JPH04202663A - Formation of boron nitride film and apparatus therefor - Google Patents

Formation of boron nitride film and apparatus therefor

Info

Publication number
JPH04202663A
JPH04202663A JP33063090A JP33063090A JPH04202663A JP H04202663 A JPH04202663 A JP H04202663A JP 33063090 A JP33063090 A JP 33063090A JP 33063090 A JP33063090 A JP 33063090A JP H04202663 A JPH04202663 A JP H04202663A
Authority
JP
Japan
Prior art keywords
boron nitride
plasma
substrate
film
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33063090A
Other languages
Japanese (ja)
Inventor
Akira Nakayama
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33063090A priority Critical patent/JPH04202663A/en
Publication of JPH04202663A publication Critical patent/JPH04202663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form baron nitride having high quality and high purity on the surface of a substrate by arranging members constituted of baron nitride at least on the surface at a spatial area close to or in contact with an excited plasma area. CONSTITUTION:In a reaction chamber 2, an Si substrate 3 is set to a substrate holder 4, to which a raw material gas contg. B2H6 and NH3 is introduced from a gas introducing port 9, and vacuum evacuation is executed from an exhaust port 10 into a prescribed pressure. Next, a high frequency voltage is impressed from a high frequency power source generator 8 on the lower electrode 5 arranged oppositely to the substrate 3. Thus, plasma in the above raw material gas is excited to form a BN thin film on the surface of the above substrate 3. In the above plasma CVD apparatus 1, BN members 11 and 12 are arranged at an area close to or in contact with the above plasma area. In this way, the direct exposure of the constituting members of the above apparatus 1 to the plasma is prevented, and the inhibition of the crystallization of a BN film caused by the mixing of impurities generated from the above is prevented to obtain the BN film having good crystallinity and high purity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ホウ素膜の形成方法および装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method and apparatus for forming a boron nitride film.

詳しくは、極めて硬く、また耐熱性に富む硬質窒化ホウ
素〔立方晶窒化ホウ素(C−BNと略記する)およびウ
ルツ型窒化ホウ素(w−BNと略記する)〕および高熱
伝導性・電機絶縁性に優れた六方晶窒化ホウ素(h−B
Nと略記する)の形成方法および装置に関するものであ
る。本発明による窒化ホウ素は、その硬度、耐熱性、耐
酸化性、化学的安定性といった優れた特性を要求される
分野、例えば切削工具、耐摩工具の材料などに有効に利
用できる。
In detail, hard boron nitride (cubic boron nitride (abbreviated as C-BN) and Wurtz type boron nitride (abbreviated as w-BN)) is extremely hard and highly heat resistant, and has high thermal conductivity and electrical insulation properties. Excellent hexagonal boron nitride (h-B
The present invention relates to a method and apparatus for forming (abbreviated as N). The boron nitride according to the present invention can be effectively used in fields that require excellent properties such as hardness, heat resistance, oxidation resistance, and chemical stability, such as materials for cutting tools and wear-resistant tools.

また、本発明による六方晶窒化ホウ素はその高熱伝導性
および電気絶縁性故に電子材料としての応用が可能であ
る。
Further, the hexagonal boron nitride according to the present invention can be applied as an electronic material due to its high thermal conductivity and electrical insulation properties.

〔従来の技術〕[Conventional technology]

立方晶窒化ホウ素およびウルツ型窒化ホウ素といった、
いわゆる硬質窒化ホウ素はダイヤモンドに次ぐ硬度を有
し、かつダイヤモンドに比較すると耐熱性、耐酸化性、
さらには化学安定性に富むことから、切削工具、耐摩工
具などの工具材料としては理想の材料であると言っても
過言ではない。しかしながら、硬質窒化ホウ素の合成に
はダイヤモンド以上の超高圧・高温を必要とするため、
その製品形状が著しく制限されるほか、非常に高価な超
高圧発生装置を使用することから合成コストも高価とな
るため、その使用範囲は自ずと限られたものであった。
such as cubic boron nitride and Wurtz type boron nitride,
So-called hard boron nitride has a hardness second only to diamond, and has better heat resistance, oxidation resistance, and
Furthermore, since it is highly chemically stable, it is no exaggeration to say that it is an ideal material for cutting tools, wear-resistant tools, and other tools. However, synthesis of hard boron nitride requires extremely high pressure and high temperature, which is higher than that of diamond.
Not only is the shape of the product severely restricted, but the synthesis cost is also high due to the use of an extremely expensive ultra-high pressure generator, so its range of use is naturally limited.

最近、ダイヤモンドの場合ど同様に、硬質窒化ホウ素を
超高圧・高温を用いず、気相より基材表面に析出させて
合成する方法が開発されている。この気相合成技術によ
れば、製品形状の制限は極めて少なく、また超高圧発生
装置を使用しないため、合成コストも非常に安価なもの
にてきると考えられている。
Recently, a method has been developed for synthesizing hard boron nitride by depositing it on the surface of a substrate from the gas phase, without using ultra-high pressure or high temperature, as in the case of diamond. According to this vapor phase synthesis technology, there are very few restrictions on the product shape, and since no ultra-high pressure generator is used, it is thought that the synthesis cost will be extremely low.

硬質窒化ホウ素の気相合成技術としては、例えば■金属
ホウ素をHCD電子銃にて溶解蒸発させ、雰囲気中の窒
素プラズマと反応させて基板上に窒化ホウ素を析出させ
るイオンビーム法、■金属ホウ素を水素もしくは窒素で
スパッタし、雰囲気中の窒素プラズマど反応させ基板上
に窒化ホウ素を析出合成させる反応性スパッタリングう
法、さらには■マイクロ波などの高周波プラズマ中にて
ジボランと窒素もしくはアンモニアと反応させ、基板上
に窒化ホウ素を析出合成させるプラズマCVD法、など
数多くの方法が提案されている。
Gas phase synthesis technologies for hard boron nitride include, for example: ■ ion beam method in which metallic boron is melted and evaporated with an HCD electron gun and reacted with nitrogen plasma in the atmosphere to precipitate boron nitride on a substrate; A reactive sputtering method involves sputtering with hydrogen or nitrogen and reacting with nitrogen plasma in the atmosphere to precipitate and synthesize boron nitride on the substrate.Furthermore, ■ reacting diborane with nitrogen or ammonia in high frequency plasma such as microwaves. Many methods have been proposed, including a plasma CVD method in which boron nitride is deposited and synthesized on a substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記したような従来法のいずれも、気相
から基板上に、単一相の立方晶窒化ホウ素もしくはウル
ツ型窒化ホウ素を析出合成することには成功しておらず
、全て立方晶やウルツ型の硬質窒化ホウ素と熱力学的に
低圧相である六方晶窒化ホウ素の混合物を得るのみてあ
った。六方晶窒化ホウ素は硬度が低いため工具材料には
適せず、従来技術による気相合成窒化ホウ素は工具材料
としては未だ実用に耐え得なかった。
However, none of the above-mentioned conventional methods has succeeded in precipitating and synthesizing single-phase cubic boron nitride or Wurtz-type boron nitride from the gas phase on a substrate; A mixture of hard type boron nitride and hexagonal boron nitride, which is a thermodynamically low-pressure phase, was obtained. Hexagonal boron nitride is not suitable as a tool material due to its low hardness, and vapor-phase synthetic boron nitride according to the prior art has not yet been able to withstand practical use as a tool material.

六方晶窒化ホウ素は高熱伝導性・高電気絶縁性に優れて
いる。また六方晶窒化ホウ素は黒鉛と同様に層状構造を
有し、その層間に種々の原子・分子種を挿入し、層間化
合物を形勢させ、これにより電気伝導度等の物性を制御
することも可能である。電子材料への応用という観点て
考えると結晶性の向上は重要な課題であるが、従来の気
相合成技術で形成される六方晶窒化ホウ素は低結晶性で
ある。
Hexagonal boron nitride has excellent thermal conductivity and high electrical insulation. In addition, hexagonal boron nitride has a layered structure similar to graphite, and by inserting various atoms and molecular species between the layers to form interlayer compounds, it is also possible to control physical properties such as electrical conductivity. be. Improving crystallinity is an important issue from the viewpoint of application to electronic materials, but hexagonal boron nitride formed by conventional vapor phase synthesis techniques has low crystallinity.

本発明はこのような現状に鑑み、高品質および/または
高純度の立方晶窒化ホウ素、ウルツ型窒化ホウ素および
/または六方晶窒化ホウ素を基材表面に形成するための
方法よび装置を提供するものである。
In view of the current situation, the present invention provides a method and apparatus for forming high quality and/or high purity cubic boron nitride, Wurtz type boron nitride and/or hexagonal boron nitride on the surface of a substrate. It is.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決する本発明は、プラズマ中にて気相より
基材上に窒化ホウ素膜を形成する方法において、励起さ
れたプラズマ領域に近接または接する空間領域に、少な
くとも表面が窒化ホウ素からなる部材を配置することを
特徴とする。
The present invention, which solves the above problems, provides a method for forming a boron nitride film on a substrate from a gas phase in plasma, in which a member at least on the surface of which is made of boron nitride is provided in a spatial region adjacent to or in contact with an excited plasma region. It is characterized by placing.

更に本発明は、 プラズマ発生手段を有する、物理蒸着
または化学蒸着による窒化ホウ素膜形成装置において、
励起されたプラズマ領域に近接または接する空間領域に
、少なくとも表面が窒化ホウ素からなる部材を配置した
ことを特徴とする上記装置を提供するものである。
Furthermore, the present invention provides an apparatus for forming a boron nitride film by physical vapor deposition or chemical vapor deposition, which includes plasma generation means,
The present invention provides the above-mentioned device, characterized in that a member having at least a surface made of boron nitride is disposed in a spatial region close to or in contact with the excited plasma region.

〔作用〕[Effect]

本発明者らは、前記の従来技術の問題点の原因とのひと
つは、プラズマに接する又は近接する成膜装置構成材料
から、膜構成成分であるホウ素と窒素以外の元素が、不
純物として混入することにあると考えついた。
The present inventors believe that one of the causes of the problems of the prior art described above is that elements other than boron and nitrogen, which are film constituents, are mixed in as impurities from the constituent materials of the film forming apparatus that are in contact with or in the vicinity of the plasma. I came up with this idea.

すなわち、従来の気相合成技術においては、プラズマに
接する又は近接する成膜装置構成材(例えば石英管やス
テンレス鋼等)表面とプラズマとの相互作用による構成
材のスパッタリング現象等により、構成材に含まれる元
素がプラズマ中に放出され、プラズマに曝されている基
材に窒化ホウ素と共に不純物として堆積される。
In other words, in conventional vapor phase synthesis technology, the sputtering phenomenon of the constituent materials due to the interaction between the plasma and the surface of the constituent members of the film forming apparatus (for example, quartz tubes, stainless steel, etc.) that are in contact with or in the vicinity of the plasma causes damage to the constituent materials. The contained elements are released into the plasma and deposited as impurities along with boron nitride on the substrate exposed to the plasma.

また、プラズマ中に放出された不純物元素がホウ素ある
いは窒素と化学的に結合し、不純物元素から成る窒化物
/ホウ化物が形成され基材に堆積し、所望の高品質かつ
高純度な窒化ホウ素膜を得ることができない。
In addition, the impurity elements released into the plasma chemically combine with boron or nitrogen, and nitrides/borides made of the impurity elements are formed and deposited on the substrate, resulting in the desired high quality and high purity boron nitride film. can't get it.

本発明では気相より基材表面に窒化ホウ素膜を析出させ
る窒化ホウ素の形成方法において、プラズマに接する又
は近接する空間領域に、少なくとも表面が窒化ホウ素か
らなる部材を配置し、成膜装置構成部材が直接プラズマ
に曝されないようにする。この場合においても、プラズ
マに接する又は近接する窒化ホウ素部材はプラズマとの
相互作用によるスパッタリング等によりプラズマ中に放
出されるが、プラズマ中に混入する元素はホウ素と窒素
であるし、この気相中に放出されたホウ素と窒素が気相
中で化学的に反応しても窒化ホウ素が形成されるだけで
あるから、高品質且つ高純度な窒化ホウ素膜形成に対し
ての悪影響は殆どない。従って、これにより窒化ホウ素
膜の結晶性向上を阻害する不純物の混入を防止し、結晶
性がよく、かつ高純度の窒化ホウ素膜を形成できる。
In the present invention, in a method for forming boron nitride in which a boron nitride film is deposited on the surface of a substrate from a gas phase, a member having at least a surface made of boron nitride is disposed in a spatial region in contact with or close to plasma, and a member forming a film forming apparatus is used. Avoid direct exposure to plasma. In this case as well, the boron nitride member in contact with or in the vicinity of the plasma is emitted into the plasma by sputtering etc. due to interaction with the plasma, but the elements mixed into the plasma are boron and nitrogen, and in this gas phase Even if the boron and nitrogen released in the process chemically react in the gas phase, only boron nitride is formed, so there is almost no adverse effect on the formation of a high-quality, high-purity boron nitride film. Therefore, it is possible to prevent the incorporation of impurities that inhibit improvement of the crystallinity of the boron nitride film, and to form a boron nitride film with good crystallinity and high purity.

該配置部材の少なくとも表面を形成する窒化ホウ素とし
ては、立方晶、ウルツ型、六方晶のいずれでもよい。こ
れらは窒化ホウ素膜を形成する基材に接して設けてもよ
いし、反応室内壁表面を窒化ホウ素被覆することによっ
てもよい。
The boron nitride forming at least the surface of the arrangement member may be cubic, Wurtzian, or hexagonal. These may be provided in contact with the base material on which the boron nitride film is formed, or may be provided by coating the inner surface of the reaction chamber with boron nitride.

また、本発明における窒化ホウ素の気相合成は、プラズ
マを用いる窒化ホウ素の気相合成手段であれば、公知手
段のいずれでもよい。
Further, the vapor phase synthesis of boron nitride in the present invention may be performed by any known means as long as it uses plasma.

具体的には、物理蒸着によるスパッタリング法、レザー
・アブレーション法、イオンブレーティング法等、化学
蒸着によるRFプラズマCVD法、DCCVD法、EC
R(を子サイクロトスン共鳴プラズマCVD法、マイク
ロ波プラズマCVD法等において、プラズマを用いる方
法である。
Specifically, sputtering method using physical vapor deposition, laser ablation method, ion blating method, etc., RF plasma CVD method using chemical vapor deposition, DCCVD method, EC
This is a method that uses plasma in cyclotosonic resonance plasma CVD, microwave plasma CVD, etc.

本発明により基材表面に形成される窒化ホウ素膜は、立
方晶窒化ホウ素、ウルツ晶窒化ホウ素および六方晶窒化
ホウ素のいずれかである。
The boron nitride film formed on the surface of the substrate according to the present invention is one of cubic boron nitride, wurtzian boron nitride, and hexagonal boron nitride.

本発明具体的な方法および装置については、以下の実施
例において、詳細に説明するが、本発明はこれに限定さ
れるところはない。
The specific method and apparatus of the present invention will be explained in detail in the following examples, but the present invention is not limited thereto.

〔実施例〕〔Example〕

実施例1および比較例1 第1図に示す平行平板高周波プラズマCVD装置1を用
いて、本発明と従来法を比較した。
Example 1 and Comparative Example 1 The present invention and the conventional method were compared using a parallel plate high frequency plasma CVD apparatus 1 shown in FIG.

本発明の実施例においては、プラズマに曝される反応室
2の内壁部(プラズマに近接する空間領域)に六方晶窒
化ホウ素を表面に被覆した構造から成る部材IIと部材
12を設けている。
In the embodiment of the present invention, a member II and a member 12 each having a structure whose surface is coated with hexagonal boron nitride are provided on the inner wall portion of the reaction chamber 2 exposed to plasma (a spatial region close to the plasma).

部材12は下部電極5の表面の上部に載置している。部
材12の厚みとしては1〜3m+程度が適当である。立
方晶窒化ホウ素膜を形成する場合においては、高密度な
プラズマが必要であるため、厚みが1won以下では部
材のスパッタリングが大きく、長期の使用に絶えず実用
的ではない。また、3m以上では1、高周波が電極表面
上を伝搬することが困難になるためである。
The member 12 is placed on top of the surface of the lower electrode 5. The appropriate thickness of the member 12 is about 1 to 3 m+. When forming a cubic boron nitride film, high-density plasma is required, so if the thickness is less than 1 won, sputtering of the member will be large, making it impractical for long-term use. Further, if the distance is 3 m or more, it becomes difficult for high frequency waves to propagate on the electrode surface.

基板ホルダー4に3i基板3を設置したのち、排気孔1
0に接続された真空排気装置(図示せず)の動作により
反応室2内を3 X I Q −’Torr以下に排気
し、Si基板3をヒーター7により700℃に加熱した
。しかる後、ガス導入口9よりジボランガスを0.2S
CC■、アンモニアガスを2secm、 H2ガスをl
 Q gsccm、 ArガスをlQsccm、それぞ
れ導入し、排気孔10に設けたコンダクタンスバルブ(
図示せず)を調整して反応室2内の圧力を4QTorr
に保持した。その後、下部電極5に接続した1 3.5
6MHzの高周波電源発振器8を動作させて300Wの
高周波電力を供給し、基板ホルダー4と下部電極5間に
プラズマを形成した。さらに、基板ホルダー4に接続し
た直流電源6を動作させ、基板ボルダ−4に一400V
の直流バイアス電圧を印加した。この状態で1時間窒化
ホウ素を基板に析出させた。
After installing the 3i board 3 on the board holder 4, open the exhaust hole 1.
The inside of the reaction chamber 2 was evacuated to 3 X I Q -' Torr or less by operation of a vacuum evacuation device (not shown) connected to 0, and the Si substrate 3 was heated to 700° C. by a heater 7. After that, diborane gas is introduced from the gas inlet 9 for 0.2S.
CC■, ammonia gas 2sec, H2 gas 1
Q gsccm and 1 Q sccm of Ar gas were introduced, respectively, and a conductance valve (
(not shown) to adjust the pressure inside the reaction chamber 2 to 4QTorr.
was held at After that, 1 3.5 connected to the lower electrode 5
A 6 MHz high frequency power oscillator 8 was operated to supply 300 W of high frequency power to form plasma between the substrate holder 4 and the lower electrode 5. Furthermore, the DC power supply 6 connected to the board holder 4 is operated to apply a voltage of -400 V to the board boulder 4.
A DC bias voltage of was applied. In this state, boron nitride was deposited on the substrate for 1 hour.

得られた被膜について、まず赤外吸収スペクトルを測定
したところ、六方晶窒化ホウ素による吸収は全く認めら
れず、立方晶窒化ホウ素による吸収のみが認められた。
When the infrared absorption spectrum of the obtained film was first measured, no absorption due to hexagonal boron nitride was observed, and only absorption due to cubic boron nitride was observed.

次に透過電子線回折を行ったが、やはり立方晶窒化ホウ
素の回折線のみが観察された なお、上記の方法で直流バイアスの印加に代えて高周波
(RF)バイアスの印加ても同様な結果が得られた。(
実施例1)。
Next, transmission electron beam diffraction was performed, but only the diffraction lines of cubic boron nitride were observed.Also, similar results were obtained by applying radio frequency (RF) bias instead of applying DC bias in the above method. Obtained. (
Example 1).

比較として、上記の方法で窒化ホウ素部材11.12を
設けない他は、実施例1と同様の条件として1時間基板
上に窒化ホウ素を被覆したもきについて、同様な分析を
行ったところ、赤外吸収スペクトルでは立方晶窒化ホウ
素の吸収が主であったものの、不純物および不純物の窒
化物およびホウ化物の吸収も認められ、透過電子線回折
でも不純物の回折線が観察された。
For comparison, a similar analysis was conducted on a substrate coated with boron nitride for one hour under the same conditions as in Example 1, except that the boron nitride members 11 and 12 were not provided using the above method. In the external absorption spectrum, absorption was mainly due to cubic boron nitride, but absorption from impurities and impurity nitrides and borides was also observed, and diffraction lines of impurities were also observed in transmission electron diffraction.

具体的に言えば、反応室は本例ではステンレス鋼製であ
ったので、鉄(Fan、クロム(Cr)およびニッケル
(Ni )の窒化物及び/又はホウ化物から起因する吸
収が確認された。
Specifically, since the reaction chamber was made of stainless steel in this example, absorption caused by nitrides and/or borides of iron (Fan), chromium (Cr), and nickel (Ni) was confirmed.

下記表1は、形成された窒化ホウ素膜の結晶性を評価す
るために測定した、立方晶窒化ホウ素の(111)面か
らの回折線ピークの半値幅(半値幅が小さいほど結晶性
がよい)とX線励起光電子分光(XPS)による膜組成
分析結果を示す。この表1から、立方晶窒化ホウ素の結
晶性の向上および膜中不純物の低減が本発明により可能
であることが確認できる。
Table 1 below shows the half-width of the diffraction line peak from the (111) plane of cubic boron nitride, which was measured to evaluate the crystallinity of the formed boron nitride film (the smaller the half-width, the better the crystallinity). and the results of film composition analysis by X-ray excitation photoelectron spectroscopy (XPS). From Table 1, it can be confirmed that the present invention can improve the crystallinity of cubic boron nitride and reduce the impurities in the film.

実施例2および比較例2 第2図に示すスパッタ装置を用い、本発明と従来法を比
較した。
Example 2 and Comparative Example 2 Using the sputtering apparatus shown in FIG. 2, the present invention and the conventional method were compared.

実施例1と同様に、プラズマ生成領域近傍の空間領域に
立方晶窒化ホウ素からなる部材33を配置した。具体的
には、下部電極23、ターゲット24の外周側3cmの
距離に円筒状の部材3を配置した。基板ホルダー21に
SUS基板22、下部電極23にターゲットとして金属
ホウ素をそれぞれ設置した後、排気口25に接続された
真空排気装置(図示せず)の動作により反応室内を3 
x l Q−’Torr以下に排気し、SUS基板22
をヒータ27により650 ’Cに加熱した。しかる後
、ガス導入028より窒素ガスを2 sccm、さらに
Arガスを4 secm、それぞれ導入し、排気口25
に設けたコンダクタンスバルブ29を調整して反応室2
6内の圧力を4X I O−”Torrに保持した。そ
の後、下部電極23に接続した1 3.56MHzの高
周波電源発振器30を動作させて、400Wの高周波電
力を供給し、基板ホルダー21と下部電極23の間にプ
ラズマを形成した。さらに、基板21に接続したDCt
源31を動作させて、基板ホルダー21に一200vの
直流バイアス電圧を印加した。この状態で1時間、窒化
ホウ素をSUS基板上に析出させた。なお、金属ホウ素
ターゲット24の下部にはスパッタ効率向上のためマグ
ネット32を設置した。
As in Example 1, a member 33 made of cubic boron nitride was placed in the spatial region near the plasma generation region. Specifically, the cylindrical member 3 was placed at a distance of 3 cm from the outer circumferential side of the lower electrode 23 and the target 24 . After installing the SUS substrate 22 on the substrate holder 21 and metal boron as a target on the lower electrode 23, the inside of the reaction chamber is evacuated by the operation of a vacuum evacuation device (not shown) connected to the exhaust port 25.
x l Exhaust to below Q-'Torr and connect the SUS board 22
was heated to 650'C by heater 27. After that, 2 sccm of nitrogen gas and 4 seconds of Ar gas were introduced from the gas inlet 028, and the exhaust port 25
By adjusting the conductance valve 29 provided in the reaction chamber 2,
The pressure inside the substrate holder 21 and the lower part was maintained at 4X I O-'' Torr.Then, the 13.56 MHz high frequency power oscillator 30 connected to the lower electrode 23 was operated to supply 400 W of high frequency power, and the substrate holder 21 and the lower Plasma was formed between the electrodes 23. Furthermore, the DCt connected to the substrate 21
The source 31 was operated to apply a DC bias voltage of -200 V to the substrate holder 21. In this state, boron nitride was deposited on the SUS substrate for 1 hour. Note that a magnet 32 was installed below the metal boron target 24 to improve sputtering efficiency.

得られた被膜について、まず赤外吸収スペクトルを測定
したところ、六方晶の窒化ホウ素による吸収は全く認め
られず、立方晶窒化ホウ素による吸収のみが認められた
。次に、透過電子線回折を行ったが、やはり立方晶窒化
ホウ素の回折線のみが観察された。なお、基板ホルダー
21への直流バイアス電圧印加に代えて、高周波(RF
)バイアスを印加しても同様の結果であった。(実施例
2)。
When the infrared absorption spectrum of the obtained film was first measured, no absorption due to hexagonal boron nitride was observed, and only absorption due to cubic boron nitride was observed. Next, transmission electron beam diffraction was performed, but only the diffraction lines of cubic boron nitride were observed. Note that instead of applying a DC bias voltage to the substrate holder 21, high frequency (RF
) Similar results were obtained even when a bias was applied. (Example 2).

比較として、上記の方法で窒化ホウ素部材を設けない以
外は同様の条件で1時間基板上に窒化ホウ素を被覆した
ものについて、同様な分析を行ったところ、赤外吸収ス
ペクトルでは立方晶窒化ホウ素の吸収が主であったもの
の、不純物および不純物の窒化物及び/又はホウ化物の
吸収も認められ、透過電子線回折でも不純物のの回折線
が観察された具体的に言えば、反応室は本例ではステン
レス鋼製であったので、鉄(Fe)、クロム(Cr)お
よびニッケル(Ni)の窒化物及び/又はホウ化物から
起因する吸収が確認された(比較例2)。
For comparison, a similar analysis was performed on a substrate coated with boron nitride for one hour under the same conditions as described above, except that no boron nitride member was provided, and the infrared absorption spectrum showed that cubic boron nitride Although the absorption was the main one, absorption of impurities and impurity nitrides and/or borides was also observed, and diffraction lines of impurities were also observed in transmission electron diffraction. Specifically, the reaction chamber in this example Since the material was made of stainless steel, absorption caused by nitrides and/or borides of iron (Fe), chromium (Cr), and nickel (Ni) was confirmed (Comparative Example 2).

下記表2は、形成された窒化ホウ素膜の結晶性を評価す
るために測定した、立方晶窒化ホウ素の(111)面か
らの回折線ピークの半値幅(半値幅が小さいほど結晶性
がよい)とX線励起光電子分光(XPS)による膜組成
分析結果を示す。この表1から、立方晶窒化ホウ素の結
晶性の向上および膜中不純物の低減が本発明により可能
であることが確認できる。
Table 2 below shows the half-width of the diffraction line peak from the (111) plane of cubic boron nitride, which was measured to evaluate the crystallinity of the formed boron nitride film (the smaller the half-width, the better the crystallinity). and the results of film composition analysis by X-ray excitation photoelectron spectroscopy (XPS). From Table 1, it can be confirmed that the present invention can improve the crystallinity of cubic boron nitride and reduce the impurities in the film.

実施例3および比較例3 第3図に示すマイクロ波プラズマCVD装置を用い、本
発明と従来法を比較した。実施例1と同様に、プラズマ
生成領域近傍に立方晶窒化ホウ素を表面に被覆した部材
119を設けた。成膜条件は下記の通りであった。
Example 3 and Comparative Example 3 The present invention and the conventional method were compared using a microwave plasma CVD apparatus shown in FIG. As in Example 1, a member 119 whose surface was coated with cubic boron nitride was provided near the plasma generation region. The film forming conditions were as follows.

基   板         :Sj 基板温度     二600°C 原料ガス  : B 2HI/ Nx= 1 / 5 
Q sccm圧    力         :  4
  QTorrマイクロ波投入電力投入電カニ 200W     :2時間 得られた被膜について、まず赤外吸収スペクトルを測定
したところ、立方晶の窒化ホウ素による吸収のみが認め
られた。次に透過電子線回折を行ったが、やはり立方晶
窒化ホウ素の回折線のみが観察された(実施例3)。
Substrate: Sj Substrate temperature 2600°C Source gas: B 2HI/Nx= 1/5
Q sccm pressure: 4
QTorr microwave input power input power crab 200 W: 2 hours When the infrared absorption spectrum of the obtained film was first measured, only absorption due to cubic boron nitride was observed. Next, transmission electron beam diffraction was performed, but only the diffraction line of cubic boron nitride was observed (Example 3).

比較として、上記の方法で窒化ホウ素部材を設けないで
以外は同条件として1時間基板上にに窒化ホウ素を被膜
したものについて、同様な分析を行ったところ、赤外吸
収スペクトルでは立方晶窒化ホウ素の吸収が主であった
ものの、不純物および不純物の窒化物及び/又はポウ化
物の吸収も認められ、透過電子線回折でも不純物の回折
線が観察された。具体的に言えば、本例の反応室は石英
管であったので、シリコン(S i) 、酸素(○)に
起因する吸収が確認された(比較例3)。
For comparison, a similar analysis was performed on a substrate coated with boron nitride for 1 hour under the same conditions except that the boron nitride member was not provided using the above method, and the infrared absorption spectrum showed that cubic boron nitride was not present. Although absorption was the main one, absorption of impurities and impurity nitrides and/or porides was also observed, and diffraction lines of impurities were also observed in transmission electron diffraction. Specifically, since the reaction chamber in this example was a quartz tube, absorption caused by silicon (S i ) and oxygen (◯) was confirmed (Comparative Example 3).

下記表3は、形成された窒化ホウ素膜の結晶性を評価す
るために測定した、六方晶窒化ホウ素の(002)面か
らの回折線ピークの半値幅(半値幅が小さいほど結晶性
がよい)とX線励起光電子分光(XPS)による膜組成
分析結果を示す。この表1から、六方晶窒化ホウ素の結
晶性の向上および膜中不純物の低減が本発明により可能
であることが確認できる。
Table 3 below shows the half-width of the diffraction line peak from the (002) plane of hexagonal boron nitride, which was measured to evaluate the crystallinity of the formed boron nitride film (the smaller the half-width, the better the crystallinity). and the results of film composition analysis by X-ray excitation photoelectron spectroscopy (XPS). From Table 1, it can be confirmed that the present invention can improve the crystallinity of hexagonal boron nitride and reduce the impurities in the film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は気相合成技術によって窒
化ホウ素膜を形成する際に、プラズマに接する又は近接
する空間領域に少なくともその表面が窒化ホウ素から成
る部材を設けることにより、高品質および高純度な窒化
ホウ素膜の形成を可能にするものである。
As explained above, when forming a boron nitride film by vapor phase synthesis technology, the present invention provides high quality and high This makes it possible to form a pure boron nitride film.

【図面の簡単な説明】[Brief explanation of the drawing]

第】図乃至第3図はいずれも本発明の実施態様を説明す
る図であって、第】図は実施例】の平行平板高周波プラ
ズマCVD装置を用いて行う場合を、第2図は実施例2
のスパッタ装置を用いて行う場合を、第3図は実施例3
のマイクロ波プラズマCVD装置を用いて行う場合を示
す。 代理人    内    1)     日月代理人 
  萩   原   亮   −代理人  安  西 
 篤  夫 第1図 5j−2図 、1IrEIr:I;i尾R% 甑岱
1 to 3 are diagrams for explaining embodiments of the present invention, in which fig. 2
FIG. 3 shows Example 3 of the case where the sputtering equipment is used.
The case is shown in which a microwave plasma CVD apparatus is used. Agents 1) Sun Moon Agent
Ryo Hagiwara - Agent Anzai
Atsuo Figure 1 Figure 5j-2, 1IrEIr:I; itail R% Koshikudai

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマ中にて気相より基材上に窒化ホウ素膜を
形成する方法において、励起されたプラズマ領域に近接
または接する空間領域に、少なくとも表面が窒化ホウ素
からなる部材を配置することを特徴とする上記方法。
(1) A method for forming a boron nitride film on a substrate from a gas phase in plasma, characterized by arranging a member at least on the surface of which is made of boron nitride in a spatial region close to or in contact with an excited plasma region. The above method.
(2)プラズマ発生手段を有する、物理蒸着または化学
蒸着による窒化ホウ素膜形成装置において、励起された
プラズマ領域に近接または接する空間領域に、少なくと
も表面が窒化ホウ素からなる部材を配置したことを特徴
とする上記装置。
(2) An apparatus for forming a boron nitride film by physical vapor deposition or chemical vapor deposition, which has a plasma generating means, characterized in that a member having at least a surface made of boron nitride is disposed in a spatial region adjacent to or in contact with an excited plasma region. The above device.
JP33063090A 1990-11-30 1990-11-30 Formation of boron nitride film and apparatus therefor Pending JPH04202663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33063090A JPH04202663A (en) 1990-11-30 1990-11-30 Formation of boron nitride film and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33063090A JPH04202663A (en) 1990-11-30 1990-11-30 Formation of boron nitride film and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH04202663A true JPH04202663A (en) 1992-07-23

Family

ID=18234818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33063090A Pending JPH04202663A (en) 1990-11-30 1990-11-30 Formation of boron nitride film and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH04202663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147826A (en) * 2019-03-15 2020-09-17 東京エレクトロン株式会社 Method and device for forming hexagonal boron nitride film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147826A (en) * 2019-03-15 2020-09-17 東京エレクトロン株式会社 Method and device for forming hexagonal boron nitride film

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
US5723188A (en) Process for producing layers of cubic boron nitride
US5720808A (en) Method for forming diamond film
Murayama et al. Structure of a silicon carbide film synthesized by rf reactive ion plating
US6383465B1 (en) Cubic boron nitride and its gas phase synthesis method
JPH04958B2 (en)
JPS61183198A (en) Production of diamond film
JPH04202663A (en) Formation of boron nitride film and apparatus therefor
Shih et al. Application of diamond coating to tool steels
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH04124272A (en) Cubic boron nitride coating member and its production
JPS63310795A (en) Vapor phase synthesis method for diamond by microwave plasma jet
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH07133103A (en) Method for synthesizing c3n4 by plasma arc method
JPH0667797B2 (en) Diamond synthesis method
JP3039880B2 (en) Carbon film formation method
JPH01103988A (en) Production of hard film by ion cyclotron resonance method
JPH04310515A (en) Highly hard ceramic coating film and its production
JPH0814024B2 (en) High-pressure phase boron nitride vapor phase synthesis method
JPH0623437B2 (en) Method for producing carbon and boron nitride
JPH0532489A (en) Synthesis of diamond using plasma
JPS6369973A (en) Production of cubic boron nitride film
JPH064915B2 (en) Method for synthesizing cubic boron nitride