの方法では硼素の
気相への供給が不規則になりやすいため、工業的に、多
口の基材上へ立方晶窒化硼素を再現性良く安定して被覆
することは極めて困難であった。
In conventional vapor phase synthesis methods, metallic boron is used as the boron source, and it is melted and evaporated with an electron beam, or sputtered using hydrogen or nitrogen gas (although chemical reactions may also be involved). The method used was to create a gas phase. However, with this method, the supply of boron to the gas phase tends to be irregular, making it extremely difficult to coat cubic boron nitride on multi-hole substrates with good reproducibility and stability. .

この改善法として硼素を気相の硼素化合物を用いて供給
するいわゆるOVD法が検討されており、硼素源として
は入手が最も容易な水素化硼素特にジボラン(BsHs
)を、又窒素源としてはアンモニア(封Hs )もしく
は窒素(Nりを混合し、外部より直流、交流、高周波マ
イクロ波等の電界を印加し放電させることによって、該
混合気流をプラズマ状態に励起し、加熱保持した基板上
て窒化硼素を合成する、プラズマCVD法が一般的であ
る。
As a method to improve this problem, the so-called OVD method is being considered, in which boron is supplied using a gaseous boron compound.
) and ammonia (Hs) or nitrogen (N2) as a nitrogen source, and by applying an electric field such as direct current, alternating current, or high-frequency microwaves from the outside to cause discharge, the mixed gas flow is excited to a plasma state. However, a plasma CVD method in which boron nitride is synthesized on a heated substrate is generally used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記のプラズマOVD?aによっても、ダ
イヤモンドの気相合成法のように単−相に近い立方晶窒
化硼素を気相合成することは非常に困難で、従来の公知
技術では六方晶の窒化硼素の中に微量の立方晶もしくは
ウルシ型の硬質の窒化硼素の微小結晶が混在しているに
すぎ々かった。
However, the above plasma OVD? Also, it is very difficult to synthesize cubic boron nitride, which is close to a single phase, in the vapor phase, as is the case with the vapor phase synthesis method for diamond. There were only microcrystals of hard boron nitride in the form of crystals or sumac.

本発明はこのよう々現状に鑑み、プラズマCVD法てよ
って従来のものよりも単−相に近い立方晶窒化硼素を合
成し得る方法を目的とするものである。
In view of the current situation, the present invention aims at a method of synthesizing cubic boron nitride which is closer to a single phase than the conventional method by plasma CVD.

〔間魂点を解決するための手段〕[Means for resolving intertemporal points]

本発明は硼素の水素化物ならびに窒素および/又はアン
モニアガスを反応ガスとして含む気体を放′亀によりプ
ラズマ状態に励起することてよって、温度300〜15
00tl:iC加・熱された法板表面に窒化硼素を合成
する方法において、硼素の水素化物と窒素および/又は
アンモニアガスをこ台らが予めボラジンを形成すること
なく励司状態となってはじめて混合されるように、プラ
ズマ空間内に別個て供給し、該空間内にて混合すること
を荷置とする硬質窒化硼素の合成方法である。本発明の
特に好ましい実施態様としては、硼素の水素化物がジボ
ランでちる上記方法があげられる。またプラズマを維持
するために、全反応ガスに対し容積率で995%以下の
水素及び/又はアルゴンガスを添加する上記方法も好ま
しい実施の態様である。
The present invention involves exciting a gas containing a boron hydride and nitrogen and/or ammonia gas as a reaction gas into a plasma state at a temperature of 300 to 150 ml.
00tl: In the method of synthesizing boron nitride on the surface of a heated plate using iC, boron hydride and nitrogen and/or ammonia gas are mixed only after the table is in an excited state without forming borazine in advance. This is a method of synthesizing hard boron nitride in which the materials are separately supplied into a plasma space and mixed within the space. A particularly preferred embodiment of the present invention includes the above method in which the boron hydride is oxidized with diborane. Further, in order to maintain the plasma, the above-mentioned method of adding hydrogen and/or argon gas to the total reaction gas at a volume ratio of 995% or less is also a preferred embodiment.

まず本発明の基礎とした考察から説明する。First, the considerations on which the present invention is based will be explained.

前記したプラズマCVD法において、原料ガスとしてジ
ボラン及びアンモニアガスを用いる場合を例にとると、
両ガスは極めて低温で容易に反応するため、常温でボラ
ジン(Bs1JsHs )を形成する。ボラジンは炭化
水素のベンゼン様の構造を有する化合物で、その硼素と
窒素の原子間距離も1.44 Aと、ベンゼンにおける
炭素間距離1.42 Aと近似している。一方、立方晶
窒化硼素の硼素と窒素の原子間距離は1.56 Aと、
ダイヤモンドにおける炭素開用XI t 55 Aに近
似したものであって、ボラジンのそれに比してかなり長
い。即ちボラジンにおける硼素と窒素との結合様式は、
立方晶窒化硼素におけるSP1結合ではなく、ベンゼン
と同様のaplとSP2の結合が等全混在した結合であ
ることがわかる。
Taking as an example the case where diborane and ammonia gas are used as source gases in the plasma CVD method described above,
Since both gases easily react at extremely low temperatures, borazine (Bs1JsHs) is formed at room temperature. Borazine is a hydrocarbon compound having a benzene-like structure, and the distance between its boron and nitrogen atoms is 1.44 A, which is similar to the distance between carbons in benzene, 1.42 A. On the other hand, the interatomic distance between boron and nitrogen in cubic boron nitride is 1.56 A.
It is similar to the carbon opening XI t 55 A in diamond, and is considerably longer than that of borazine. In other words, the bonding mode of boron and nitrogen in borazine is
It can be seen that the bond is not an SP1 bond in cubic boron nitride, but a mixture of apl and SP2 bonds similar to benzene.

従って、この状態で外部より電界を加え、プラズマを発
生させると、該プラズマ空間中にはEIPI結合を有す
る励起種とsp2結合を有する励起種が約等量ずつ混在
するが、低圧下ではBP!結合を有する六方晶の窒化#
l素が熱力学的に安定相であるため、プラズマ空間から
基板表面上に析出して合成された窒化硼素は六方晶が多
量に存在することになる。
Therefore, when an electric field is applied from the outside in this state to generate plasma, approximately equal amounts of excited species with EIPI bonds and excited species with sp2 bonds coexist in the plasma space, but under low pressure, BP! Hexagonal nitridation with bond #
Since l element is a thermodynamically stable phase, boron nitride synthesized by precipitation on the substrate surface from the plasma space has a large amount of hexagonal crystals.

本発明け、窒化硼素のプラズマCVD法による気相合成
において、spR結合を有する励起種の存在しない、も
しくけきわめて少なりプラズマ空間とすることで、立方
晶窒化硼素を基板上に析出させる方法である。すなわち
本発明はシダランとアンモニアを低温で混合すること?
行わず、それぞれ別にプラズマ空間に供給し、該プラズ
マ空間内ではじめて混合することで、SP!結合をもつ
励起種の存在を無くすもしくは少なくして、立方晶窒化
硼素の気相合成を行うものである。
In the vapor phase synthesis of boron nitride using the plasma CVD method, the present invention provides a method in which cubic boron nitride is deposited on a substrate in the absence of excited species having spR bonds, or by creating a very small plasma space. be. In other words, does the present invention involve mixing cedaran and ammonia at a low temperature?
By supplying each to the plasma space separately and mixing them for the first time in the plasma space, SP! This method performs gas phase synthesis of cubic boron nitride by eliminating or reducing the presence of bonded excited species.

一般的なプラズマ空間はその電子@度でエネルギー状態
を示すが、約数千度から致万度に励起されている。プラ
ズマ空間に、ジボランとアンモニアをあらかじめ混合し
た混合ガスとはせずに、別々に供給すると上記の如く該
プラズマ空間は十分に高エネルギー状態に励起されてお
り、かつ該空間内ガス圧が数十Torr 以下の減圧雰
囲気であり、励起種どうしの衝突は殆んど考慮に入れる
必要がないため、該空間内に供給されたジボランとアン
モニアは、ボラジンを形成することなくただちに、ジボ
ランはSPt結合のみの水素化硼素ラジカルへと、また
アンモニアも水素化窒素ラジカルへと励起される。なお
プラズマ空間中に水素プラズマが多量に存在するため、
基板に析出した被膜の最表面層の窒素及び硼素原子のう
ちで窒素−硼素の8P=結合を行っていないものは、す
べて水素と結合していると考えられる。水素化硼素ラジ
カルおよび水素化窒素ラジカルは、それぞれ基板上の窒
化硼素の最表面層の水素と脱水素反応を行って、spt
結合を保ったまま該基板表面に析出してゆく。その結果
として基板上にSP、結合からなる立方晶窒化硼素が合
成されるのである。
Typical plasma space shows its energy state in terms of electrons, but it is excited to an infinitely high degree from about several thousand degrees. If diborane and ammonia are supplied separately to the plasma space instead of as a premixed gas, the plasma space will be excited to a sufficiently high energy state as described above, and the gas pressure in the space will be in the tens of tens of magnitude. It is a reduced pressure atmosphere of less than Torr, and there is almost no need to take collisions between excited species into consideration, so diborane and ammonia supplied into the space immediately form borazine without forming borazine, and diborane only forms SPt bonds. into boron hydride radicals, and ammonia is also excited into nitrogen hydride radicals. Furthermore, since there is a large amount of hydrogen plasma in the plasma space,
Of the nitrogen and boron atoms in the outermost layer of the coating deposited on the substrate, it is thought that all those that do not form a nitrogen-boron 8P= bond are bonded to hydrogen. Boron hydride radicals and nitrogen hydride radicals each undergo a dehydrogenation reaction with hydrogen in the outermost layer of boron nitride on the substrate, resulting in spt
It continues to deposit on the surface of the substrate while maintaining its bond. As a result, cubic boron nitride consisting of SP and bonds is synthesized on the substrate.

本発明に用いる気相の硼素源としては、硼素の水素化物
が好ましく、特に好ましくはジボランであるが、これに
限定されるものではなり0窒素化合物ガスとしては窒素
及び/又はアンモニアが挙げられる。
The gas phase boron source used in the present invention is preferably a boron hydride, particularly diborane, but is not limited thereto. Examples of the nitrogen compound gas include nitrogen and/or ammonia.

また、言うまでもないが本発明において、上記の原料ガ
スの他に、プラズマを維持するため水素、ヘリウム、ネ
オン、アルゴン等のガスを一定量添加してもよく、これ
により本発明の効果に何らのさしつかえも与えない。た
だし全反応ガスの995容積%を越えて添加すると、析
出速度が低下しすぎるので、工業生産上は好ましくない
Needless to say, in the present invention, in addition to the above-mentioned raw material gases, a certain amount of gas such as hydrogen, helium, neon, argon, etc. may be added to maintain the plasma, and this will have no effect on the effects of the present invention. I will not give you any hindrance. However, if it is added in an amount exceeding 995% by volume of the total reaction gas, the precipitation rate will decrease too much, which is not preferable in terms of industrial production.

本発明におけるプラズマ励起手段としては、例えば直流
、交流、高周波、マイクロ波等の電界を外部より印加す
る公知技術のいずれを用いてもよい。この際硼素源のガ
スと窒素および/又はアンモニアを別々てプラズマ電界
中に導入して励起してもよいし、またそれぞれを励起し
ておいてから、混合する方法をとってもよいことは本発
明の趣旨から当然である。
As the plasma excitation means in the present invention, any known technique for applying an electric field from the outside, such as direct current, alternating current, high frequency, microwave, etc., may be used. In this case, the boron source gas and nitrogen and/or ammonia may be introduced into the plasma electric field separately and excited, or each may be excited and then mixed, according to the present invention. This is natural from the point of view.

本発明においては、反応管内は減圧とするが、プラズマ
CVD法において通常行われろ1×10−5〜3 X 
10” Torr程度でよい。
In the present invention, the pressure inside the reaction tube is reduced, but the pressure is reduced to 1 x 10-5 to 3
Approximately 10” Torr is sufficient.

本発明における基板の温度は300〜1500℃が好ま
しく、これは300℃未満では結晶化しない之めであり
、また1500℃を超えると、六方晶の方が安定となり
好ましくない。
The temperature of the substrate in the present invention is preferably 300 to 1,500°C, because if it is less than 300°C, it will not crystallize, and if it exceeds 1,500°C, the hexagonal crystal will be more stable, which is not preferable.

〔実施例〕〔Example〕

第1図は本発明の実施態様を説明する図であって、以下
の実施例において用いられたマイクロ波CVD装置の概
略断面図である。第1図において、1は石英製の反応管
であり、その上部にやは9石英製のジボラン等の硼素化
合物導入管6及びアンモニア等窒素源ガス導入管7が設
けられており、該反応管内へ原料ガスを別個に導入でき
るように々っている。また反応管1の下部の排気孔4け
排気系につながり、反応管内を減圧例維持できるように
なっている。マイクロ波発振器3で発振されたマイクロ
波は、導波管2により反応管1に導かれ、該管内のガス
をプラズマ励起し、その結果基板5の表面5′上に立方
晶窒化硼素が析出される。なお第1図においてtは基板
表面5′と導入間乙の先端6′の距離?あられす。
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a schematic cross-sectional view of a microwave CVD apparatus used in the following examples. In FIG. 1, reference numeral 1 denotes a reaction tube made of quartz, and a quartz tube 6 for introducing a boron compound such as diborane and a tube 7 for introducing a nitrogen source gas such as ammonia are provided in the upper part of the tube. The raw material gas can be separately introduced into the reactor. Furthermore, the four exhaust holes at the bottom of the reaction tube 1 are connected to an exhaust system, making it possible to maintain a reduced pressure inside the reaction tube. The microwave oscillated by the microwave oscillator 3 is guided to the reaction tube 1 by the waveguide 2 and excites the gas in the tube to plasma, resulting in cubic boron nitride being deposited on the surface 5' of the substrate 5. Ru. In Fig. 1, t is the distance between the substrate surface 5' and the tip 6' of the introduction gap? Hail.

実施例1 第1図の装置を用い、tの距離を表1に示すように種々
変えて、窒化硼素の気相合成を行った。基板としてけ工
So MIOグレード型番SNMG 120408の超
硬合金基材を用い、導入管6からはジボラン5 cc/
 min 、導入管7からはアンモニア10CC/m1
nTh反応管内に流し、反応管内の圧力は25 Tor
r  とした。2.45GHzのマイクロ波発振器3の
出力ば150Wであった。
Example 1 Using the apparatus shown in FIG. 1, boron nitride was synthesized in a vapor phase while varying the distance t as shown in Table 1. A cemented carbide base material of Keiko So MIO grade model number SNMG 120408 was used as the substrate, and diborane 5 cc/
min, ammonia 10CC/m1 from the inlet pipe 7
nTh into the reaction tube, and the pressure inside the reaction tube was 25 Torr.
It was set as r. The output of the 2.45 GHz microwave oscillator 3 was 150 W.

基材表面はプラズマにより加熱され約950℃であった
。いずれの場合も3時間被俊した後冷却し、得られた膜
の特性を反射電子線回折(RHH!:D ) 、ラマン
スペクトル分析、X線回折により調べた。tの条件と得
られた結果を表1にまとめて示す。
The surface of the substrate was heated by plasma to about 950°C. In either case, the films were exposed for 3 hours and then cooled, and the properties of the obtained films were investigated by reflection electron beam diffraction (RHH!:D), Raman spectroscopy, and X-ray diffraction. The conditions for t and the results obtained are summarized in Table 1.

表  1 h:六方晶窒化硼素 C:立方晶窒化硼素 0はわずかに“検出″されたことを意味する。Table 1 h: hexagonal boron nitride C: cubic boron nitride 0 means slightly "detected".

マイクロ波によるプラズマは、基板表面5′の上方約1
5W程度までひろがっていた。表1の結果から、tが大
きい場合には、六方晶と立方晶が混在する膜が得られる
ことが明らかであり、これはプラズマ域の上方すなわち
低温の非プラズマ領域でジボランとアンモニアが混合さ
れたことに対応する。tが3mでは本発明に従い両原料
はそれぞれ直ちに励起され、立方晶窒化硼素のみの膜が
合成されている。
Plasma generated by microwaves is generated approximately 1 inch above the substrate surface 5'.
It had spread to about 5W. From the results in Table 1, it is clear that when t is large, a film containing a mixture of hexagonal and cubic crystals is obtained, and this is because diborane and ammonia are mixed above the plasma region, that is, in the low-temperature non-plasma region. respond to things. When t is 3 m, both raw materials are immediately excited according to the present invention, and a film containing only cubic boron nitride is synthesized.

実施例2 実施例1と同じく第1図の装置を用い、tは6fiとし
た。導入管6からはジボランl15cc/min及び水
素99 a: / minを、導入管7からは窒素15
 CC/ minを反応管内に流し、反応管内の圧力は
100 Torr  とし:t。2.45 GHzのマ
イクロ波出力を500Wとして、本発明のプラズマOV
D法により、3時間反応を続け、膜厚約五5μの窒化硼
素の被覆7行った。得られた膜の硬さを測定したところ
、ヴイカース硬度で約4200ときわめて硬い膜が得ら
れた。またこれは立方晶窒化ホウ素からなる膜であった
Example 2 As in Example 1, the apparatus shown in FIG. 1 was used, and t was set to 6fi. Diborane 15 cc/min and hydrogen 99 a/min were supplied from the inlet pipe 6, and nitrogen 15 cc/min was supplied from the inlet pipe 7.
CC/min was flowed into the reaction tube, and the pressure inside the reaction tube was 100 Torr: t. When the microwave output of 2.45 GHz was 500W, the plasma OV of the present invention
The reaction was continued for 3 hours by method D, and boron nitride coating 7 was performed to a thickness of about 55 μm. When the hardness of the obtained film was measured, it was found to be an extremely hard film with a Vikers hardness of about 4200. This film was also made of cubic boron nitride.

比較のためジボラン、窒素、水素を反応管外で混合して
から、反応管内に導入し同様に行つて膜を形成したとこ
ろ得られた膜の硬度は2500であった。
For comparison, diborane, nitrogen, and hydrogen were mixed outside the reaction tube and then introduced into the reaction tube and a film was formed in the same manner. The hardness of the film obtained was 2500.

又本発明はプラズマOVD法によるものであるが、プラ
ズマOVD法以外の、加熱したタングステンフィラメン
トによって混合ガスを予熱したのち加熱保持した基板上
に硬質の窒化硼素に熱分解によって合成する。いわゆる
タンゲステンフィラメント法においても硼素の水素化物
と窒素訃よび/又はアンモニアと?低温で混合せずタン
グステンフィラメント近傍へ別々に供給しても効果にか
わりのないことはいうまでもない。
Further, although the present invention is based on a plasma OVD method, a mixed gas other than the plasma OVD method is preheated with a heated tungsten filament, and then hard boron nitride is synthesized by thermal decomposition on a heated substrate. Even in the so-called tungsten filament method, boron hydride, nitrogen and/or ammonia? Needless to say, there is no change in the effect even if the tungsten filaments are supplied separately to the vicinity of the tungsten filament without being mixed at a low temperature.

〔発明の効果〕〔Effect of the invention〕

本発明はプラズマOVD法により硬質の窒化硼素を気相
合成するにおいて#l素と窒素および/又アンモニアと
を、プラズマ空間に別々に供給することによって硬質窒
化GII加熱した基板表面に合成することを可能とでき
るものである。
In the vapor phase synthesis of hard boron nitride using the plasma OVD method, the present invention is capable of synthesizing hard boron nitride on the surface of a hard GII-heated substrate by separately supplying #1 element, nitrogen, and/or ammonia to a plasma space. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を示す概略の断面図である。 FIG. 1 is a schematic cross-sectional view showing an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)硼素の水素化物ならびに窒素および/又はアンモ
ニアガスを反応ガスとして含む気体を放電によりプラズ
マ状態に励起することによつて、温度300〜1500
℃に加熱された基板表面に窒化硼素を合成する方法にお
いて、硼素の水素化物と窒素および/又はアンモニアガ
スを、これらが予めボラジンを形成することなく励起状
態となつてはじめて混合されるように、プラズマ空間内
に別個に供給し、該空間内にて混合することを特徴とす
る硬質窒化硼素の合成方法。
(1) By exciting a gas containing boron hydride and nitrogen and/or ammonia gas as a reaction gas into a plasma state by electric discharge,
In the method of synthesizing boron nitride on a substrate surface heated to ℃, boron hydride and nitrogen and/or ammonia gas are mixed together only after they are in an excited state without forming borazine in advance. 1. A method for synthesizing hard boron nitride, which comprises separately supplying boron nitride into a plasma space and mixing within the space.
(2)硼素の水素化物がジボランである特許請求の範囲
第(1)項に記載される硬質窒化硼素の合成方法。
(2) The method for synthesizing hard boron nitride according to claim (1), wherein the boron hydride is diborane.
(3)気体は全反応ガスに対し、容積率で99.5%以
下の水素および/又はアルゴンを含有している特許請求
の範囲第(1)項に記載される硬質窒化硼素の合成方法
(3) The method for synthesizing hard boron nitride according to claim (1), wherein the gas contains 99.5% or less of hydrogen and/or argon by volume based on the total reaction gas.
JP12233886A 1986-05-29 1986-05-29 Method for synthesizing hard boron nitride Pending JPS62280364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12233886A JPS62280364A (en) 1986-05-29 1986-05-29 Method for synthesizing hard boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12233886A JPS62280364A (en) 1986-05-29 1986-05-29 Method for synthesizing hard boron nitride

Publications (1)

Publication Number Publication Date
JPS62280364A true JPS62280364A (en) 1987-12-05

Family

ID=14833495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12233886A Pending JPS62280364A (en) 1986-05-29 1986-05-29 Method for synthesizing hard boron nitride

Country Status (1)

Country Link
JP (1) JPS62280364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973494A (en) * 1987-02-24 1990-11-27 Semiconductor Energy Laboratory Co., Ltd. Microwave enhanced CVD method for depositing a boron nitride and carbon
US6207281B1 (en) 1988-03-07 2001-03-27 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6224952B1 (en) 1988-03-07 2001-05-01 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6265070B1 (en) 1988-03-07 2001-07-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US6583481B2 (en) 1988-03-07 2003-06-24 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same
US7144629B2 (en) 1988-03-07 2006-12-05 Semiconductor Energy Laboratory Co., Ltd. Electrostatic-erasing abrasion-proof coating and method for forming the same

Similar Documents

Publication Publication Date Title
KR910001367B1 (en) Gaseous phase synthesized diamond film and method for synthesizing same
JPH05109625A (en) Polycrystalline cvd diamond substrate for epitaxially growing semiconductor single crystal
EP1376672A1 (en) Deposition method, deposition apparatus, insulating film and semiconductor integrated circuit
US5624719A (en) Process for synthesizing diamond in a vapor phase
JPS62280364A (en) Method for synthesizing hard boron nitride
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
JPH0361633B2 (en)
JP2569423B2 (en) Gas phase synthesis of boron nitride
JPS6054996A (en) Synthesis of diamond
JPS60122794A (en) Low pressure vapor phase synthesis method of diamond
JPH05195224A (en) Method of obtaining thickly adhered diamond coating film by using intermediate screen made of metal
JPH0448757B2 (en)
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6369973A (en) Production of cubic boron nitride film
JPH0481552B2 (en)
JP2585342B2 (en) Diamond vapor phase synthesis
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPS63140084A (en) Hard carbon coated parts
JPS62280365A (en) Method for synthesizing hard boron nitride
JP2719929B2 (en) Diamond film synthesizer by microwave plasma CVD
JPS62205277A (en) Method for synthesizing high-hardness boron nitride
JPH02279591A (en) Method for synthesizing diamond
JPH0499871A (en) Synthetic method for cubic carbon nitride
JPH03199378A (en) Method for synthesizing boron nitride thin film