JPS62260062A - Method for synthesizing high hardness boron nitride - Google Patents

Method for synthesizing high hardness boron nitride

Info

Publication number
JPS62260062A
JPS62260062A JP10302486A JP10302486A JPS62260062A JP S62260062 A JPS62260062 A JP S62260062A JP 10302486 A JP10302486 A JP 10302486A JP 10302486 A JP10302486 A JP 10302486A JP S62260062 A JPS62260062 A JP S62260062A
Authority
JP
Japan
Prior art keywords
boron nitride
substrate
gas
mixture
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302486A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10302486A priority Critical patent/JPS62260062A/en
Publication of JPS62260062A publication Critical patent/JPS62260062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To deposit chemically stable BN having high hardness on the surface of a substrate by passing a gaseous mixture of a gas contg. B with a gas contg. N through microwave electrodeless discharge and by leading the mixture to the surface of the substrate heated to a specified temp. so as to bring the mixture into thermal decomposition and reaction. CONSTITUTION:A gaseous mixture of a gas contg. B such as B2H6, BCl3 or BBr3 with a gas contg. N such as N2 or NH3 is passed through microwave electrodeless discharge to excite the gases. The gaseous mixture of the excited gases is then led to the surface of a substrate heated to 300-1,300 deg.C. The mixture is brought into thermal decomposition and reaction to deposit BN on the surface of the substrate. Thus, cubic BN having superior thermal shock resistance, heat conductivity, hardness and wear resistance and also having superior resistance to iron group metals at high temp. can be deposited from the vapor phase under variable synthesis conditions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非常に高硬度を有するのみならず、熱伝導率
にとみ、化学的に安定で、加えてダイヤモンドとは異な
り、鉄絶金属に対する耐性にも優れることから、切削工
具、耐摩工具などの工具材料、さらにはヒートシンクな
どの電子材料として用いられている立方晶窒化ホウ素を
、気相より基材表面に析出させる方法に関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention not only has extremely high hardness, but also has high thermal conductivity and is chemically stable. In addition, unlike diamond, it is an iron-free metal. The present invention relates to a method for depositing cubic boron nitride, which is used in tool materials such as cutting tools and wear-resistant tools, as well as electronic materials such as heat sinks, on the surface of substrates from the gas phase due to its excellent resistance to .

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素の製造方法として、従来、例えば下記
の■〜■の方法等が知られていた。
Conventionally, methods for producing cubic boron nitride have been known, such as the following methods (1) to (2).

■ 特公昭6Ω−181262号公報に示されるように
、ホウ素を含有する蒸発源から基体上にホウ素分を蒸着
させると共に、少なくとも窒素を含むイオン種を発生せ
しめるイオン発生源から基体上に該イオン種を照射して
、該基体上に窒化ホウ素を生成させる窒化ホウ素膜の製
造方法。
■ As shown in Japanese Patent Publication No. 6Ω-181262, a boron component is evaporated onto a substrate from an evaporation source containing boron, and at the same time, an ion source that generates ionic species containing at least nitrogen is deposited on the substrate. A method for producing a boron nitride film, which comprises irradiating the substrate with boron nitride to produce boron nitride on the substrate.

■ 「ジャーナル オブ マテリアルス サイエンス 
 レターズ(Journal of material
sscience  1ettθr日 )、  4(1
985)51 〜54頁、」に示されるように、H2十
N、プラズマによるポロンの化学輸送を行うことにより
、立方晶窒化ホウ素を生成する方法。
■ “Journal of Materials Science
Letters (Journal of material
sscience 1ettθrday), 4(1
985) pp. 51-54, a method for producing cubic boron nitride by chemically transporting poron using H20N plasma.

■ 第9回イオン工学シンポジウム(1985年、東京
)議事録、「イオン源とイオンを基礎とした応用技術」
、に示されるように、Hol:ガンでポロンを蒸発させ
ながら、ホローアノードからN2をイオン化して基板に
放射し、基板には高周波を印加して、セルフバイアス効
果を持たぜて立方晶窒化ホウ素を生成する方法。
■ Proceedings of the 9th Ion Engineering Symposium (1985, Tokyo), "Ion sources and ion-based applied technologies"
As shown in , while evaporating poron with a Hol: gun, N2 is ionized from the hollow anode and radiated to the substrate, and a high frequency is applied to the substrate to create a self-bias effect and ionize the cubic boron nitride. How to generate.

■ 〔難波;[真空]第28@第27号(1985年〕
29〜54頁〕に示すように、ホウ素原子含有固体に電
子ビーム(F、B)を当てることによシ、ホウ素を蒸発
させ、それに窒素原子含有ガスを流しこみ、ホウ素及び
窒素を同時にイオン化することによシ、基板表面に立方
晶窒化ホウ素を生成する方法。
■ [Namba; [Vacuum] No. 28 @ No. 27 (1985)
As shown in pages 29 to 54, boron is evaporated by exposing a boron atom-containing solid to an electron beam (F, B), and a nitrogen atom-containing gas is poured into it to simultaneously ionize boron and nitrogen. In particular, a method for producing cubic boron nitride on the surface of a substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記■の方法は、イオンビームを発生す
る装置及びその集束装置が高価であることが欠点である
。前記■の方法は高出力のRFプラズマを成膜に利用し
ていることによシ、反応系からの不純物が混入しやすい
。前記■の方法は、■の方法と同じく、イオンビームを
発生する装置及びその集束装置が高価であることと、不
活性ガスの原子が析出した立方晶窒化ホウ素に取シ込ま
れる、という欠点を有する。前記■の方法は、ホウ素の
融点と沸点とが近いため、1Bを当てることにより突沸
しやすく、これを制御することが困難である。
However, the disadvantage of method (2) is that the ion beam generating device and its focusing device are expensive. Since the method (2) uses high-power RF plasma for film formation, impurities from the reaction system are likely to be mixed in. Like method (2), method (2) has the disadvantages that the ion beam generating device and its focusing device are expensive, and that the atoms of the inert gas are absorbed into the precipitated cubic boron nitride. have In the method (2) above, since the melting point and boiling point of boron are close to each other, bumping tends to occur when 1B is applied, and it is difficult to control this.

本発明はこのような従来法の欠点・困難点を解決した新
規な立方晶窃化ホウ素の製造方法を目的としており、気
相から基板表面に硬質窒化硼素を安定に析出することが
でき、例えば工具等に被覆して優れた切削性、耐摩耗性
、耐欠損性を与えうる硬質窒化硼素のfA造方法を提供
せんとするもので、ある。
The purpose of the present invention is to provide a novel method for producing cubic boron which solves the drawbacks and difficulties of the conventional method, and allows hard boron nitride to be stably deposited on the substrate surface from the gas phase, for example. It is an object of the present invention to provide a method for fabricating hard boron nitride that can be coated on tools and the like to provide excellent machinability, wear resistance, and chipping resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はホウ素原子含有ガスおよび窒素原子含有ガスか
らなる混合ガスを、マイクロ波無極放電中を通過させた
後、500〜1500℃に加熱した基板表面に導入する
ことによシ、該混合ガスを熱分解、反応させ、上記基板
表面に窒化ホウ素を析出させることを特徴とする高硬度
窒化ホウ素の合成方法である。本発明の特に好ましい実
施態様としては、ホウ素原子含有ガス中のホウ素原子と
窒素東予含有ガス中の窒素原子の比B/N (原子比)
l、[11≦B/N≦10とする上記方法が挙げられる
In the present invention, a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is passed through a microwave non-polar discharge and then introduced onto the surface of a substrate heated to 500 to 1500°C. This is a method for synthesizing high hardness boron nitride, which is characterized by thermal decomposition and reaction to precipitate boron nitride on the surface of the substrate. In a particularly preferred embodiment of the present invention, the ratio B/N (atomic ratio) of boron atoms in a boron atom-containing gas to nitrogen atoms in a nitrogen Toyo-containing gas is provided.
l, [11≦B/N≦10.

本発明はホウ素原子含有ガスおよび窒素原子含有ガスか
らなる混合ガスを、マイクロ波無極放電中を通過せしめ
て、励起状態のホウ素原子含有ガス及び励起状態の窒素
原子含有ガスからなる混合ガスとし、これを加熱された
基板表面に導入し、該基板表面で熱分解し、B−Nのs
p”結合を起こすに充分なエネルギーを与えることで、
基板表面に立方晶窒化ホウ素を生成させる方法である。
The present invention allows a mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas to pass through a microwave non-polar discharge to produce a mixed gas consisting of an excited state boron atom-containing gas and an excited state nitrogen atom-containing gas. is introduced onto the heated substrate surface, thermally decomposed on the substrate surface, and the B-N s
By providing enough energy to cause p” bonds,
This method produces cubic boron nitride on the surface of the substrate.

本発明では水素ガスを用いないので、B−H化合物を形
成してしまう心配はな(、B−N化合物のみを得ること
ができる。
Since hydrogen gas is not used in the present invention, there is no concern that a B-H compound will be formed (only a B-N compound can be obtained).

本発明においては、安定に放電を持続させるため、マイ
クロ波無極放電を採用することが好ましい。直流放電の
場合は、電極を利用するため長時間連続しての放電の発
生は困難である。
In the present invention, it is preferable to employ microwave nonpolar discharge in order to sustain stable discharge. In the case of direct current discharge, since electrodes are used, it is difficult to generate continuous discharge for a long time.

無極放電を発生する管内の圧力は、放電安定と維持する
ために、α05 Torr 〜A OOTorr の範
囲が好ましい。
The pressure inside the tube that generates the non-polar discharge is preferably in the range of α05 Torr to A OOTorr in order to maintain stable discharge.

本発明において用いられるホウ素原子含有ガスとして、
例えばB、H,、BCIs 、 BBr、 、 BsN
5Ha等が挙げられ、又、窒素原子含有ガスとして、例
えばNt r NH3+等が挙げられる。なお、プラズ
マを維持するため、本反応に一切関与しないガス、例え
ばアルゴンガスなどを適宜添加しうることは、いうまで
もない。ホウ素原子含有ガス中のホウ素原子数及び窒素
原子含有ガス中の窒素原子数比E/Nは、cL1≦B/
N≦10の範囲が好ましい。これはB/N <α1であ
ると非晶質状の窒化ホウ素膜が析出しやすく、E/N 
> 10であるとホウ素が過剰となシ非晶質状のホウ素
が形成されやすいからである。
As the boron atom-containing gas used in the present invention,
For example, B, H,, BCIs, BBr, , BsN
5Ha, and examples of the nitrogen atom-containing gas include Nt r NH3+. It goes without saying that in order to maintain the plasma, a gas that does not participate in this reaction at all, such as argon gas, can be added as appropriate. The number of boron atoms in the boron atom-containing gas and the nitrogen atomic number ratio E/N in the nitrogen atom-containing gas are cL1≦B/
The range of N≦10 is preferable. This is because when B/N < α1, an amorphous boron nitride film tends to precipitate, and E/N
>10, the amount of boron is excessive and amorphous boron is likely to be formed.

本発明においては、基板の温度は300〜15007:
に加熱されていることが好ましい。
In the present invention, the temperature of the substrate is 300-15007:
Preferably, the temperature is heated to .

基板温度が300℃未満では、励起状態のホウ素原子及
び窒素原子が互にθp3結合を生起して立方晶窒化ホウ
素を形成するためのエネルギーが不足する。また基板温
度が1300℃を超えるときは、析出する窒化ホウ素1
漠から窒素が抜は出て、非立方晶窒化ホウ素膜となって
しまう。
When the substrate temperature is less than 300° C., there is insufficient energy for excited boron atoms and nitrogen atoms to form θp3 bonds with each other to form cubic boron nitride. Furthermore, when the substrate temperature exceeds 1300°C, boron nitride 1 precipitates.
Nitrogen is extracted from the surrounding area, resulting in a non-cubic boron nitride film.

次に本発明の方法分区を参照して具体的に説明する。第
1図は本発明により高硬度窒化ホウ素を合成する実施態
様を示す図であって、第1図において、1及び2はホウ
素原子含有ガス及び窒素原子含有ガス供給装置、3はウ
ェーブガイド、4はマイクロ波発掘器、5は反応室、6
は排気装置、7は基板、8は基板支持台、9゜10及び
11はコック、12は排気口を示す。
Next, a detailed explanation will be given with reference to the method sections of the present invention. FIG. 1 is a diagram showing an embodiment of synthesizing high hardness boron nitride according to the present invention, in which 1 and 2 are boron atom-containing gas and nitrogen atom-containing gas supply devices, 3 is a wave guide, and 4 is a microwave excavator, 5 is a reaction chamber, and 6 is a microwave excavator.
10 and 11 are cocks, and 12 is an exhaust port.

ガス供給装置1及び2からコック10及び11を介して
供給されたホウ素原子含有ガス及び窒素原子含有ガスは
混合ガスとして反応室5に導入し、マイクロ波発掘器4
及びウェーブガイド5によるマイクロ波無極放電中を通
過せしめた後、300〜1500℃に加熱された基板7
の表面に導入し反応させ、該基板7の表面に立方晶窒化
ホウ素を析出させる。なお、反応器5内はコック9、排
気装置6、排気口12の排気系により005〜”! 0
0  Torrの圧力にしておく。
The boron atom-containing gas and the nitrogen atom-containing gas supplied from the gas supply devices 1 and 2 via the cocks 10 and 11 are introduced into the reaction chamber 5 as a mixed gas, and the microwave excavator 4
The substrate 7 is heated to 300 to 1500° C. after being passed through a microwave non-polar discharge by the wave guide 5.
is introduced onto the surface of the substrate 7 and reacted to precipitate cubic boron nitride on the surface of the substrate 7. In addition, the inside of the reactor 5 is 005~"!0 due to the exhaust system including the cock 9, the exhaust device 6, and the exhaust port 12.
Set the pressure to 0 Torr.

なお、第1図の方法ではマイクロ波放電中に基板7が存
在しているので、マイクロ波プラズマの強度により基板
温度を変えうる力1、基板をマイクロ波プラズマ外に存
在させるようにして、抵抗加熱炉等により基板を別途加
熱するようにしてもよい。
In addition, in the method shown in Fig. 1, since the substrate 7 is present during the microwave discharge, there is a force 1 that can change the substrate temperature depending on the intensity of the microwave plasma, and the resistance is increased by keeping the substrate outside the microwave plasma. The substrate may be heated separately using a heating furnace or the like.

本発明において用いる基板としては特に限定されるとこ
ろはなく、例えば金属2合金、a−8i、 A/N、そ
の他の窒化物、炭化物、硅化物2石英、ダイヤモンドそ
の他公知の硬質被覆を形成される基板用材料を用いるこ
とができる。
The substrate used in the present invention is not particularly limited, and may be formed with, for example, metal 2 alloy, a-8i, A/N, other nitrides, carbides, silicide 2 quartz, diamond, or other known hard coatings. Substrate materials can be used.

〔実施e2す〕 実施例1、 第1図の構、成に従い本発明による高硬度窒化ホウ素の
合成を行った。基板としてはシリコンウェハーを使用し
、反応ガスとしてはジボランガス2 CC/ m1n及
びアンモニアガス5ω/ minの混合ガスを流した。
[Execution e2] Example 1 High hardness boron nitride according to the present invention was synthesized according to the structure shown in FIG. A silicon wafer was used as the substrate, and a mixed gas of diborane gas 2 CC/ml and ammonia gas 5 ω/min was flowed as the reaction gas.

反応管内圧力は20 Torrに調整し、基板温度を9
00℃とした。マイクロ波出力を300Wとし、5時間
反応を続けた結果、シリコン基板表面に厚さ約0.8μ
mの窒化ホウ素膜が生成した。該膜につきX線回折を行
ったところ、立方晶窒化ホウ素(f、1.j )のピー
クである2θ=4五2°付近に非常に強い(ペリイスト
ロングな)ピークを検出できたので、立方晶窒化ホウ素
膜であると同定できた。
The pressure inside the reaction tube was adjusted to 20 Torr, and the substrate temperature was adjusted to 9
The temperature was 00°C. As a result of continuing the reaction for 5 hours with a microwave output of 300W, a thickness of about 0.8μ was formed on the silicon substrate surface.
A boron nitride film of m was formed. When we performed X-ray diffraction on this film, we detected a very strong peak near 2θ = 452°, which is the peak of cubic boron nitride (f, 1.j). It was identified as a crystalline boron nitride film.

実施例2゜ 第1図の構成に従い、モリブデン基板を用い本発明によ
る窒化ホウ素の合成を行った。反応ガスとしてはジボラ
ンガス1 cc / m1n及び窒素ガス3 CC/ 
ffl1nを流し、反応管内圧力80 Torr。
Example 2 According to the structure shown in FIG. 1, boron nitride was synthesized according to the present invention using a molybdenum substrate. The reaction gases were diborane gas 1 cc/ml and nitrogen gas 3 cc/ml.
ffl1n was flowed, and the pressure inside the reaction tube was 80 Torr.

基板@度850℃、マイクロ波出力a o o w。Substrate @850℃, microwave output a o o w.

で4時間反応を続けた。その結果、基板表面に厚さ約0
.9μmの窒化ホウ素膜が析出し、X線回折を行ったと
ころ、実施例1と同様に(1,1,1)の非常に強いピ
ークを検出できたので、該膜が立方晶窒化ホウ素膜であ
ると同定できた。
The reaction was continued for 4 hours. As a result, a thickness of approximately 0 on the substrate surface is obtained.
.. When a 9 μm boron nitride film was deposited and X-ray diffraction was performed, a very strong peak of (1,1,1) could be detected as in Example 1, indicating that the film was a cubic boron nitride film. I was able to identify that there was one.

実施例五 第1図の構成に従い、シリコーンウェハを基板として本
発明による窒化ホウ素の合成を行った。反応ガスとして
フッ化ホウ素ガス2 CC/min及びアンモニアガス
A CC/ minを流し、反応管内圧力50  To
rr 、基板温度1000℃、マイクロ波出力550W
、成膜時間3時間の条件で行った。その結果、基板表面
に厚さ約α9μmの窒化ホウ素膜が析出し、該膜もX線
回折により立方晶窒化ホウ素膜であると同定できた。
Example 5 According to the structure shown in FIG. 1, boron nitride was synthesized according to the present invention using a silicone wafer as a substrate. Boron fluoride gas 2 CC/min and ammonia gas A CC/min were flowed as reaction gases, and the pressure inside the reaction tube was 50 To
rr, substrate temperature 1000℃, microwave output 550W
, the film formation time was 3 hours. As a result, a boron nitride film with a thickness of approximately α9 μm was deposited on the substrate surface, and this film was also identified as a cubic boron nitride film by X-ray diffraction.

以上のように実施例1〜5の条件により立方晶窒化ホウ
素を合成できたので、これらの条件を用いて、切削チッ
プに立方晶窒化ホウ素膜のコーティングを行い、得られ
た被覆チップについて切削テストを行った。基体チップ
としては工So−M−10グレード超硬合金(型番5N
G120408)切削チップを用い、被覆層厚は2μm
となるよう、各実施例の成膜時間は変更した()ぢ1〜
ム5)。また、比較のために、従来法によシTiCを2
μ惰厚さにコーティングしたものをA4、被覆なしのも
のを扁5とした。切削テストの条件を表1に、また切削
テストの結果を表2にまとめて示す。表1及び表2から
明らかなように、本発明により立方晶窒化ホウ素膜を被
覆層として施した切削チップは、耐摩耗性に非常に優れ
たものであることがわかる。
As described above, cubic boron nitride was synthesized under the conditions of Examples 1 to 5. Using these conditions, a cutting chip was coated with a cubic boron nitride film, and the resulting coated chip was subjected to a cutting test. I did it. The base chip is made of So-M-10 grade cemented carbide (model number 5N).
G120408) Using a cutting tip, the coating layer thickness is 2 μm
The film-forming time of each example was changed so that
5). In addition, for comparison, 2 TiC was prepared using the conventional method.
The one coated to a μ-thickness was labeled A4, and the one without coating was labeled 5. The conditions of the cutting test are summarized in Table 1, and the results of the cutting test are summarized in Table 2. As is clear from Tables 1 and 2, the cutting tip coated with the cubic boron nitride film according to the present invention as a coating layer has extremely excellent wear resistance.

表1. 切削テスト条件 表λ 切削テスト結果 さらに本発明による立方晶窒化硼素被覆を行ったチップ
と、TiC及び/又はAZto、被覆のチップ、さらに
被覆なしのチップについて、耐摩耗性、切削性能、耐欠
損性を比較した結果をグラフにして第2図、第3図及び
第4図に示す。
Table 1. Cutting test condition table λ Cutting test results In addition, wear resistance, cutting performance, and fracture resistance of tips coated with cubic boron nitride according to the present invention, tips coated with TiC and/or AZto, and tips without coating The results of the comparison are shown in graphs in FIGS. 2, 3, and 4.

いずれの比較も、夫々において同チップに同じ厚さの被
[(:’−ト)を行った。立方晶窒化硼素はCENと略
記しである。
In both comparisons, the same chip was coated with the same thickness. Cubic boron nitride is abbreviated as CEN.

第2図は鋼旋削における耐摩耗性の比較を示し、被削材
: BCM AS5、チップ: TNG 522、切削
速度二300 @/’In1nでの時間(win)とに
げ面摩耗量(鴫)の関係図である。
Figure 2 shows a comparison of wear resistance in steel turning, with workpiece material: BCM AS5, tip: TNG 522, cutting speed 2300 @/'In1n time (win) and amount of wear on the exposed surface (dark). It is a relationship diagram.

第3図は鋳鉄旋削における切削性能の比較を示し、被削
材:Fe12、チップ: 19NG 452のときの、
切削速度(慣)と寿命時間の関係図である。
Figure 3 shows a comparison of cutting performance in cast iron turning, when work material: Fe12, tip: 19NG 452,
It is a relationship diagram of cutting speed (habituation) and life time.

第4図は耐欠損性の比較を示し、被削材:SCM 45
5、チップ: SCMG 12040B、切削速度:2
00 yg/minのときの、衡撃回数と欠損までの切
削時間(min)の図である。
Figure 4 shows a comparison of fracture resistance, work material: SCM 45
5. Chip: SCMG 12040B, cutting speed: 2
It is a figure of the number of counterattacks and the cutting time (min) until breakage at the time of 00 yg/min.

以上の第2図、第3図及び第4図からも明らかなように
、本発明による硬質窒化硼素被覆を行ったチップは耐摩
耗性、切削性能、耐欠損性のいずれも非常Vζ優れてい
る。
As is clear from the above figures 2, 3, and 4, the hard boron nitride-coated insert according to the present invention has excellent wear resistance, cutting performance, and chipping resistance. .

〔発明の効果〕〔Effect of the invention〕

本発明は耐熱衝撃性、熱伝導性、硬度、耐摩耗性及び高
温での鉄族金属に対する耐性にも優れる、立方晶窒化ホ
ウ素!lx XoT Kな合成条件により気相から析出
できる新規な方法でちる。このように合成条件が可変で
あるので、本発明の方法は切削部材、耐摩耗部材、耐熱
部材等の立方晶窒化ホウ素被覆形成に用いて、非常に有
利である。
The present invention uses cubic boron nitride, which has excellent thermal shock resistance, thermal conductivity, hardness, wear resistance, and resistance to iron group metals at high temperatures! lx Since the synthesis conditions are thus variable, the method of the present invention is very advantageous for forming cubic boron nitride coatings on cutting members, wear-resistant members, heat-resistant members, and the like.

本発明方法により得られる立方晶窒化ホウ素は、耐熱衝
撃性、熱伝導性、硬度及び耐摩耗性並びに高温での鉄族
金属に対する耐性にも優れているため、切削部材、耐摩
耗部材及び耐熱部材の被覆膜として利用して、多大の効
果を有する。
The cubic boron nitride obtained by the method of the present invention has excellent thermal shock resistance, thermal conductivity, hardness and wear resistance, and resistance to iron group metals at high temperatures, so it can be used for cutting parts, wear-resistant parts, and heat-resistant parts. It has great effects when used as a coating film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を概略説明する構成図である
。 第2図〜第4図は本発明による被覆を形成したチップと
従来品との特性比較を示す図で、第2図は1耐摩耗性の
比較を示す図、第5図は切削性能の比較を示す図、第4
図は耐欠損性の比較を示す図である。
FIG. 1 is a block diagram schematically explaining an embodiment of the present invention. Figures 2 to 4 are diagrams showing a comparison of characteristics between the tip coated with the present invention and a conventional product. Figure 2 is a diagram showing a comparison of wear resistance, and Figure 5 is a comparison of cutting performance. Figure 4 showing
The figure shows a comparison of fracture resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)ホウ素原子含有ガスおよび窒素原子含有ガスから
なる混合ガスを、マイクロ波無極放電中を通過させた後
、300〜1300℃に加熱した基板表面に導入するこ
とにより、該混合ガスを熱分解、反応させ、上記基板表
面に窒化ホウ素を析出させることを特徴とする高硬度窒
化ホウ素の合成方法。
(1) A mixed gas consisting of a boron atom-containing gas and a nitrogen atom-containing gas is passed through a microwave non-polar discharge, and then introduced onto the substrate surface heated to 300 to 1300°C to thermally decompose the mixed gas. A method for synthesizing high hardness boron nitride, which comprises reacting and depositing boron nitride on the surface of the substrate.
(2)ホウ素原子含有ガス中のホウ素原子と、窒素原子
含有ガス中の窒素原子との原子比B/Nが、0.1≦B
/N≦10である特許請求の範囲第(1)項に記載の高
硬度窒化ホウ素の合成方法。
(2) The atomic ratio B/N of boron atoms in the boron atom-containing gas and nitrogen atoms in the nitrogen atom-containing gas is 0.1≦B
The method for synthesizing high hardness boron nitride according to claim (1), wherein /N≦10.
JP10302486A 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride Pending JPS62260062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302486A JPS62260062A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302486A JPS62260062A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Publications (1)

Publication Number Publication Date
JPS62260062A true JPS62260062A (en) 1987-11-12

Family

ID=14343075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302486A Pending JPS62260062A (en) 1986-05-07 1986-05-07 Method for synthesizing high hardness boron nitride

Country Status (1)

Country Link
JP (1) JPS62260062A (en)

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
US5096740A (en) Production of cubic boron nitride films by laser deposition
US4714625A (en) Deposition of films of cubic boron nitride and nitrides of other group III elements
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63134661A (en) Method for synthesizing high hardness boron nitride
JP2569423B2 (en) Gas phase synthesis of boron nitride
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
JPH0733580B2 (en) Method for producing cubic boron nitride film
JPS6395200A (en) Production of hard boron nitride film
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH0819523B2 (en) High hardness boron nitride synthesis method
JPS62260063A (en) Method for synthesizing high hardness boron nitride
JPS6369972A (en) Production of cubic boron nitride film
JP2826023B2 (en) Ultrafine particle manufacturing method
JPH031377B2 (en)
JPS63277766A (en) Method for synthesizing high-hardness boron nitride
JPS62207869A (en) Parts coated with hard boron nitride containing oxygen
JPH04202663A (en) Formation of boron nitride film and apparatus therefor
JPS63199872A (en) Method for synthesizing high hardness boron nitride
JPS62205277A (en) Method for synthesizing high-hardness boron nitride