JP3169503B2 - Method for producing porous glass preform for optical fiber - Google Patents

Method for producing porous glass preform for optical fiber

Info

Publication number
JP3169503B2
JP3169503B2 JP3464094A JP3464094A JP3169503B2 JP 3169503 B2 JP3169503 B2 JP 3169503B2 JP 3464094 A JP3464094 A JP 3464094A JP 3464094 A JP3464094 A JP 3464094A JP 3169503 B2 JP3169503 B2 JP 3169503B2
Authority
JP
Japan
Prior art keywords
porous glass
core
base material
diameter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3464094A
Other languages
Japanese (ja)
Other versions
JPH07242433A (en
Inventor
剛 荻野
弘行 小出
浩 小山田
秀夫 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3464094A priority Critical patent/JP3169503B2/en
Publication of JPH07242433A publication Critical patent/JPH07242433A/en
Application granted granted Critical
Publication of JP3169503B2 publication Critical patent/JP3169503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光ファイバ用多孔質ガラ
ス母材の製造方法、特にはコア径が細径である製造初期
におけるコア偏心の形成および母材割れを防止する、コ
ア−クラッド構造をもつ光ファイバ用多孔質ガラス母材
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a porous glass preform for an optical fiber, and more particularly to a core-cladding structure for preventing formation of core eccentricity and cracking of a preform at an early stage of production where the core diameter is small. The present invention relates to a method for producing a porous glass preform for optical fibers having the following.

【0002】[0002]

【従来の技術】コア−クラッド構造をもつ光ファイバ用
多孔質ガラス母材の製造方法としては、反応容器の下部
にコア用バーナーと複数のクラッド用バーナーを設け、
コア用バーナーにガラス原料ガス、酸素ガスと水素ガ
ス、屈折率増加用ドーパントガスおよび不活性ガスを供
給すると共に、各クラッド用バーナーにはガラス原料ガ
ス、酸素ガスと水素ガス、および不活性ガスを供給し、
これらのバーナーの火炎中においてガラス原料ガスの火
炎加水分解でガラス微粒子を発生させ、このガラス微粒
子を回転している石英ガラスなどからなるターゲットの
周囲に堆積させてコア部とクラッド層を形成するという
VAD法が公知とされているが、このようにして作られ
た多孔質ガラス母材は高温での加熱焼結で透明ガラス化
することによって光ファイバ用石英ガラス母材とされ
る。
2. Description of the Related Art As a method of manufacturing a porous glass preform for an optical fiber having a core-clad structure, a core burner and a plurality of clad burners are provided at a lower portion of a reaction vessel.
A glass raw material gas, oxygen gas and hydrogen gas, a refractive index increasing dopant gas and an inert gas are supplied to the core burner, and a glass raw material gas, oxygen gas and hydrogen gas, and an inert gas are supplied to each clad burner. Supply,
In the flame of these burners, glass microparticles are generated by flame hydrolysis of glass raw material gas, and these glass microparticles are deposited around a rotating target such as quartz glass to form a core part and a cladding layer. Although the VAD method is known, the porous glass base material thus produced is made into a transparent glass by heat sintering at a high temperature to obtain a quartz glass base material for an optical fiber.

【0003】[0003]

【発明が解決しようとする課題】しかし、この光ファイ
バ用多孔質ガラス母材の製造方法には、シングルモード
の場合のようにコア径が小さいと製造初期段階における
多孔質ガラス母材が非常に不安定な状態にあるために、
この製造工程において母材が割れたり、母材の形状が変
形するなどの製造上の問題が生ずる危険性がある。その
ため、これについてはその製造初期段階においてH2
スの流量を大きくして母材のカサ密度を上げたり、ある
いはバーナー位置などの製造条件を変えて定常段階と異
なるようにして母材の製造を安定化し、ガラス微粒子の
堆積で母材が成長して定常状態に達したときに所望の製
造条件に戻すということも提案されている(特開昭 56-
149335号公報参照)。
However, this method of manufacturing a porous glass preform for an optical fiber requires a very small core diameter as in the case of a single mode, so that the porous glass preform at the initial stage of the production becomes very difficult. Because of the unstable state,
In this manufacturing process, there is a risk that a manufacturing problem such as breakage of the base material or deformation of the shape of the base material may occur. For this reason, in this early stage of production, the flow rate of H 2 gas is increased to increase the bulk density of the base material, or the production conditions such as the burner position are changed to make the production of the base material different from the steady stage. It has also been proposed to stabilize and return to desired manufacturing conditions when the base material grows due to the deposition of glass particles and reaches a steady state (Japanese Patent Application Laid-Open No.
No. 149335).

【0004】しかし、このような初期条件の不安定な状
態はコア径が十分な大きさであれば特に問題はないけれ
ども、コア径が細い場合には、コアが非常に偏心し易い
ものとなり、一度偏心してしまうと製造終了まで偏心が
継続することが多く、これは製造途中で直ったとしても
この部分が不良部となるので、これが生産性を低下させ
ることとなり、これにはまたコア部分の割れも起こり易
いという問題点もあった。
[0004] However, such an unstable state of the initial conditions is not particularly problematic as long as the core diameter is sufficiently large, but when the core diameter is small, the core becomes very eccentric. Once eccentric, eccentricity often continues until the end of manufacturing, and even if this is corrected during manufacturing, this part will be defective, so this will reduce productivity, and this will also reduce the core part. There was also a problem that cracks easily occurred.

【0005】[0005]

【課題を解決するための手段】本発明はこのような不
利、問題点を解決した光ファイバ用多孔質ガラス母材の
製造方法に関するもので、これはコア用バーナーとクラ
ッド用バーナーにガラス原料ガスと酸素ガスおよび水素
ガスを供給し、この酸水素火炎中でのガラス原料ガスの
火炎加水分解で発生したガラス微粒子をターゲット部材
に堆積させて、コア部とクラッド層を有する多孔質ガラ
ス母材を製造する光ファイバ用多孔質ガラス母材の製造
方法において、この多孔質ガラス母材の製造初期におけ
る製造開始時のコア径を所望の径よりも太く形成し、こ
のコア径をコアを包含するクラッド層の堆積成長で多孔
質ガラス母材の外径が増加すると共に徐々に細くしてい
き、多孔質ガラス母材外径が一定となって多孔質ガラス
母材直胴部が形成されたとき、コア径を所望の値となる
ようにすることを特徴とするものである。
The present invention relates to a method of manufacturing a porous glass preform for an optical fiber which solves such disadvantages and problems. The method comprises the steps of providing a glass source gas to a core burner and a cladding burner. And oxygen gas and hydrogen gas are supplied, and glass fine particles generated by the flame hydrolysis of the glass raw material gas in the oxyhydrogen flame are deposited on a target member to form a porous glass base material having a core portion and a cladding layer. In the method for producing a porous glass preform for an optical fiber to be produced, a core diameter at the start of production of the porous glass preform at the beginning of production is formed to be larger than a desired diameter, and the core diameter includes a clad including the core. As the outer diameter of the porous glass base material increases and gradually narrows as the layer grows, the outer diameter of the porous glass base material becomes constant and the porous glass base material straight body is formed. When in, it is characterized in that as the core diameter to a desired value.

【0006】すなわち、本発明者らはコア径が細径であ
る製造初期におけるコア偏心の形成および母材の割れを
防止することができる光ファイバ用多孔質ガラス母材の
製造方法を開発すべく種々検討した結果、製造が不安定
な製造初期におけるコア径を所望の径より太くして製造
を開始して多孔質ガラス母材を製造し、母材の最大外径
が定常時の径となったのちに、コア径を所望の径として
多孔質ガラス母材を製造すれば、偏心もなく、母材の割
れもない細径コアをもつ多孔質ガラス母材を製造するこ
とができることを見出し、これによれば製造初期のコア
径が太くなるので最大外径をもつ多孔質ガラス母材を短
時間で定常時外径をもつものとすることができることを
確認して本発明を完成させた。
That is, the inventors of the present invention have developed a method of manufacturing a porous glass preform for an optical fiber which can prevent formation of core eccentricity and cracking of the preform in the early stage of production, in which the core diameter is small. As a result of various investigations, the core diameter in the initial stage of the production was unstable, the production was started to be larger than the desired diameter, and the production was started to produce a porous glass preform. After that, if the porous glass preform is manufactured with the core diameter as a desired diameter, there is no eccentricity, and it is possible to manufacture a porous glass preform having a small-diameter core without cracking of the base material, According to this, the core diameter in the initial stage of production becomes large, and it has been confirmed that the porous glass base material having the maximum outer diameter can have the outer diameter at the steady state in a short time, and the present invention has been completed.

【0007】[0007]

【作用】VAD法による光ファイバ用多孔質ガラス母材
の製造においては、ターゲットの回転にムラがあり、コ
ア径が小さいと多孔質母材の外径の小さい初期段階にお
いては偏心率が大きくなってしまう。そこで、コア径が
細い多孔質ガラス母材を製造する場合、製造開始時の多
孔質ガラス母材の外径が小さいときは、コア径を所望の
外径より太くして製造を開始すれば初期の回転ムラによ
る偏心率を小さくすることができ、その後はクラッド層
の成長で母材の最大外径が増加するに従いコア径を徐々
に細くしていき、母材の最大外径が一定となって製造条
件が定常状態となったときに所望のコア径となるように
この製造条件を徐々に定常条件とするものであるが、こ
れによれば母材の偏心率を小さく抑えることができ、さ
らには種棒のふれ曲りによる堆積の変形を防止し、また
母材が割れるという不利が除かれるという有利性が与え
られる。なお、多孔質ガラス母材の直胴部でない初期の
部分は実用上はカットされて使用されないので問題はな
い。
In the production of a porous glass preform for an optical fiber by the VAD method, there is unevenness in the rotation of the target, and when the core diameter is small, the eccentricity increases in the initial stage when the outer diameter of the porous preform is small. Would. Therefore, when manufacturing a porous glass preform having a small core diameter, when the outer diameter of the porous glass preform at the start of the production is small, if the core diameter is made larger than the desired outer diameter and the production is started, the initial stage can be started. The eccentricity due to the rotation unevenness can be reduced, and then the core diameter is gradually reduced as the maximum outer diameter of the base material increases due to the growth of the cladding layer, and the maximum outer diameter of the base material becomes constant Therefore, the manufacturing conditions are gradually made to be the steady conditions so that the desired core diameter is obtained when the manufacturing conditions are in the steady state.Accordingly, the eccentricity of the base material can be suppressed small, Furthermore, the advantage of preventing deformation of the pile due to bending of the seed rod and eliminating the disadvantage of cracking the base material is provided. The initial portion of the porous glass base material other than the straight body portion is practically cut and not used, so there is no problem.

【0008】本発明によるコア−クラッド構造をもつ光
ファイバ用多孔質ガラス母材の製造は、コア用バーナー
とクラッド用バーナーを備えた多孔質ガラス母材製造装
置で行なわれるが、製造開始時におけるコア径は少なく
ともコア用バーナーの外径より太いものとすることが必
要であり、これは好ましくは定常コア径より大で3倍以
下の範囲、好ましくは2倍程度とすることがよく、した
がって所望のコア径が15mmのときにはこれは30mm程度の
ものとすることがよい。
The production of a porous glass preform for an optical fiber having a core-cladding structure according to the present invention is performed by a porous glass preform manufacturing apparatus having a core burner and a cladding burner. It is necessary that the core diameter is at least larger than the outer diameter of the core burner, which is preferably larger than the steady core diameter and not more than 3 times, preferably about 2 times. When the core diameter is 15 mm, this is preferably about 30 mm.

【0009】本発明で使用する多孔質ガラス母材製造装
置は公知のVAD法による装置に準じたものとすればよ
く、したがってこれは図1に示したものとすればよい。
図1は本発明で使用されるコア−クラッド構造をもつ多
孔質ガラス母材製造装置の縦断面図を示したものである
が、これは排気口2をもつ反応容器1の下部にコア用バ
ーナー3、複数のクラッド用バーナー4、5を備えたも
のであるが、この反応容器内には回転する把持具に保持
された合成石英ガラスなどからなるターゲット部材6が
懸吊されており、このコア用バーナー3にはガラス材料
ガスとしての四塩化けい素(SiCl4 )、酸素ガス(O
2 )、水素ガス(H2 )、ドーパントとしての四塩化ゲ
ルマニウム(GeCl4 )および不活性ガスとしてのアルゴ
ンガス(Ar)が供給され、クラッド用バーナーには S
iCl4、O2 、H2 およびArが供給される。
The apparatus for producing a porous glass base material used in the present invention may be based on a known apparatus based on the VAD method, and therefore may be the apparatus shown in FIG.
FIG. 1 is a longitudinal sectional view of a manufacturing apparatus for a porous glass base material having a core-cladding structure used in the present invention. 3. A plurality of clad burners 4, 5 are provided, and a target member 6 made of synthetic quartz glass or the like held by a rotating holding tool is suspended in the reaction vessel. Burner 3 includes silicon tetrachloride (SiCl 4 ) as a glass material gas and oxygen gas (O 2 ).
2 ), hydrogen gas (H 2 ), germanium tetrachloride (GeCl 4 ) as a dopant, and argon gas (Ar) as an inert gas are supplied.
iCl 4 , O 2 , H 2 and Ar are supplied.

【0010】これによる多孔質ガラス母材の製造は、コ
ア用バーナー3に着火してこのバーナー火炎中で発生し
たシリカ微粒子を回転しているターゲット部材6に付
着、堆積してコア部を形成し、クラッド用バーナー4、
5の火炎中で発生したシリカ微粒子をコア部の上に付
着、堆積して多孔質ガラス母材8を製作するのである
が、この初期のコア径は所望のコア径が15mmであるとき
にはその初期段階ではこれはその3倍程度、好ましくは
2倍程度の30mmとすることがよい。
In the production of the porous glass base material, the core burner 3 is ignited, and silica fine particles generated in the burner flame are adhered to the rotating target member 6 and deposited to form a core portion. , Burner for cladding 4,
The silica fine particles generated in the flame of No. 5 are adhered and deposited on the core portion to produce the porous glass base material 8. When the desired core diameter is 15 mm, the initial core diameter is set to the initial value. At the stage, this is about three times, preferably about twice, 30 mm.

【0011】しかし、この初期コア径が3倍以上となる
と所望のコア径にするのに時間がかかり、ロスが大きく
なるという不利が生ずることから、3倍以下、好ましく
は2倍程度とすればよい。
However, if the initial core diameter is three times or more, it takes a long time to obtain a desired core diameter, and disadvantages such as a large loss occur. Therefore, if the initial core diameter is three times or less, preferably about two times. Good.

【0012】したがって、本発明においては図2に示し
たようにこのガラス微粒子の堆積を、初期の段階におい
てはコアの外径を所望値の3倍程度、好ましくは目標と
するコア径の2倍程度の径となるように、このコア用バ
ーナーに供給する SiCl4、GeCl4 、O2 、H2 、Arな
どの量を定常時のときよりも多くしてコア径を増大さ
せ、同時にクラッド用バーナーからのガラス微粒子を付
着、堆積させてこれを成長させ、この多孔質母材の外径
が太くなるにしたがってコア用バーナーに供給するガス
量を減少させて定常時まで徐々に減らしてコア径を細く
していき、多孔質ガラス母材の最大外径が一定となった
ときにコア径が所望の径となるようにすればよい。
Therefore, in the present invention, as shown in FIG. 2, the deposition of the glass fine particles is carried out in the initial stage by setting the outer diameter of the core to about three times the desired value, preferably twice the target core diameter. The core diameter is increased by increasing the amount of SiCl 4 , GeCl 4 , O 2 , H 2 , Ar, etc. supplied to the core burner so that the core diameter becomes about The glass fine particles from the burner are adhered, deposited and grown, and as the outer diameter of the porous base material increases, the amount of gas supplied to the core burner is reduced, and the core diameter is gradually reduced until steady state. May be reduced so that the core diameter becomes a desired diameter when the maximum outer diameter of the porous glass base material becomes constant.

【0013】また、この場合におけるコア用バーナーに
供給するガス量は上記したように製造開始時には定常時
より多くなるようにされるが、これはコア径を太くする
のが目的で、またこの部分は使用されないので例えば表
1に示したように、ドーパントとしての GeCl4は特に増
加させる必要はないが、 SiCl4につては定常時の20リッ
トル/分を 100リットル/分に、H2 ガスは定常時の
0.5リットル/分を 1.4リットル/分に、O2 ガスは定
常時の4リットル/分を8リットル/分に、またArガ
スは定常時の 0.8リットル/分を2リットル/分に増加
させることがよい。
In this case, the amount of gas to be supplied to the core burner is set to be larger at the start of the production than in the steady state as described above. This is for the purpose of increasing the core diameter. Since Ge is not used, for example, as shown in Table 1, it is not necessary to particularly increase GeCl 4 as a dopant, but for SiCl 4 , the steady 20 L / min is reduced to 100 L / min, and the H 2 gas is Regular
0.5 liters / minute can be increased to 1.4 liters / minute, O 2 gas can be increased from 4 liters / minute at steady state to 8 liters / minute, and Ar gas can be increased from 0.8 liters / minute at steady state to 2 liters / minute. Good.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【実施例】つぎに本発明の実施例、比較例をあげる。 実施例 反応容器の下部にコア用バーナーとクラッド用バーナー
2個が配置されてあり、装置内に直径が10mm、長さが 1
00mmの合成石英ガラス製のターゲット部材を懸吊した、
図1に示した多孔質ガラス母材製造装置を使用し、この
コア用バーナーに表1に示すように製造開始時に四塩化
けい素(SiCl4 )を 100リットル/分、四塩化ゲルマニ
ウム(GeCl4 )を5リットル/分、酸素ガス(O2 )を
8リットル/分、水素ガス(H2 )を 1.4リットル/
分、アルゴンガス(Ar)を2リットル/分で供給し、
これらのガス量を徐々に低下させていき、定常時には表
1に示す一定の流量で供給し、 SiCl4、 GeCl4の火炎加
水分解で発生したガラス微粒子をターゲット部材に付
着、堆積させて図2に示すように初期コア径を30.7mmと
し、多孔質母材の外径が増加するにしたがって徐々に低
下させ、これが定常時の200mmになったとき15.5mmとな
るようにコア部を形成させ、各クラッド用バーナーには
それぞれ SiCl4、O2 、H2 ガス、Arガスを送入し、
SiCl4の火炎加水分解で発生したシリカ微粒子をコア部
の上に付着、堆積させて外径が 200mm、長さが 1,000mm
の多孔質ガラス母材を製作したところ、このものは割れ
もなく、またこれを 1,500℃で焼結して外径が98mm、長
さ 500mm、コア径7mmの透明な光ファイバ用ガラス母材
を得たところ、偏心のないシングルモード用光ファイバ
ガラス母材を得ることができ、この方法で10本の多孔質
ガラス母材を製造し、これを1,500℃で焼結して透明な
ガラス母材とし、これを 2,100℃で線引きして外径 125
μmの光ファイバとし、このコア偏心量を測定したとこ
ろ、これは最大値 0.3μmで平均 0.1μmであった。
Next, examples of the present invention and comparative examples will be described. Example A core burner and two clad burners were arranged at the lower part of a reaction vessel, and the diameter of the apparatus was 10 mm and the length was 1 mm.
A target member made of 00 mm synthetic quartz glass was suspended,
Using the porous glass preform manufacturing apparatus shown in FIG. 1, silicon tetrachloride (SiCl 4 ) was supplied to this core burner at the start of production as shown in Table 1 at a rate of 100 liters / minute and germanium tetrachloride (GeCl 4). ) At 5 liters / minute, oxygen gas (O 2 ) at 8 liters / minute, and hydrogen gas (H 2 ) at 1.4 liters / minute.
Minute, argon gas (Ar) is supplied at 2 liters / minute,
The amount of these gases is gradually reduced, and is supplied at a constant flow rate shown in Table 1 in a steady state, and glass fine particles generated by flame hydrolysis of SiCl 4 and GeCl 4 are attached to and deposited on the target member. As shown in the figure, the initial core diameter was 30.7 mm, and gradually decreased as the outer diameter of the porous base material increased, and when this became 200 mm in a steady state, the core portion was formed so as to be 15.5 mm, Each clad burner is fed with SiCl 4 , O 2 , H 2 gas and Ar gas, respectively.
Silica fine particles generated by flame hydrolysis of SiCl 4 are adhered and deposited on the core, and have an outer diameter of 200 mm and a length of 1,000 mm.
When the porous glass preform was manufactured, it did not crack, and was sintered at 1,500 ° C to produce a transparent optical fiber glass preform with an outer diameter of 98 mm, a length of 500 mm, and a core diameter of 7 mm. As a result, a single-mode optical fiber glass preform without eccentricity was obtained, and ten porous glass preforms were manufactured by this method, which were sintered at 1,500 ° C to obtain a transparent glass preform. This is drawn at 2,100 ° C and the outer diameter is 125
When the core eccentricity was measured with an optical fiber of μm, the maximum value was 0.3 μm and the average was 0.1 μm.

【0016】比較例 上記した実施例と同じ装置を使用したが、比較のために
コア用バーナーに対する原料ガスの供給量をSiCl4 20リ
ットル/分、GeCl4 を5リットル/分、O2 ガス4リッ
トル/分、H2 ガス 0.5リットル/分、Arガス 0.8リ
ットル/分の一定としたほかは実施例と同一の条件で外
径 200mm、長さ 1,000mmの多孔質ガラス母材を作製した
ところ、これは10本中5本が割れており、割れていない
5本について 1,500℃で焼結して透明ガラス母材とし、
これらを 2,100℃で線引きして外径 125μmの光ファイ
バを作り、このコアの偏心量を求めたところ、これは最
大1.0μm、平均 0.8μmであった。
[0016] comparative examples using the same apparatus as the above-mentioned embodiments, SiCl 4 20 l / min the feed rate of the raw material gas to the core burner for comparison, a GeCl 4 5 l / min, O 2 gas 4 Liter / min, H 2 gas 0.5 liter / min, Ar gas 0.8 liter / min, except that a porous glass preform having an outer diameter of 200 mm and a length of 1,000 mm was produced under the same conditions as in the example. This is because 5 out of 10 cracks are broken, and 5 unbroken pieces are sintered at 1,500 ° C to make a transparent glass base material.
These were drawn at 2,100 ° C. to produce an optical fiber having an outer diameter of 125 μm, and the eccentricity of this core was determined. The maximum eccentricity was 1.0 μm, and the average was 0.8 μm.

【0017】[0017]

【発明の効果】本発明は光ファイバ用多孔質ガラス母材
の製造方法に関するものであり、これは前記したように
コア用バーナーとクラッド用バーナーにガラス原料ガス
と酸素ガスおよび水素ガスを供給し、この酸水素火炎中
でのガラス原料ガスの火炎加水分解で発生したガラス微
粒子をターゲット部材に堆積させて、コア部とクラッド
層を有する多孔質ガラス母材を製造する光ファイバ用多
孔質ガラス母材の製造方法において、この多孔質ガラス
母材の製造初期における製造開始時のコア径を所望の径
よりも太く形成し、このコア径をコアを包含するクラッ
ド層の堆積成長で多孔質ガラス母材の外径が増加すると
共に徐々に細くしていき、多孔質ガラス母材の外径が一
定となって多孔質ガラス母材直胴部が形成されたとき、
コア径を所望の値となるようにすることを特徴とするも
のであるが、これによればコア径が細い多孔質ガラス母
材を製造するときにコアの偏心の形成およびコアの割れ
を防止することができるので、良品の生産性を増大させ
ることができるという有利性が与えられる。
The present invention relates to a method for producing a porous glass preform for an optical fiber, which comprises supplying a glass source gas, an oxygen gas and a hydrogen gas to a core burner and a clad burner as described above. A porous glass matrix for an optical fiber for producing a porous glass matrix having a core portion and a clad layer by depositing glass fine particles generated by flame hydrolysis of a glass raw material gas in this oxyhydrogen flame on a target member. In the method of manufacturing a material, a core diameter at the start of the production of the porous glass base material at the beginning of production is formed larger than a desired diameter, and the porous glass base material is formed by depositing and growing a cladding layer including the core. When the outer diameter of the material increases and gradually narrows, when the outer diameter of the porous glass preform becomes constant and the porous glass preform straight body is formed,
It is characterized in that the core diameter is set to a desired value. According to this, when manufacturing a porous glass base material having a small core diameter, formation of eccentricity of the core and cracking of the core are prevented. Therefore, the advantage that the productivity of good products can be increased is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による光ファイバ用多孔質ガラス母材製
造装置の縦断面図を例示したものである。
FIG. 1 illustrates a vertical cross-sectional view of an apparatus for manufacturing a porous glass preform for an optical fiber according to the present invention.

【図2】本発明による多孔質ガラス母材製造時における
コア径と時間の経過との関係図を例示したものである。
FIG. 2 illustrates a relationship diagram between a core diameter and the passage of time during the production of a porous glass base material according to the present invention.

【符号の説明】[Explanation of symbols]

1…反応容器 2…排気口 3…コア用バーナー 4,5…クラッド用バーナー 6…ターゲット部材 7…多孔質ガラス母材の初期部 8…多孔質ガラス母材の直胴部 DESCRIPTION OF SYMBOLS 1 ... Reaction container 2 ... Exhaust port 3 ... Core burner 4, 5 ... Clad burner 6 ... Target member 7 ... Initial part of porous glass base material 8 ... Straight body part of porous glass base material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山田 浩 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (72)発明者 平沢 秀夫 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (56)参考文献 特開 昭62−187133(JP,A) 特開 昭58−213644(JP,A) 特開 昭63−60123(JP,A) 特開 昭60−48942(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 37/018 C03B 8/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Koyamada 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd.Precision Functional Materials Laboratory (72) Inventor Hideo Hirasawa Isobe, Annaka-shi, Gunma 2-13-1 Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Laboratory (56) References JP-A-62-187133 (JP, A) JP-A-58-213644 (JP, A) JP-A-63-60123 (JP, A) JP-A-60-48942 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 37/018 C03B 8/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コア用バーナーとクラッド用バーナーに
ガラス原料ガスと酸素ガスおよび水素ガスを供給し、こ
の酸水素火炎中でのガラス原料ガスの火炎加水分解で発
生したガラス微粒子をターゲット部材に堆積させて、コ
ア部とクラッド層を有する多孔質ガラス母体を製造する
光ファイバ用多孔質ガラス母材の製造方法において、こ
の多孔質ガラス母材の製造初期における製造開始時のコ
ア径を所望の径よりも太く形成し、このコア径をコアを
包含するクラッド層の堆積成長で多孔質ガラス母材の外
径が増加すると共に徐々に細くしていき、多孔質ガラス
母材の外径が一定となって多孔質ガラス母材直胴部が形
成されたとき、コア径を所望の値となるようにすること
を特徴とする光ファイバ用多孔質ガラス母材の製造方
法。
1. A glass raw material gas, an oxygen gas and a hydrogen gas are supplied to a core burner and a clad burner, and glass fine particles generated by flame hydrolysis of the glass raw material gas in the oxyhydrogen flame are deposited on a target member. In the method for producing a porous glass preform for an optical fiber for producing a porous glass preform having a core portion and a cladding layer, the core diameter at the start of production in the initial stage of production of the porous glass preform is set to a desired diameter. The outer diameter of the porous glass base material is gradually increased as the outer diameter of the porous glass base material is increased by the deposition growth of the cladding layer including the core, so that the outer diameter of the porous glass base material is constant. A method for producing a porous glass preform for an optical fiber, wherein the core diameter is set to a desired value when the porous glass preform straight body is formed.
JP3464094A 1994-03-04 1994-03-04 Method for producing porous glass preform for optical fiber Expired - Lifetime JP3169503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3464094A JP3169503B2 (en) 1994-03-04 1994-03-04 Method for producing porous glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3464094A JP3169503B2 (en) 1994-03-04 1994-03-04 Method for producing porous glass preform for optical fiber

Publications (2)

Publication Number Publication Date
JPH07242433A JPH07242433A (en) 1995-09-19
JP3169503B2 true JP3169503B2 (en) 2001-05-28

Family

ID=12420031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3464094A Expired - Lifetime JP3169503B2 (en) 1994-03-04 1994-03-04 Method for producing porous glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JP3169503B2 (en)

Also Published As

Publication number Publication date
JPH07242433A (en) 1995-09-19

Similar Documents

Publication Publication Date Title
JP2685543B2 (en) How to make an optical fiber preform
US5674306A (en) Method and apparatus for drawing glass preform for optical fiber
US8516855B2 (en) Method for producing an optical fiber preform
US7437893B2 (en) Method for producing optical glass
JP3053320B2 (en) Method for producing porous glass preform for optical fiber
US20070137256A1 (en) Methods for optical fiber manufacture
US6923024B2 (en) VAD manufacture of optical fiber preforms with improved deposition control
EP1383714B1 (en) Method for producing an optical fiber preform
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
US6834516B2 (en) Manufacture of optical fiber preforms using modified VAD
JP2793617B2 (en) Manufacturing method of optical fiber preform
JP3816268B2 (en) Method for producing porous glass base material
US6928841B2 (en) Optical fiber preform manufacture using improved VAD
JP4057304B2 (en) Manufacturing method of optical fiber preform
JP2009114045A (en) Method for manufacturing optical fiber glass preform
JPH03242341A (en) Production of porous glass preform for single-mode optical fiber
JP2523154B2 (en) Method for manufacturing glass particulate deposit
JPH0986948A (en) Production of porous glass base material for optical fiber
JP3449488B2 (en) Manufacturing method of preform for optical fiber
JP2000063141A (en) Production of porous glass preform for optical fiber
JP4404214B2 (en) Manufacturing method of glass preform for optical fiber
JPH08225338A (en) Production of optical fiber preformed material
JP3741832B2 (en) Dispersion shifted fiber glass preform manufacturing method
JP2938605B2 (en) Method of manufacturing preform for single mode optical fiber
JP2938604B2 (en) Method of manufacturing preform for single mode optical fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12