JPH07133103A - Method for synthesizing c3n4 by plasma arc method - Google Patents

Method for synthesizing c3n4 by plasma arc method

Info

Publication number
JPH07133103A
JPH07133103A JP30229093A JP30229093A JPH07133103A JP H07133103 A JPH07133103 A JP H07133103A JP 30229093 A JP30229093 A JP 30229093A JP 30229093 A JP30229093 A JP 30229093A JP H07133103 A JPH07133103 A JP H07133103A
Authority
JP
Japan
Prior art keywords
graphite
nitrogen
argon
plasma
plasma arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30229093A
Other languages
Japanese (ja)
Other versions
JP3476232B2 (en
Inventor
Toshiro Furutaki
敏郎 古滝
Osamu Matsumoto
修 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP30229093A priority Critical patent/JP3476232B2/en
Publication of JPH07133103A publication Critical patent/JPH07133103A/en
Application granted granted Critical
Publication of JP3476232B2 publication Critical patent/JP3476232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To easily vaporize graphite and to produce a large quantity of C3N4 in a short time by allowing graphite to vaporize and react with nitrogen by using argon/nitrogen-mixed thermal plasma. CONSTITUTION:The thermal plasma (plasma torch 4) is generated by using a cathode tip of graphite or tungsten and a water cooled copper anode 2 as electrode in the atmosphere of gaseous argon-nitrogen mixture. The graphite 3 placed on the water-cooled copper anode 2 arranged to face oppositely to the cathode tip is sublimed or melt-vaporized to allow it to react with the argon/nitrogen-mixed thermal plasma.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、C34の合成方法に関
するものである。さらに詳しくは、炭素と窒素よりなる
共有結合体であるC34が非常に高い硬さを有すること
から、研磨材,研削砥粒,切断工具等の部分材料とし
て、またコーティング処理による硬質保護膜として応用
できるものである。
FIELD OF THE INVENTION The present invention relates to a method for synthesizing C 3 N 4 . More specifically, since C 3 N 4, which is a covalent bond of carbon and nitrogen, has a very high hardness, it is used as a partial material for abrasives, abrasive grains, cutting tools, and hard protection by coating treatment. It can be applied as a film.

【0002】[0002]

【従来の技術および課題】一般に、炭素と窒素の間で形
成される仮想的な共有結合性固体(α-C34およびβ-
34)は、非常に高い硬度を有すると推測されてい
る。これらC34の合成方法としては従来、窒素雰囲気
における炭素のスパッタによってゲルマニウムまたはシ
リコン基板上へC34を析出する方法、つまり窒素雰囲
気中における炭素ターゲットのスパッタリング処理によ
り合成,製造されていたが、これら方法においてはC3
4の合成速度が遅く、実用的な量の合成方法には不向
きであり、量産性その他の問題が多かった。このため、
産業上実用性のある高速度のC34合成方法が従来から
の課題となっていた。
2. Description of the Related Art Generally, a hypothetical covalent solid (α-C 3 N 4 and β-) formed between carbon and nitrogen.
C 3 N 4) is presumed to have a very high hardness. As a method of synthesizing these C 3 N 4 , a method of depositing C 3 N 4 on germanium or a silicon substrate by sputtering carbon in a nitrogen atmosphere, that is, a carbon target sputtering treatment in a nitrogen atmosphere has been conventionally synthesized and manufactured. However, in these methods, C 3
The synthesis speed of N 4 is slow, and it is not suitable for a practical amount of synthesis method, and there are many problems in mass productivity and other problems. For this reason,
A high-speed industrial C 3 N 4 synthesizing method has been a conventional problem.

【0003】[0003]

【課題を解決するための手段】これら課題、及び問題に
対し発明者らは、これまでにすでに行ったプラズマアー
ク法によって発生したアルゴン−ヘリウム混合プラズマ
によって炭素を加熱蒸発させて、フラーレンを含む炭素
を析出させ生成した成果、及び遷移金属酸化物−グラフ
ァイト混合物を窒素プラズマアークと反応させて種々の
金属窒化物を生成した成果に基づき鋭意研究を行った結
果、グラファイトを窒素を含むプラズマアークと反応さ
せて気相中においてCNを生成し、これを冷却してプラ
ズマアーク炉の壁面上に取り付けたシリコン基板上にC
34を析出させることが可能であると考えた。以下、本
発明の内容を詳しく説明する。
In order to solve these problems and problems, the inventors of the present invention have heated and vaporized carbon by an argon-helium mixed plasma generated by the plasma arc method that has been performed up to now, and have carbon containing fullerenes. As a result of earnest research based on the result of depositing and forming a transition metal oxide-graphite mixture with a nitrogen plasma arc to form various metal nitrides, graphite was reacted with a plasma arc containing nitrogen. Then, CN is generated in the gas phase, and this is cooled and C is deposited on the silicon substrate mounted on the wall surface of the plasma arc furnace.
It was considered possible to precipitate 3 N 4 . The details of the present invention will be described below.

【0004】本発明のC34合成方法において、まず第
一に炭素を気化するための加熱用と同時に、反応ガスの
生成用としてプラズマトーチを用い、作動ガスとしてア
ルゴンと窒素を用いた。ここでのアルゴンは放電を安定
的に出すために用いられ、窒素は炭素と反応してC34
を生成するためのものである。またプラズマジェットは
高エネルギー、高温度のガス流を発生することができ、
化学反応に利用することができるものであり、反応生成
物は反応炉の内壁等に付着、又は収集フィルター等によ
り回収されることになる。
In the C 3 N 4 synthesizing method of the present invention, first of all, at the same time as heating for vaporizing carbon, a plasma torch was used for generating a reaction gas, and argon and nitrogen were used as working gases. Argon here is used for stable discharge, and nitrogen reacts with carbon to generate C 3 N 4
To generate. Plasma jets can also generate high energy, high temperature gas streams,
It can be used in a chemical reaction, and the reaction product is attached to the inner wall of the reaction furnace or the like, or is collected by a collecting filter or the like.

【0005】C34の生成プロセスは、プラズマアーク
の発光分光分析の結果から表1のように推測される。
The production process of C 3 N 4 is inferred as shown in Table 1 from the result of the emission spectroscopic analysis of the plasma arc.

【表1】 [Table 1]

【0006】[0006]

【実施例】図1に本発明のC34合成に用いられたプラ
ズマアーク炉の概略図を示す。図において1はプラズマ
アーク炉のステンレス反応容器、2は反応容器系内に位
置する銅製の水冷アノード、3は水冷アノード2上に配
置する黒鉛棒、4はプラズマトーチ、5は反応容器内部
の内壁に取り付けたシリコンウエハーをそれぞれ示して
いる。
EXAMPLE FIG. 1 shows a schematic view of a plasma arc furnace used for C 3 N 4 synthesis of the present invention. In the figure, 1 is a stainless steel reaction vessel of a plasma arc furnace, 2 is a water-cooled anode made of copper located in the reaction vessel system, 3 is a graphite rod arranged on the water-cooled anode 2, 4 is a plasma torch, and 5 is an inner wall inside the reaction vessel. Each of the silicon wafers is attached to the.

【0007】C34合成方法としてプラズマアーク炉ス
テンレス反応容器1内の水冷アノード2上に分光分析用
黒鉛棒3(φ6mm)を置き、密閉した反応容器1系内を
一度排気し10-1Paとした後、アルゴン−窒素(1:1)混
合ガスをプラズマトーチ4を通して導入し、反応容器1
系内を1気圧とした。次に1気圧の反応容器1系内にお
いてアルゴン−窒素(1:1)混合ガスを作動ガスとして
プラズマアークを発生させ、水冷アノード2上に配置さ
せた黒鉛棒3に衝撃して、黒鉛をCNとして蒸発させて
ステンレス反応容器1内部の内壁に取り付けたシリコン
ウエハー5上に析出させた。
As a method for synthesizing C 3 N 4 , a graphite rod 3 (φ6 mm) for spectroscopic analysis was placed on a water-cooled anode 2 in a plasma reactor furnace reaction vessel 1, and the sealed reaction vessel 1 system was once evacuated to 10 -1. After setting to Pa, an argon-nitrogen (1: 1) mixed gas was introduced through the plasma torch 4 and the reaction vessel 1
The system was set at 1 atm. Next, a plasma arc is generated by using an argon-nitrogen (1: 1) mixed gas as a working gas in a reaction vessel 1 system at 1 atm, and the graphite rod 3 placed on the water-cooled anode 2 is bombarded to cause graphite to CN. As a result, it was evaporated and deposited on the silicon wafer 5 attached to the inner wall inside the stainless steel reaction vessel 1.

【0008】シリコンウエハー5上及び反応容器1内部
内壁の黒褐色の析出付着物をXPS測定で同定した結
果、C1s電子のスペクトルの半値幅は2.8eVと広く、こ
れをガウス分割すると3本のピークが得られ、Eb=28
6.4eVにC−N結合に起因する強いピークが認められ
た。また、N1s電子に基づくスペクトルにおいてもEb
=400eVにピークを持ち、半値幅が2.0eVであることか
ら、C−N結合に起因するもののみが含まれていると認
められた。
As a result of identifying the blackish brown deposits on the silicon wafer 5 and the inner wall of the reaction vessel 1 by XPS measurement, the full width at half maximum of the C1s electron spectrum was as wide as 2.8 eV, and three peaks were obtained by Gauss division. Obtained, Eb = 28
A strong peak due to the C—N bond was observed at 6.4 eV. In addition, in the spectrum based on N1s electrons, Eb
Since it has a peak at 400 eV and a full width at half maximum of 2.0 eV, it was confirmed that only those caused by the C—N bond were included.

【0009】さらに同析出付着物をFTIRスペクトル
測定した結果、V=2100cm-1付近に−C≡N伸縮振動に
起因するピークが認められ、析出物中にC−N結合の存
在が確認された。またさらに、XRD測定でX線回析を
行った結果、2θ=57°(d=1.59〜1.61)にSi(3 1
1)に相当する回析線が認められるのみであり、析出物
に基づく回析線は認められなかったが、これは析出物が
非晶質であるか、あるいは析出物の膜厚が薄いかのいず
れかによるものであり、したがってより詳しく同定する
ため反応容器内部の内壁の析出付着物を集め、粉末回析
法によって同定を行った。この結果、グラファイトに基
づく回析線のほかに表2に示すβ-C34と一致する回
析ピークが認められた。
As a result of FTIR spectrum measurement of the deposit, the peak due to -C≡N stretching vibration was recognized around V = 2100 cm -1 , and the existence of C--N bond was confirmed in the deposit. . Furthermore, as a result of X-ray diffraction by XRD measurement, as a result of 2θ = 57 ° (d = 1.59 to 1.61), Si (3 1
Only the diffraction line corresponding to 1) was observed, and the diffraction line based on the precipitate was not observed. This indicates whether the precipitate is amorphous or the film thickness of the precipitate is thin. Therefore, for more detailed identification, the deposits on the inner wall of the reaction vessel were collected and identified by the powder diffraction method. As a result, in addition to the diffraction line based on graphite, a diffraction peak corresponding to β-C 3 N 4 shown in Table 2 was observed.

【0010】[0010]

【表2】 [Table 2]

【0011】また、黒鉛衝撃中のプラズマジェットの発
光スペクトルを、反応容器横の窓を通して測定した結
果、波長430nm〜330nmにおけるスペクトルについて特徴
的な点が得られた。まず第一に358nmにおけるN2分子の
3ΠU−B3Πg(0-0)バンドの強度が著しく弱く、第
二に411nmにおけるN原子の2p21D)3p’−2p2
3P)3s線が強く、第三に488nm〜485nmにおけるC
N分子のB2Σ−X2Σ(0-0)、(1-1)、(2-2)、(3-
3)、(4-4)バンドのスペクトルが強く認められること
の3点であり、以上の結果からグラファイトと窒素を含
むプラズマアークとの反応によってC34の生成が確認
された。
Further, the emission spectrum of the plasma jet during the impact of graphite was measured through a window beside the reaction vessel, and as a result, characteristic points about the spectrum at wavelengths of 430 nm to 330 nm were obtained. First, the intensity of the C 3 Π U- B 3 Π g (0-0) band of the N 2 molecule at 358 nm is extremely weak, and secondly, the 2p 2 ( 1 D) 3p′-2p 2 of the N atom at 411 nm is very weak.
( 3 P) 3s line is strong, and thirdly C at 488 nm to 485 nm
N molecules of B 2 Σ-X 2 Σ (0-0), (1-1), (2-2), (3-
3) and 3) that the spectrum of the (4-4) band is strongly recognized. From the above results, it was confirmed that C 3 N 4 was produced by the reaction between graphite and the plasma arc containing nitrogen.

【0012】[0012]

【発明の効果】高温の熱プラズマ(数万度)を用いた反
応により、黒鉛を容易に気化することができ、短時間に
多量のC34を生成することができた。
By the reaction using high temperature thermal plasma (tens of thousands of degrees), graphite can be easily vaporized and a large amount of C 3 N 4 can be produced in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いた反応用プラズマアーク炉の概略
図。
FIG. 1 is a schematic view of a plasma arc furnace for reaction used in the present invention.

【符号の説明】[Explanation of symbols]

1 ステンレス反応容器 2 銅製水冷アノード 3 黒鉛棒 4 プラズマトーチ 5 シリコンウエハー 1 Stainless steel reactor 2 Copper water-cooled anode 3 Graphite rod 4 Plasma torch 5 Silicon wafer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルゴン−窒素混合ガス雰囲気中で、グ
ラファイト又はタングステンのカソードチップ、および
水冷銅アノードを電極として熱プラズマを発生させ、そ
のアルゴン−窒素混合熱プラズマにより、カソードチッ
プと対向するように配設した水冷銅アノード上に配置し
たグラファイトを昇華又は溶融,気化させ、反応させる
ことを特徴とするプラズマアーク法によるC34の合成
方法。
1. A thermal plasma is generated using a graphite or tungsten cathode tip and a water-cooled copper anode as electrodes in an argon-nitrogen mixed gas atmosphere, and the argon-nitrogen mixed thermal plasma opposes the cathode tip. A method for synthesizing C 3 N 4 by a plasma arc method, which comprises sublimating, melting, vaporizing, and reacting graphite arranged on a water-cooled copper anode arranged.
JP30229093A 1993-11-08 1993-11-08 Method for synthesizing C3N4 by plasma arc method Expired - Fee Related JP3476232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30229093A JP3476232B2 (en) 1993-11-08 1993-11-08 Method for synthesizing C3N4 by plasma arc method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30229093A JP3476232B2 (en) 1993-11-08 1993-11-08 Method for synthesizing C3N4 by plasma arc method

Publications (2)

Publication Number Publication Date
JPH07133103A true JPH07133103A (en) 1995-05-23
JP3476232B2 JP3476232B2 (en) 2003-12-10

Family

ID=17907217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30229093A Expired - Fee Related JP3476232B2 (en) 1993-11-08 1993-11-08 Method for synthesizing C3N4 by plasma arc method

Country Status (1)

Country Link
JP (1) JP3476232B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069856A (en) * 2004-09-03 2006-03-16 Kakei Gakuen Method for producing carbon nitride
CN104944392A (en) * 2014-03-25 2015-09-30 中国科学院大连化学物理研究所 Mass preparation method of graphite-phase carbon nitride nanosheets
CN106378173A (en) * 2016-10-17 2017-02-08 阜阳师范学院 CN photocatalyst prepared by template process and preparation method thereof
CN106430125A (en) * 2016-09-27 2017-02-22 浙江大学 Preparation method of porous g-C3N4 rod

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069856A (en) * 2004-09-03 2006-03-16 Kakei Gakuen Method for producing carbon nitride
CN104944392A (en) * 2014-03-25 2015-09-30 中国科学院大连化学物理研究所 Mass preparation method of graphite-phase carbon nitride nanosheets
CN106430125A (en) * 2016-09-27 2017-02-22 浙江大学 Preparation method of porous g-C3N4 rod
CN106378173A (en) * 2016-10-17 2017-02-08 阜阳师范学院 CN photocatalyst prepared by template process and preparation method thereof

Also Published As

Publication number Publication date
JP3476232B2 (en) 2003-12-10

Similar Documents

Publication Publication Date Title
EP0476825B1 (en) A process for the synthesis of hard boron nitride
CA1157806A (en) Cubic boron nitride preparation
JP3660866B2 (en) Method and apparatus for forming hard carbon film
US4714625A (en) Deposition of films of cubic boron nitride and nitrides of other group III elements
US20050227020A1 (en) Method for carrying out homogeneous and heterogeneous chemical reactions using plasma
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
Bystrov et al. Plasmachemical synthesis of carbide compounds in metal-containing plasma jet from vacuum arc discharge
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JP5252675B2 (en) Cubic boron nitride formation method and apparatus therefor
JPS62243770A (en) Method for synthesizing high hardness boron nitride
JPS6395200A (en) Production of hard boron nitride film
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH0667797B2 (en) Diamond synthesis method
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPH0449518B2 (en)
JP2826023B2 (en) Ultrafine particle manufacturing method
JPS6369973A (en) Production of cubic boron nitride film
JPH04124272A (en) Cubic boron nitride coating member and its production
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JP4195911B2 (en) Method for forming hetero hard material
JPS62260062A (en) Method for synthesizing high hardness boron nitride
JPH04202663A (en) Formation of boron nitride film and apparatus therefor
JPH0819523B2 (en) High hardness boron nitride synthesis method
JP2762561B2 (en) Method of synthesizing diamond film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030901

LAPS Cancellation because of no payment of annual fees