JP3816268B2 - Method for producing porous glass base material - Google Patents

Method for producing porous glass base material Download PDF

Info

Publication number
JP3816268B2
JP3816268B2 JP16656699A JP16656699A JP3816268B2 JP 3816268 B2 JP3816268 B2 JP 3816268B2 JP 16656699 A JP16656699 A JP 16656699A JP 16656699 A JP16656699 A JP 16656699A JP 3816268 B2 JP3816268 B2 JP 3816268B2
Authority
JP
Japan
Prior art keywords
glass
amount
raw material
base material
pulling speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16656699A
Other languages
Japanese (ja)
Other versions
JP2000351634A (en
Inventor
英次 福田
忠克 島田
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP16656699A priority Critical patent/JP3816268B2/en
Publication of JP2000351634A publication Critical patent/JP2000351634A/en
Application granted granted Critical
Publication of JP3816268B2 publication Critical patent/JP3816268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質ガラス母材の製造方法に係り、特に、光ファイバや各種光学材料として用いられる多孔質ガラス母材の製造方法に関する。
【0002】
【従来の技術】
従来、多孔質ガラス母材(以下、単に多孔質母材という)の製造方法として、気相軸付け法(VAD法)が知られている。このVAD法は、反応容器内において、ガラス微粒子合成用バーナーに燃焼ガス及び四塩化珪素等のガラス原料ガス(以下、単に原料ガスという)を導入し、火炎加水分解反応あるいは酸化反応等を行わせて、生成したガラス微粒子を、回転しながらゆっくり引上げられる出発基材(ターゲット)に吹き付け、その表面に付着、堆積させることにより円柱状の多孔質母材を製造する方法である。
この方法は、光ファイバー母材の屈折率分布を長手方向に均一にするために、ガラス微粒子の堆積位置を、レーザー光又はCCDカメラ等を用いて検出し、堆積位置が一定となるように原料ガスの流量を制御する方法が一般に採用されている。
【0003】
このような製造方法においてガラス原料の補正を行う場合、できる限り速やかに基準の引上げ速度に戻すことが屈折率分布の変動を小さくするために望ましい。すなわち、引上げ速度に大きな変動があったときは、これに対応して大きな原料補正を行う必要がある。しかしながら、近年、生産性向上の取り組みのなかで、母材の引上げ速度の高速化が行われるにつれて、原料補正に起因する母材の割れが多発するようになった。
【0004】
【発明が解決しようとする課題】
本発明の課題は、多孔質母材を高速で製造する際に生じる上記不都合を克服し、多孔質母材の製造中に割れが発生せず、かつ長手方向に特性の安定したガラス体を製造し得る多孔質母材の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明者等は、製造途中での多孔質母材の表面に割れが生じる原因について調査したところ、割れが発生する直前に引上げ速度が急変しており、これを補うため、原料ガス供給量の大きな増減補正が行われていることが判明した。さらに、原料ガスの供給量が大きく増減すると、局所的にかさ密度が大きく変化し、割れが発生していることを見出した。これらの知見をもとに、さらに研究を重ねて本発明を完成した。
【0006】
即ち、本発明の多孔質母材の製造方法は、ガラス原料ガスを燃料ガスと共にバーナーの火炎中に供給して酸化又は火炎加水分解反応させ、生成するガラス微粒子を、回転しつつ引上げ速度52mm/hr 以上で引上げられる出発基材に堆積させて多孔質ガラス母材を高速で製造する方法において、基準量のガラス原料ガスを供給して生成したガラス微粒子を予め設定された引上げ速度で引上げられる出発基材に堆積させつつ堆積位置を検出し、基準堆積位置からの変位量にもとづき引上げ速度を制御した後、該制御により変化した引上げ速度を予め設定された引上げ速度に戻すために、バーナーへのガラス原料ガスの供給量を基準量に対して補正する際に、引上げ速度の変化量によって決定されるガラス原料ガスの供給量が基準量に対して 10 %以上増減している場合に、10%以下の範囲内での増減により補正することを特徴としている。
【0007】
【発明の実施の形態】
添付図面により本発明をさらに詳細に説明する。
図1は、多孔質母材製造装置の概略を示す図である。四塩化珪素供給用バブラー1とドーパント供給用バブラー2に、ガラス原料キャリャーガス3をマスフローコントローラー4,5を経由して送り込むことにより、四塩化珪素とこれに所定量のドーパントをガス化させて混合し、これを燃焼ガス供給管6から供給される所定量の酸素ガス、水素ガスと共に酸水素火炎バーナー7に供給し、火炎中での化学反応により生成したガラス微粒子を、排気口8を有する反応容器9内に収納され、回転引上装置10に支持された出発基材11上に堆積させることにより多孔質母材12が形成される。
多孔質母材12の形成中、ガラス微粒子が堆積されつつある多孔質母材12の先端部をTVカメラ13で監視することにより、TVディスプレイ14に表示された基準堆積位置を示す基線15からの先端部の位置の変位量が検出される。基準堆積位置からの変位が検出されると、この情報が引上制御装置16に伝達され、回転引上装置10を作動させ引上げ速度を変化させて堆積位置を元に戻すように制御される。
【0008】
この制御により変化した引上げ速度の情報は、マスフローコントローラー制御装置17に伝達され、マスフローコントローラー4,5を調節して酸水素火炎バーナー7に供給される原料ガス量が、変化した引上げ速度が予め設定された適切な値になるように調節される。この調節は、基準量に対して10%以下の範囲内での増減により行われる。
このとき原料ガス供給量の補正を10%を超えて行うと、その堆積箇所のかさ密度が大きく変化してクラックを生じ易く、多孔質母材の破損を招く。
原料ガス量の調節の際、四塩化珪素とドーパントとの比率が一定になるようにすることが必要であり、このようにして形状及び屈折率分布の均一な多孔質母材を容易に得ることができる。
【0009】
【実施例】
以下、実施例にもとづき本発明を更に詳細に説明する。
(実施例1)
図1に示した装置を使用し、バーナーに、ガラス微粒子合成用燃焼ガスとして、水素5 L(リットル)/min、酸素10 L/min、アルゴン2 L/min、四塩化けい素 0.2 L/min及び四塩化ゲルマニウム 0.2 L/minを供給し、クラッド形成用バーナーには、ガラス微粒子合成用燃焼ガスとして、水素40 L/min、酸素25 L/min、アルゴン7 L/min、四塩化けい素 1.0 L/minを供給し、この酸水素火炎中での化学反応により生成したガラス微粒子を出発基材に堆積させ、出発基材を52mm/hrの速さで引上げて、直径150 mmφ、長さ1,600 mmの多孔質母材を形成した。
【0010】
例えば、多孔質母材の堆積位置をCCDカメラで検出し、堆積位置が設定堆積位置(基線)から変位していることが検出されると、引上げ速度を変更し堆積位置の変位が矯正される。次いで、10分毎に引上げ速度を平均し、変化した引上げ速度を予め設定された引上げ速度(基準速度)に戻すために、ガラス原料ガスの供給量が基準量に対して 10 %以上増減している場合に、コア形成用バーナーへの四塩化けい素の流量を基準量に対して10%以下の範囲で補正した。このときの補正量の決定は、規定速度に対する速度の変化量に比例して増減させた。
この条件で多孔質母材を20本製造したところ、母材の割れは一本も発生しなかった。得られた多孔質母材をガラス化したところ、そのうちの2本のガラス体に、比屈折率差の変動に起因する脈理が一箇所づつ生じていた。この2本の製造記録を確認すると、脈理の発生位置で10%の原料補正が行われていた。これは10%の補正量では基準の引き上げ速度に戻すまでに時間を要し、比屈折率差に影響する堆積面の温度が変動したためである。この脈理は光ファイバ用ガラス体としては好ましくないものであるが、その後のオーバークラッディング工程の前に、予め脈理部分を削除しておく、またはガラス体に印をしておきファイバ線引き工程でその部分を削除すればよく、10%を超える補正で母材にクラックを生じさせてしまい母材1本を全損することに比べると、コスト的には大きな問題ではない。
【0011】
(比較例1)
実施例と同じガス条件で多孔質母材を製造したが、堆積位置の変位に対してガラス原料の流量を原料ガス流量の基準量に対して10%を若干超える補正量で堆積位置の矯正を行った。
この条件で多孔質母材を20本製造したところ、2本の母材に割れを生じていた。この製造記録を見ると、割れが生じる直前にそれぞれ12%、14%の原料補正が行われており、過度の原料供給量の変更が割れを引き起こしていることが確認された。
(比較例2)
基準の引上げ速度を48mm/hr として同様に製造したときは、ガラス原料の流量を原料ガス流量の基準量に対して10%を超える補正を行ったときでも割れは生じなかったが、透明ガラス化したガラス体中には比屈折率差に起因する脈理が存在していた。
【0012】
【発明の効果】
本発明の方法によれば、堆積位置を一定とする制御により変化した引上げ速度を予め設定された引上げ速度に戻すために、バーナーへのガラス原料ガスの供給量を基準量に対して補正する際に、引上げ速度の変化量によって決定されるガラス原料ガスの供給量が基準量に対して 10 %以上増減している場合に、 10 %以下の範囲内での増減により補正することで、従来、45mm/hr 前後であった引き上げ速度を、52mm/hr 以上の高速引上げとしても多孔質母材を割れることなく製造でき、製造コストを大きく低減することができた。また、引上げ速度の誤った制御につながるノイズを無くすための大掛かりな装置の改修工事を必要とせず、ノイズが発生してもガラス母材が割れることなく安定した生産が可能となった。
【図面の簡単な説明】
【図1】 多孔質母材製造装置の概略図である。
【符号の説明】
1…四塩化珪素供給用バブラー
2…ドーパント供給用バブラー
3…ガラス原料キャリャーガス
4,5…マスフローコントローラー
6…燃焼ガス供給管
7…酸水素火炎バーナー
8…排気口
9…反応容器
10…回転引上装置
11…出発基材
12…多孔質母材
13…TVカメラ
14…TVディスプレイ
15…基線
16…引上制御装置
17…マスフローコントローラー制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a porous glass preform, and more particularly, to a method for producing a porous glass preform used as an optical fiber or various optical materials.
[0002]
[Prior art]
Conventionally, a gas phase axis method (VAD method) is known as a method for producing a porous glass base material (hereinafter simply referred to as a porous base material). In this VAD method, a combustion gas and a glass raw material gas such as silicon tetrachloride (hereinafter simply referred to as a raw material gas) are introduced into a burner for synthesizing fine glass particles in a reaction vessel to perform a flame hydrolysis reaction or an oxidation reaction. Then, the generated glass fine particles are sprayed onto a starting base material (target) that is slowly pulled up while rotating, and are attached to and deposited on the surface of the starting base material (target), thereby producing a cylindrical porous base material.
In this method, in order to make the refractive index distribution of the optical fiber preform uniform in the longitudinal direction, the deposition position of the glass particles is detected using a laser beam or a CCD camera, etc., and the raw material gas is used so that the deposition position is constant. Generally, a method of controlling the flow rate is adopted.
[0003]
When correcting the glass raw material in such a manufacturing method, it is desirable to return to the reference pulling speed as quickly as possible in order to reduce the fluctuation of the refractive index distribution. That is, when there is a large fluctuation in the pulling speed, it is necessary to perform a large raw material correction correspondingly. However, in recent years, as efforts to improve productivity have been made, as the pulling speed of the base material is increased, cracks in the base material due to the correction of the raw material have frequently occurred.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to overcome the above-mentioned disadvantages that occur when a porous preform is produced at high speed, and to produce a glass body that does not crack during the production of the porous preform and has stable characteristics in the longitudinal direction. Another object of the present invention is to provide a method for producing a porous base material.
[0005]
[Means for Solving the Problems]
The present inventors investigated the cause of cracking on the surface of the porous base material during production, and the pulling rate changed suddenly just before the cracking occurred. It was found that a large increase / decrease correction was performed. Furthermore, it has been found that when the supply amount of the source gas is greatly increased or decreased, the bulk density locally changes greatly and cracks are generated. Based on these findings, further studies were conducted to complete the present invention.
[0006]
That is, in the method for producing a porous base material of the present invention, the glass raw material gas is supplied into the flame of the burner together with the fuel gas to be oxidized or flame hydrolyzed, and the generated glass fine particles are rotated at a pulling speed of 52 mm / In a method for producing a porous glass base material at a high speed by depositing it on a starting base material that is pulled up at a rate of hr or more, the starting point is that glass fine particles generated by supplying a reference amount of glass raw material gas are pulled up at a preset pulling rate. In order to detect the deposition position while depositing on the base material and control the pulling speed based on the amount of displacement from the reference deposition position, in order to return the pulling speed changed by the control to a preset pulling speed, when correcting the reference quantity the supply amount of the glass raw material gas, increasing by 10% or more with respect to the supply amount reference amount of the glass raw material gas to be determined by the amount of change in pulling speed If you are, it is characterized in that corrected by increasing or decreasing in the range of 10% or less.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing an outline of a porous preform manufacturing apparatus. By feeding glass carrier gas 3 into silicon tetrachloride supply bubbler 1 and dopant supply bubbler 2 via mass flow controllers 4 and 5, silicon tetrachloride and a predetermined amount of dopant are gasified and mixed. A reaction vessel having an exhaust port 8 for supplying glass fine particles produced by a chemical reaction in the flame together with a predetermined amount of oxygen gas and hydrogen gas supplied from the combustion gas supply pipe 6 to the oxyhydrogen flame burner 7 The porous base material 12 is formed by depositing on the starting base material 11 which is accommodated in 9 and supported by the rotary pulling device 10.
During the formation of the porous base material 12, the tip of the porous base material 12 on which the glass fine particles are being deposited is monitored by the TV camera 13, so that the reference deposition position displayed on the TV display 14 is displayed from the base line 15. The amount of displacement of the position of the tip is detected. When a displacement from the reference deposition position is detected, this information is transmitted to the pulling control device 16, and the rotary pulling device 10 is operated to control the pulling speed to return to the original deposition position.
[0008]
The information on the pulling speed changed by this control is transmitted to the mass flow controller control device 17, and the amount of the raw material gas supplied to the oxyhydrogen flame burner 7 by adjusting the mass flow controllers 4 and 5 is set in advance. Adjusted to an appropriate value. This adjustment is performed by increasing or decreasing within 10% of the reference amount.
At this time, if the correction of the supply amount of the source gas exceeds 10%, the bulk density of the deposited portion is greatly changed and cracks are easily generated, and the porous base material is damaged.
When adjusting the amount of source gas, it is necessary to make the ratio of silicon tetrachloride and dopant constant, and thus a porous base material having a uniform shape and refractive index distribution can be easily obtained. Can do.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
Using the equipment shown in Fig. 1, the combustion gas for glass fine particle synthesis is 5 L (liter) / min for oxygen, 10 L / min for oxygen, 2 L / min for argon, 0.2 L / min for silicon tetrachloride. And germanium tetrachloride (0.2 L / min) are supplied to the burner for forming the clad, and 40 L / min for hydrogen, 25 L / min for oxygen, 7 L / min for argon, 1.0 t L / min is supplied, glass particles generated by chemical reaction in this oxyhydrogen flame are deposited on the starting substrate, the starting substrate is pulled up at a speed of 52 mm / hr , and the diameter is 150 mmφ and the length is 1,600. A porous preform of mm was formed.
[0010]
For example, when the deposition position of the porous base material is detected by a CCD camera and it is detected that the deposition position is displaced from the set deposition position (baseline), the pulling speed is changed and the displacement of the deposition position is corrected. . Next, in order to average the pulling speed every 10 minutes and return the changed pulling speed to the preset pulling speed (reference speed), the supply amount of the glass source gas is increased or decreased by 10 % or more with respect to the reference amount. If you are, corrected in the range of 10% or less of the reference quantity the flow rate of silicon tetrachloride to the core forming burner. Determination of the correction amount at this time was increased or decreased in proportion to the amount of change in speed with respect to the specified speed.
When 20 porous base materials were produced under these conditions, no cracks occurred in the base material. When the obtained porous base material was vitrified, striae due to fluctuations in the relative refractive index difference were generated one by one in two of the glass bodies. When these two production records were confirmed, the raw material was corrected by 10% at the position where the striae occurred. This is because with the correction amount of 10%, it takes time to return to the reference pulling speed, and the temperature of the deposition surface that affects the relative refractive index difference fluctuates. This striae is not preferable as a glass body for optical fibers, but before the subsequent overcladding process, the striae is deleted in advance or the glass body is marked and the fiber drawing process Therefore, it is not a big problem in terms of cost as compared with the case where the base material is cracked by a correction exceeding 10% and one base material is completely lost.
[0011]
(Comparative Example 1)
A porous base material was manufactured under the same gas conditions as in the example, but the deposition position was corrected with a correction amount slightly exceeding 10% of the flow rate of the glass material relative to the reference amount of the source gas flow rate with respect to the displacement of the deposition position. went.
When 20 porous base materials were produced under these conditions, the two base materials were cracked. Looking at this production record, it was confirmed that the raw material correction was 12% and 14%, respectively, just before the cracking occurred, and that an excessive change in the raw material supply amount caused the cracking.
(Comparative Example 2)
When the same pulling speed of 48mm / hr was produced in the same way, cracks did not occur even when the flow rate of the glass raw material was corrected to exceed 10% of the reference amount of the raw material gas flow rate . There was striae in the glass body due to the relative refractive index difference.
[0012]
【The invention's effect】
According to the method of the present invention, in order to return the pulling speed changed by the control for keeping the deposition position constant to the preset pulling speed, when the supply amount of the glass raw material gas to the burner is corrected with respect to the reference amount. in the case where the supply amount of the glass raw material gas to be determined by the amount of change in pulling speed is increased or decreased by 10% or more with respect to the reference quantity, by correcting by increasing or decreasing in the range of 10% or less, conventional, Even when the pulling speed, which was around 45 mm / hr, was raised at a high speed of 52 mm / hr or higher, the porous base material could be manufactured without cracking, and the manufacturing cost could be greatly reduced. In addition, large-scale equipment renovation work to eliminate noise that leads to incorrect control of pulling speed is not required, and stable production is possible without breaking the glass base material even if noise occurs.
[Brief description of the drawings]
FIG. 1 is a schematic view of a porous base material manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Silicon tetrachloride supply bubbler 2 ... Dopant supply bubbler 3 ... Glass raw material carrier gas 4, 5 ... Mass flow controller 6 ... Combustion gas supply pipe 7 ... Oxyhydrogen flame burner 8 ... Exhaust port 9 ... Reaction container
10 ... Rotary pulling device
11 ... Starting material
12 ... Porous matrix
13 ... TV camera
14 ... TV display
15 ... Baseline
16 ... Lifting control device
17 ... Mass flow controller controller

Claims (1)

ガラス原料ガスを燃料ガスと共にバーナーの火炎中に供給して酸化又は火炎加水分解反応させ、生成するガラス微粒子を、回転しつつ引上げられる出発基材に堆積させて多孔質ガラス母材を引上げ速度52mm/hr 以上で製造する方法において、基準量のガラス原料ガスを供給して生成したガラス微粒子を予め設定された引上げ速度で引上げられる出発基材に堆積させつつ堆積位置を検出しこれが一定になるように、基準堆積位置からの変位量にもとづき引上げ速度を制御した後、該制御により変化した引上げ速度を予め設定された引上げ速度に戻すために、バーナーへのガラス原料ガスの供給量を基準量に対して補正する際に、引上げ速度の変化量によって決定されるガラス原料ガスの供給量が基準量に対して 10 %以上増減している場合に、10%以下の範囲内での増減により補正することを特徴とする多孔質ガラス母材の製造方法。Glass raw material gas is supplied into the burner flame together with the fuel gas to cause oxidation or flame hydrolysis reaction, and the generated glass fine particles are deposited on the starting substrate that is pulled up while rotating to pull up the porous glass base material at a speed of 52 mm. In a method of manufacturing at or above, the deposition position is detected while depositing glass fine particles generated by supplying a reference amount of glass raw material gas on a starting substrate that is pulled up at a preset pulling rate so that the deposition position becomes constant. In addition, after controlling the pulling speed based on the amount of displacement from the reference deposition position, in order to return the pulling speed changed by the control to a preset pulling speed, the supply amount of the glass raw material gas to the burner is set to the reference amount. when correcting for, when the supply amount of the glass raw material gas to be determined by the amount of change in pulling speed is increased or decreased by 10% or more with respect to the reference amount, 10% Method for producing a porous glass preform, characterized in that corrected by increasing or decreasing in the range below.
JP16656699A 1999-06-14 1999-06-14 Method for producing porous glass base material Expired - Fee Related JP3816268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16656699A JP3816268B2 (en) 1999-06-14 1999-06-14 Method for producing porous glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16656699A JP3816268B2 (en) 1999-06-14 1999-06-14 Method for producing porous glass base material

Publications (2)

Publication Number Publication Date
JP2000351634A JP2000351634A (en) 2000-12-19
JP3816268B2 true JP3816268B2 (en) 2006-08-30

Family

ID=15833651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16656699A Expired - Fee Related JP3816268B2 (en) 1999-06-14 1999-06-14 Method for producing porous glass base material

Country Status (1)

Country Link
JP (1) JP3816268B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496092B2 (en) * 2005-01-12 2010-07-07 信越化学工業株式会社 Method and apparatus for manufacturing optical fiber preform
JP5399798B2 (en) * 2008-07-18 2014-01-29 信越化学工業株式会社 Optical fiber preform manufacturing method and optical fiber preform manufacturing apparatus
JP5578024B2 (en) * 2010-10-27 2014-08-27 住友電気工業株式会社 Manufacturing method of glass base material
JP5737239B2 (en) * 2012-01-18 2015-06-17 住友電気工業株式会社 Manufacturing method of glass base material
IN2014CN02480A (en) 2011-09-29 2015-06-19 Sumitomo Electric Industries

Also Published As

Publication number Publication date
JP2000351634A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
US4627867A (en) Method for producing highly pure glass preform for optical fiber
JP3816268B2 (en) Method for producing porous glass base material
US7437893B2 (en) Method for producing optical glass
JP2000034131A (en) Apparatus for production of porous glass material and production method
US4781740A (en) Method for producing glass preform for optical fiber
JP2005075682A (en) Method of manufacturing porous glass preform
JP2018177611A (en) Method for manufacturing optical fiber porous preform, optical fiber porous preform and method for manufacturing optical fiber
JP2517052B2 (en) Graded Index Optical Fiber-Manufacturing Method of Base Material
JP2000272929A (en) Production of optical fiber preform
JP4230074B2 (en) Method for producing aluminum-added quartz porous matrix
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JPH03242341A (en) Production of porous glass preform for single-mode optical fiber
JPH05319849A (en) Production of silica porous preform
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JPS62223037A (en) Formation of porous glass layer
JP3401382B2 (en) Method and apparatus for manufacturing porous preform for dispersion-shifted single-mode optical fiber
JP3077970B2 (en) Manufacturing method of optical fiber preform
JP2000063147A (en) Optical fiber preform and its production
JPH08225338A (en) Production of optical fiber preformed material
JP3758598B2 (en) Method and apparatus for manufacturing porous glass base material
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JP2938604B2 (en) Method of manufacturing preform for single mode optical fiber
JP3998228B2 (en) Optical fiber porous base material, optical fiber glass base material, and manufacturing methods thereof
JP5136106B2 (en) Method for producing quartz glass
JP2001199730A (en) Method for producing porous glass base material, and apparatus therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150616

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees