JPS627641A - Production of deposited body of fine glass particle - Google Patents

Production of deposited body of fine glass particle

Info

Publication number
JPS627641A
JPS627641A JP14576285A JP14576285A JPS627641A JP S627641 A JPS627641 A JP S627641A JP 14576285 A JP14576285 A JP 14576285A JP 14576285 A JP14576285 A JP 14576285A JP S627641 A JPS627641 A JP S627641A
Authority
JP
Japan
Prior art keywords
glass
starting material
glass fine
burner
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14576285A
Other languages
Japanese (ja)
Inventor
Toshio Danzuka
彈塚 俊雄
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14576285A priority Critical patent/JPS627641A/en
Publication of JPS627641A publication Critical patent/JPS627641A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the cracking of the titled deposited body of fine glass particles by regulating the temp. of the leading end part of the glass fine particle deposited surface in a specified range when the glass fine particle deposited body is formed on the outer peripheral part of a revolving starting material. CONSTITUTION:A glass material is supplied onto the outer peripheral part of a starting material in the flame 14 of a burner 13 for synthesizing glass fine particles from the vicinity of one end of the starting material 11 which is rotated with its axis as the rotation axis and is substantially columnar or cylindrical to produce glass fine particles. The fine particles begin to deposit and the burner 13 is relatively moved in parallel with the axis of the starting material 11. Consequently, the deposited body 12 of the glass fine particles is formed on the outer peripheral part of the starting material 11 in the axial direction. The formation of the deposited body 12 of the glass fine particles is carried out while regulating the temp. of the leading end part 15 of the glass fine particle deposited surface in the range 750-900 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラス微粒子の集合体を円柱状出発材の外周
部に形成する方法に関し、特に高純度が要求される光フ
アイバ用母材製造の際の中間製品として好適に用いられ
る、出発材外周部に堆積せしめられたガラス微粒子集合
体の形成方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for forming an aggregate of glass particles on the outer periphery of a cylindrical starting material, and is particularly applicable to the production of an optical fiber base material that requires high purity. The present invention relates to a method for forming a glass particle aggregate deposited on the outer periphery of a starting material, which is suitably used as an intermediate product in the process.

〔従来の技術〕[Conventional technology]

従来、石英系ガラス管或いは光フアイバ用母材の製造方
法として、特開昭48−73522号公報に示されたよ
うな謂る1外付法”がある。
Conventionally, as a method for manufacturing a base material for a quartz-based glass tube or an optical fiber, there is a so-called "one-external attachment method" as disclosed in Japanese Patent Application Laid-open No. 73522/1983.

この方法は、回転するカーボン或いは石英系ガラス、ア
ルミtなどの耐火性出発材の外周部に、ガラス原料の加
水分解反応によシ生成せしめた5i02  などの微粒
子状ガラスを堆積させていき、所定量堆積させたあと堆
積をやめ、出発材を引き抜き、パイプ状ガラス集合体を
形成し、このパイプ状ガラス集合体を高温電気炉中で焼
結透明ガラス化しパイプ状ガラスを得ている。或いは、
同様の方法で出発材として中実の光フアイバ用ガラス母
材を用い、出発材とその外周部に形成されたガラス微粒
子堆積体の複合体を形成し九のち、出発材を引き抜かず
該複合体を高温炉中で加熱処理しガラス微粒子堆積体の
部分を焼結することにより出発材である光フアイバ用ガ
ラス母材の外周部にさらに透明ガラス層を形成するとい
う方法も考えられる。
In this method, fine particulate glass such as 5i02 produced by a hydrolysis reaction of glass raw materials is deposited on the outer periphery of a rotating refractory starting material such as carbon, quartz glass, or aluminum T. After depositing a certain amount, the deposition is stopped, the starting material is pulled out, a pipe-shaped glass aggregate is formed, and this pipe-shaped glass aggregate is sintered into transparent glass in a high-temperature electric furnace to obtain a pipe-shaped glass. Or,
Using the same method as a starting material, a solid glass base material for optical fiber is used to form a composite of the starting material and the glass fine particle deposits formed on the outer periphery of the starting material. It is also conceivable to further form a transparent glass layer on the outer periphery of the starting glass base material for optical fiber by heat-treating it in a high-temperature furnace and sintering the part of the glass particle deposit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記方法において、最も大きな問題は、ガラス微粒子堆
“積体の割れの問題である。すなわち、回転する出発材
に、ガラス微粒子を堆積させはじめた初期段階、定常的
な堆積が行なわれている段階、ガラス微粒子堆積体の合
成終了時において、火炎を消火した段階および製造後に
おいて、母材を運搬または次工程において、ガラス微粒
子堆積体に割れが生じ、出発材から落下することが多々
発生する。光フアイバ用母材においてはガラス微粒子堆
積体に割れが生じた場合、わずかな割れであっても、製
品として用いることは、不可能となシ、製品歩留りは悪
化する。
In the above method, the biggest problem is the problem of cracks in the glass particle stack.In other words, at the initial stage when glass particles start to be deposited on the rotating starting material, and at the stage where steady deposition is being carried out. At the end of the synthesis of the glass particle deposit, at the stage of extinguishing the flame and after production, during transportation of the base material or in the next process, the glass particle deposit often cracks and falls from the starting material. In optical fiber base materials, if cracks occur in the glass particle deposit, even if the cracks are only slight, the product cannot be used as a product, and the product yield deteriorates.

本発明は、上記製造上の問題点を解決すべく考案された
ものである。
The present invention was devised to solve the above manufacturing problems.

〔問題点を解決するための手段〕[Means for solving problems]

ガラス微粒子堆積体の割れの原因のほとんどは、ガラス
微粒子堆積体の嵩密度が低いことに起因している。すな
わち、母材が柔らかすぎる場合に割れが発生しやすい。
Most of the causes of cracks in glass fine particle deposits are due to the low bulk density of the glass fine particle deposits. That is, if the base material is too soft, cracks are likely to occur.

ところでガラス微粒子堆積体の嵩密度は、堆積面の温度
に依存しており、温度が低い場合には、堆積体は柔らか
く、嵩密度は小さくなる。そこでガラス微粒子合成用バ
ーナにより形成される火炎の温度を上げ、ガラス微粒子
堆積体の嵩密度金高くすることを試みた。しかしながら
割れは解消することはできず、逆に火炎の温度を上げす
ぎた場合には、ガラス微粒子の堆積は不安定となり、堆
積面が変形してしまう結果をまねいた。
By the way, the bulk density of the glass fine particle deposit depends on the temperature of the deposition surface, and when the temperature is low, the deposit becomes soft and the bulk density becomes small. Therefore, we attempted to increase the bulk density of the glass particle deposit by increasing the temperature of the flame formed by the burner for glass particle synthesis. However, the cracks could not be eliminated, and on the other hand, if the flame temperature was raised too much, the deposition of glass particles became unstable, resulting in deformation of the deposition surface.

そこで、本発明者らはガラス微粒子堆積面の温度を詳細
に検討しなおした結果、ガラス微粒子堆積面先端の出発
材表面近傍部分の温度が、ガラス微粒子堆積体の割れと
強い相関を持っていることを見いだした。出発材表面近
傍部分とは、第2図に示す。200部分であり、合成さ
れたガラス微粒子堆積体において、出発材との境界近傍
を形成する部分である。該出発材表面近傍部分20の温
度を750℃以上に保つことによりガラス微粒子堆積体
の割れを克服し安定な製造を行なうことが可能であるこ
とを見いだした。
Therefore, the present inventors reexamined the temperature of the glass particle deposition surface in detail and found that the temperature near the starting material surface at the tip of the glass particle deposition surface has a strong correlation with the cracking of the glass particle deposit. I found out. The portion near the surface of the starting material is shown in FIG. 200 portion, which forms the vicinity of the boundary with the starting material in the synthesized glass fine particle deposit. It has been found that by maintaining the temperature of the portion 20 near the surface of the starting material at 750° C. or higher, it is possible to overcome cracking of the glass fine particle deposit and to perform stable production.

ところで一方、出発材表面近傍の温度を高くしすぎると
、この部分の嵩密度が高くなりすぎ、該母材の焼結時に
、透明化せず、ガラス体の中に気泡が残ってしまう問題
が生ずる。該出発材表面近傍の温度t−900℃以下に
した場合、気泡のない良好なガラス体を得ることができ
ることがわかった。
On the other hand, if the temperature near the surface of the starting material is too high, the bulk density of this part will become too high, and when the base material is sintered, it will not become transparent and bubbles will remain in the glass body. arise. It has been found that when the temperature near the surface of the starting material is t-900°C or lower, a good glass body without bubbles can be obtained.

すなわち、ガラス微粒子堆積体の割れの問題を解決し、
安定した製造を行なうことを目的とする本発明は自らの
軸を回転軸として回転している実質的に円柱状或いは円
筒状の出発材の片端近傍から、該出発材の外周部上にガ
ラス微粒子合成用バーナーの火炎内にガラス原料を供給
することにより発生させたガラス微粒子を堆積させ始め
、該バーナーを出発材の軸と平行に相対的に移動させて
いくことによシ、ガラス微粒子の堆積体を出発材の外周
部に軸方向に形成していく方法に於いて、ガラス微粒子
堆積面先端部、すなわち上記出発材表面近傍の温度t−
750℃以上900℃以下に調整しつつ、ガラス微粒子
堆積体を形成することを特徴とするガラス微粒子堆積体
の製造方法により、上記目的を達成する。
In other words, it solves the problem of cracking of glass fine particle deposits,
The present invention, which aims to perform stable manufacturing, is a method of depositing glass fine particles onto the outer periphery of a substantially cylindrical or cylindrical starting material, which is rotating around its own axis, from near one end of the starting material. Glass particles generated by supplying glass raw materials into the flame of a synthesis burner begin to be deposited, and by moving the burner relatively parallel to the axis of the starting material, the glass particles are deposited. In the method of forming the body on the outer circumference of the starting material in the axial direction, the temperature t- at the tip of the glass particle deposition surface, that is, near the surface of the starting material
The above object is achieved by a method for manufacturing a glass particle deposit, which is characterized in that the glass particle deposit is formed while adjusting the temperature to 750°C or higher and 900°C or lower.

以下具体的に基ずいて説明する。This will be explained in detail below.

第1図に本発明に基ずくガラス微粒子堆積体製造の構成
の1例を示す。
FIG. 1 shows an example of a structure for producing a glass particle deposit according to the present invention.

出発材11の上にガラス微粒子3合成用バーナ    
□“□13によシ合成されるガラス微粒子を堆積させヵ
、7□+□4,2o□i5. !(1:@   i’□ 出発材11は回転しつつガラス微粒子合成用バーナ15
とガラス微粒子堆積面の距離が一定と    □。
A burner for synthesizing glass fine particles 3 is placed on top of the starting material 11.
□“□13 The glass fine particles synthesized are deposited.
and the distance between the glass particle deposition surface is constant □.

なるようにバーナー3と相対的に移動させられ    
□る。このとき、ガラス微粒子堆積面先端部15の表面
温度を放射温度計16によシモニターし    □その
温度が750〜900℃に保たれるように、ガラス微粒
子合成用バーナ13の位置または、バーナ15に投入さ
れるガスの流量を調整する。
It is moved relative to burner 3 so that
□Ru. At this time, the surface temperature of the tip 15 of the glass particle deposition surface is monitored by the radiation thermometer 16. □The position of the glass particle synthesis burner 13 or the burner 15 is Adjust the flow rate of gas injected into the

この場合、放射温度計16の出力をバーナ位置または、
ガス流量にフィードバックし、ガラス微粒子堆積面先端
部15の温度が設定温度になるように上記バーナ位置ま
たはガス流量をコントロールする機構を設ければさらに
好ましい。
In this case, the output of the radiation thermometer 16 is set to the burner position or
It is more preferable to provide a mechanism that feeds back the gas flow rate and controls the burner position or gas flow rate so that the temperature of the tip 15 of the glass particle deposition surface reaches a set temperature.

〔実施例〕〔Example〕

第1図の構成において、ガラス微粒子合成用バーナ15
として同心円状多重管バーナを用いガラス微粒子堆積体
の製造を行った。バーナ13には、燃料ガスとしてH2
5013/ raln 、助燃ガスとして0265−#
/win。
In the configuration shown in FIG. 1, the glass particle synthesis burner 15
A glass particle deposit was manufactured using a concentric multi-tube burner. The burner 13 has H2 as fuel gas.
5013/raln, 0265-# as combustion assisting gas
/win.

不活性ガスAr を224/win、流しこれに原料ガ
スとして81014t−2200DC/ min f投
入した。
Inert gas Ar was flowed at 224/win, and 81014 t-2200 DC/min f was injected into this as raw material gas.

温度モニターをするガラス微粒子堆積面先端部15の位
置は、出発材ロンド表面より外周部方向(半径方向)に
2謡離れた位置にセットし放射温度計の焦点をこの位置
に合わせた。
The position of the tip 15 of the glass particulate deposition surface for temperature monitoring was set at a position two centimeters away from the surface of the starting material rond in the direction of the outer circumference (radial direction), and the focus of the radiation thermometer was adjusted to this position.

ガラス微粒子堆積体がほぼ定常な成長金始めた時点で堆
積面先端部15の温度は720℃付近で変動していた。
At the time when the glass fine particle deposit started to grow almost steadily, the temperature at the tip 15 of the deposition surface was fluctuating around 720°C.

このまま母材を成長させたところ、ガラス微粒子堆積中
に母材の割れが発生し、良好な母材を得ることができな
かった。
When the base material was allowed to grow in this state, cracks occurred in the base material during the deposition of glass particles, and a good base material could not be obtained.

実施例 比較例と同様の構成で母材合成を行ない、堆積面先端1
’1s15の温度t−aoo℃となるようにバーナ位置
を調整するとともに、H2流量t−50J / aki
nから551 / winまで増加させた。この結果、
堆積面先端W515の温度は、母材合成中795℃から
805℃の間に保たれ、母材外径130mの良好な母材
を得ることができた。
The base material was synthesized using the same configuration as the Example and Comparative Example, and the tip 1 of the deposition surface was
Adjust the burner position so that the temperature is t-aoo℃ at '1s15, and increase the H2 flow rate to t-50J/aki
Increased from n to 551/win. As a result,
The temperature at the tip W515 of the deposition surface was maintained between 795° C. and 805° C. during the synthesis of the base material, and a good base material with an outer diameter of 130 m could be obtained.

この母材は次工程においても割れることなく、透明なガ
ラス体を得ることができた。
This base material did not break in the next step, and a transparent glass body could be obtained.

上記実施例においては、ガラス微粒子堆積面先端部15
の温度調整手段として、バーナ位置およびH2流量を変
えたが、ガス流量として他のガスの流量を変えても実現
できるし、また、バーナ以外の他の手段例えば加熱用ラ
ンプ、レーザ光などを用いても同様の効果を期待できる
In the above embodiment, the tip portion 15 of the glass fine particle deposition surface
Although the burner position and H2 flow rate were changed as means for temperature adjustment, the gas flow rate could also be achieved by changing the flow rate of other gases. Similar effects can be expected.

また上記実施例においては5tar4を原料とした例を
示したが、これに限定されるものではなく、通常のガラ
ス原料及び添加物例えばGa114゜BBr3. PO
CI、等を用いることも本発明の範囲に含有されること
はいうまでもない。
Further, in the above embodiment, an example was shown in which 5tar4 was used as the raw material, but the invention is not limited to this, and ordinary glass raw materials and additives such as Ga114°BBr3. P.O.
It goes without saying that the use of CI, etc. is also included within the scope of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によシ、回転する出発材外周部にガラス微粒子堆
積体を合成する方法において、母材の割れを解消し、安
定したガラス微粒子堆積体の製造を行なうことができる
According to the present invention, in the method of synthesizing a glass particle deposit on the outer periphery of a rotating starting material, cracks in the base material can be eliminated and a stable glass particle deposit can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガラス微粒子堆積体の製造方法の実施
態様を説明する図でおシ、 第2図は本発明におけるガラス微粒子堆積面先端の出発
材表面近傍部分を示す図である。
FIG. 1 is a diagram illustrating an embodiment of the method for manufacturing a glass fine particle deposit according to the present invention, and FIG. 2 is a diagram showing a portion near the surface of the starting material at the tip of the glass fine particle deposition surface in the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)自らの軸を回転軸として回転している実質的に円
柱状或いは円筒状の出発材の片端近傍から、該出発材の
外周部上にガラス微粒子合成用バーナーの火炎内にガラ
ス原料を供給することにより発生させたガラス微粒子を
堆積させ始め、該バーナーを出発材の軸と平行に相対的
に移動させていくことにより、ガラス微粒子の堆積体を
出発材の外周部に軸方向に形成していく方法に於いて、
ガラス微粒子堆積面先端部、すなわち上記出発材表面近
傍の温度を750℃以上900℃以下に調整しつつ、ガ
ラス微粒子堆積体を形成することを特徴とするガラス微
粒子堆積体の製造方法。
(1) From near one end of a substantially cylindrical or cylindrical starting material that is rotating about its own axis, a glass raw material is introduced into the flame of a burner for synthesizing glass fine particles onto the outer periphery of the starting material. By starting to deposit the glass particles generated by supplying the material and moving the burner relatively parallel to the axis of the starting material, a deposited body of glass particles is formed in the axial direction on the outer periphery of the starting material. In terms of how to
A method for producing a glass particle deposit, which comprises forming the glass particle deposit while adjusting the temperature at the tip of the glass particle deposition surface, that is, near the surface of the starting material, to 750° C. or higher and 900° C. or lower.
JP14576285A 1985-07-04 1985-07-04 Production of deposited body of fine glass particle Pending JPS627641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14576285A JPS627641A (en) 1985-07-04 1985-07-04 Production of deposited body of fine glass particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14576285A JPS627641A (en) 1985-07-04 1985-07-04 Production of deposited body of fine glass particle

Publications (1)

Publication Number Publication Date
JPS627641A true JPS627641A (en) 1987-01-14

Family

ID=15392571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14576285A Pending JPS627641A (en) 1985-07-04 1985-07-04 Production of deposited body of fine glass particle

Country Status (1)

Country Link
JP (1) JPS627641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307138A (en) * 1987-06-09 1988-12-14 Sumitomo Electric Ind Ltd Production of optical fiber preform

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264338A (en) * 1984-06-11 1985-12-27 Furukawa Electric Co Ltd:The Manufacture of optical fiber preform

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60264338A (en) * 1984-06-11 1985-12-27 Furukawa Electric Co Ltd:The Manufacture of optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307138A (en) * 1987-06-09 1988-12-14 Sumitomo Electric Ind Ltd Production of optical fiber preform

Similar Documents

Publication Publication Date Title
KR880001607B1 (en) Preparation for making of glass fiber preform
JPS627641A (en) Production of deposited body of fine glass particle
JPH02102146A (en) Production of glass fine particle deposit
EP1233006B1 (en) Method of forming a porous glass preform by vapour phase deposition
JP3816268B2 (en) Method for producing porous glass base material
JP3221059B2 (en) Method for producing glass particle deposit
JPH05319849A (en) Production of silica porous preform
JPS61281037A (en) Production of deposited glass soot
JPS62182131A (en) Production of piled material of glass fine particle
JP3381309B2 (en) Method for producing glass particle deposit
WO2019044807A1 (en) Method for producing glass fine particle deposit, method for producing glass base material, and glass fine particle deposit
JPS62182132A (en) Production of piled material of glass fine particle
JPS63182234A (en) Production of optical fiber parent material
JPS6044258B2 (en) synthesis torch
JP2000272929A (en) Production of optical fiber preform
JPS61266318A (en) Production of glass fine granular deposit
JPH0776108B2 (en) Method for manufacturing base material for optical fiber
JPS61281025A (en) Production of deposited material of glass fine particles
JPS63123828A (en) Production of porous preform for optical fiber
JPH0397632A (en) Production of porous glass preform for optical fiber
JPS60260433A (en) Manufacture of base material for optical fiber
JPS593027A (en) Manufacture of glass base material for optical fiber
JPS63176326A (en) Production of preform for optical fiber
JPS63225540A (en) Production of deposit of fine glass particles
JPH01183431A (en) Production of deposited material of glass fine particle